SlideShare une entreprise Scribd logo
1  sur  39
Télécharger pour lire hors ligne
Fisiologia da membrana
Prof. Me. Caio Maximino
Marabá/PA
2014
Conteúdo programático
● Eletrocinese e estrutura eletrostática da
membrana
● Permeabilidade da membrana e gradientes
eletroquímicos
● Transporte passivo e ativo
● Equilíbrio de Donnan e capacitância
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Fundamentos de eletrostática
● A base para as considerações
eletrostáticas é a carga elétrica, definida
em coulombs (C = A · s)
● A menor cara elétrica possível é a carga
de um íon univalente ou de um grupo
carregado correspondente.
● A constante de Faraday (F) representa o
número de cargas por mol de íons
univalentes
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
F=9,6485⋅104
C val−1
Fundamentos de eletrostática
● A divisão desse valor pelo número de
Avogrado (N) produz o valor da carga de
um único íon (e):
● Para calcular os parâmetros mecânicos
resultando de interações elétricas, é
preciso usar um fator de conversão, a
permissividade do espaço livre (ε0):
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
e=
F
N
=1,6021⋅10
−19
C
ε0=8,854⋅10−12
CV−1
m−1
Potencial elétrico
● Qualquer carga gera um
campo elétrico que é
caracterizado pelo gradiente
de potencial elétrico (ψ), a
quantidade de trabalho
necessária para mover uma
crga positiva de uma
distância infinita ao ponto r.
● No caso de um campo
elétrico à volta de uma carga
q, o potencial elétrico é uma
função radial da distância r
desse ponto
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
ψ=
q
4⋅π⋅ε0⋅ε⋅r
Potencial elétrico
● A força do campo elétrico (E) é um
parâmetro vetorial, definido como
● No caso de um gradiente no qual o campo
elétrico movimenta-se em uma única
direção x, essa equação torna-se
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
E=−gradε=−∇ ε
Ex=
−d ε
dx
⋅i
Potencial elétrico
● Fase I e Fase II: Duas
soluções de eletrólitos
diferentes.
● Pontos de descontinuidade
na força do campo podem
ocorrer, com uma reversão
da direção do campo.
● A razão para essas
descontinuidades são as
cargas de superfície nos
limites da fase.
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Glazer, 1999
Estrutura eletrostática da
membrana
● A membrana celular é uma estrutura altamente organizada que
cumpre várias funções fisiológicas:
– Como superfície, forma uma matriz dinâmica para reações
enzimáticas, processos receptivos, e reconhecimento
imunológico
– Como barreira de difusão, controla a composição iônica do
citoplasma através de transportadores altamente específicos
– Como folheto de isolamento elétrico, contém um mosaico de
circuitos elétricos apssivos e ativos, controlando o potencial
de membrana e as condições eletrodinâmicas próximas à
membrana
– Como estrutura mecânica, garante a integridade da célula e
influencia seu formato e movimento
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Estrutura eletrostática da
membrana
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Murray et al., 2003
Efeito hidrofóbico na formação
de bicamadas lipídicas
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Estrutura eletrostática da
membrana
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Murray et al., 2003
Estrutura eletrostática da
membrana
● Em relação ao meio extracelular e ao
citoplasma, a membrana celular apresenta
resistência elétrica alta e constante
dielétrica baixa.
● Essas propriedades nos autorizam a tratar
a membrana como uma interface
hidrofóbica extremamente fina que isola
duas fases aquosas, comportando-se como
um capacitor com capacitância C e
resistência R.
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Capacitância da membrana
● A capacidade específica (Csp) pode ser calculado a
partir da espessura da membrana (Δx) e da constante
dielétrica (ε)
●
Essa capacidade é relativamente constante, porque
ambos os parâmetros não variam significativamente);
para a maior parte das células, é de cerca de 10 mF m-
2
● Assumindo Δx = 8 x 10-9 m:
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Csp=
ε0⋅ε
Δ x
ε=
Csp⋅Δ x
ε0
=
10
−2
⋅8⋅10
−9
8.854⋅10−12
Capacitância da membrana
● A capacidade
específica indica
a relação entre
a quantidade de
carga requerida
para gerar uma
diferença de
potencial de
membrana
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Csp= σ
Δ ψ
Glazer, 1999
Modelando a capacitância da
membrana
● Abra o NEURON.
● Criar uma corpo celular (Build > Single compartment), inicialmente
sem atribuir propriedades elétricas
● Abrir o gráfico de potencial (Graph > Voltage axis)
● Abrir o Painel de Controle (Tools > RunControl) e rodar uma
simulação (pressione “Init & Run”); anote o que ocorreu com o
potencial da membrana.
● Vamos injetar um estímulo elétrico (Tools > Point Processes >
Managers > Point Manager). No menu SelectPointProcess da
janela que irá abrir, selecione IClamp.
● Produza uma corrente de 1 ms de atraso, 2 ms de duração, e 0.5 nA
de amplitude. Rode a simulação novamente e verifique o que
acontece com o potencial de membrana.
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Modelando a capacitância de
membrana
● Dobre a duração e divida a amplitude por 2. Rode a simulação
novamente e verifique o que acontece com o potencial de
membrana.
● Retorne a duração e amplitude aos seus valores iniciais.
● Insira canais de condutância passiva clocando em na caixa “pas” da
janela “SingleCompartment” e repita os passos 5-7.
● No painel “RunControl”, altere o potencial de repouso de -65 para – 70
mV.
● Mude a amplitude do estímulo para 1A (1e9 nA) e rode novamente a
simulação. O que ocorre com o potencial de membrana? Por quê?
● Aumente a amplitude para 1e4 nA, diminua a duração para 1e-5 ms,
aumente o número de pontos (“Points plotted/ms”, no painel de
controle) para 1e5, a duração do passo (“dt(ms)”) para 0.01 ms, e
rode a simulação novamente.
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Potencial eletrostático
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● As cargas fixas na
superfície da
membrana devem ser
consideradas cargas
em um espaço, não
em uma superfície.
● A densidade espacial
de cargas é descrita
pela equação de
Poisson-Holtzmann
∇
2
ψ=−
1
ε0⋅ε⋅(ρ+F ∑
i=1
n
¿⋅Ci0 zi e
−zi e ψ
kT
)
Glazer, 1999
Potencial eletrostático
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● A distância efetiva desse potencial é predizível primeiro pela
espessura do glicocálix, e segundo pelo raio de Debye-Hückel
(1/κ).
● Essa espessura é, por sua vez, determinada pelas interações
eletrostáticas desuas cargas.
● Em um ambiente com alto potencial iônico, essas cargas
“movem” as glicoproteínas mais próximas da membrana; o
contrário ocorre em ambientes com baixo potencial iônico.
● Isso significa que a função ρ(x) (distribuição de cargas dos ácidos
siálicos das glicoproteínas) depende de ψ(x)
Potencial eletrostático
● O potencial eletrostático influencia todas as
moléculas polares, ou polarizáveis, em sua
região de influência.
● A DESPOLARIZAÇÃO de uma célula
excitável altera o potencial de difusão Δψ, e
a modificação resultante na força do campo
muda a permeabilidade de canais de sódio e
potássio, que influenciam o potencial de
membrana.
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Equilíbrio eletroquímico
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● O movimento do íon A na
direção de seu gradiente de
concentração produz um
aumento no Δψ através da
membrana
● Eventualmente, um campo
elétrico forte irá impedir a
difusão posterior do íon A.
● Assim, o íon A está sujeito a
duas forças opostas: o gradiente
de seu potencial químico e uma
força eletrostática opositora que
surge como resultado de sua
própria difusão.
● As condições para equilíbrio
são:
Glazer, 1999
Equilíbrio eletroquímico
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● Se o potencial eletroquímico de uma
substância i é dado por
● Em condição de equilíbrio teremos
● Rearranjando
● Ou ainda
~μi=μi+ zi⋅F ψ
μA
I
+RT +ln (aA
I
)+zA⋅F ψ
II
=μA
II
+RT +ln(aA
II
)+zA⋅F ψ
II
ZA⋅F(ψ
I
−ψ
II
)=RT (ln(aA
II
)−ln (aA
I
))
Δ ψ≡(ψI
−ψII
)=
RT
zA F
ln(
aA
II
aA
I
)
Equação de Nernst
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● A equação de Nernst permite o cálculo do
potencial da membrana, que é induzido por uma
distribuição desigual de íons
● Um rearranjo permite calcular a distribuição de
íons em função do potencial elétrico
● Em ambos os casos, o equilíbrio termodinâmico é
um requerimento!
Δ ψ≡(ψI
−ψII
)=
RT
zA F
ln(
aA
II
aA
I
)
aA
I
=aA
II
e
zA FΔ ψ
RT
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Δ ψ=
58
z
ln (
[ K
+1
]2
[ K
+1
]1
)=58⋅ln(
1
10
)=−58mV
● Se tratamos de uma solução de KCl 10
mM no lado 1 e 1 mM no lado 2,
Purves et al., 2004
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● O que ocorre se utilizarmos uma bateria
(ou seja, se alterarmos Δψ)?
Purves et al., 2004
Fluxo iônico
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● A difusão de um eletrólito é induzida pelo
gradiente negativo do potencial
eletroquímico, e segue as mesmas leis que
regulam o fluxo de substâncias sem carga:
ou seja, o fluxo é um produto da
concentração ([i]) e da mobilidade (wi/N)
Ji=−[i]
wi
N
RT grad[i]=−[i]wi kT grad[i]
Coeficiente de difusão D (primeira lei de Fick)
Fluxo iônico
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● Para um gradiente de concentração na
direção x, o operador 'grad' pode ser
substituído por um diferencial
● Para simplificar, assumamos que o
coeficiente de atividade aproxime-se de 1, e
portanto
d~μi
dx
=
d
dx
(μi
0
+RT⋅ln (ai)+zi F ψ)
ai≈ci
Equação de Nernst-Planck
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● Em um sistema isobárico (grad p = 0) e
isotérmico (grad T = 0),
● Do ponto de vista do fluxo molar,
d~μi
dx
=(
RT
[i]
)⋅(
d[i]
dx
)+zi F
d ψ
dx
Ji=
−[i] wi
N
(
RT
[i]
)⋅(
d[i]
dx
)+zi F
d ψ
dx
Equação de Goldman
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● Se considerarmos gradientes lineares
(p. ex., uma membrana com poros
aquosos grandes e não-carregados), os
diferenciais podem ser substituídos por
razões de diferenças, e as
concentrações podem ser substituídas
pela concentração média entre as fases
Jix=−Pi(Δ[i]+
zi F ¯[i]
RT
Δ ψ)
Coeficiente de permeabilidade = D/Δx
Equação de Goldman
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● Em 1943, David Goldman integrou a
equação de Nernst-Planck, assumindo
condições de campo constante (i.e.,
E = -grad ψ = const)
Jix=−Pi β
[i]I−[i]II e
β
1−e
β ,ondeβ=
zi F
RT
Δψ
Equação de Goldman
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
● Para um cátion univalente (zi
= +1) com permeabilidade Pi
= 10-7 m s-1, em condições
isosmóticas não há fluxo sem
Δψ; se há ΔC, o fluxo pode
existir mesmo na ausência de
Δψ
● Ji positivo representa o fluxo
de I para II; Ji negativo
representa o fluxo de II para I.
● Os interceptos da abcissa
representam a situação em
equilíbrio de Nernst
Glazer, 1999
Equação de Goldman
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Purves et al., 2004
No axônio gigante de lula
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Íon Concentração
intracelular (mM)
Concentração
extracelular (mM)
Potássio 400 20
Sódio 50 440
Cloreto 40-'50 560
Cálcio 0,0001 10
Purves et al., 2004
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Simulando o axônio gigante de
lula
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
Parâmetrosiniciais
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
ψNa⁺=63,548mV
ψK ⁺=−74,168mV
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
300 mM Na+
fora, 10 mM dentro
ψNa⁺=81,9mV
ψK ⁺=−74,168mV
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
140 mM Na+
fora, 50 mM dentro
ψNa⁺=24,793mV
ψK ⁺=−74,168mV
Propriedades
elétricas da
membrana
Permeabilidade
seletiva
Transporte
Equilíbrio de
Donnan
54,4 mM K+
fora, 54,4 mM dentro
ψNa ⁺=63,548 mV
ψK⁺=0 mV

Contenu connexe

Tendances

Aminoácidos, peptídeos e proteínas
Aminoácidos, peptídeos e proteínasAminoácidos, peptídeos e proteínas
Aminoácidos, peptídeos e proteínas
Marcia Azevedo
 
Fisiologia Humana 4 - Tecido Muscular
Fisiologia Humana 4 - Tecido MuscularFisiologia Humana 4 - Tecido Muscular
Fisiologia Humana 4 - Tecido Muscular
Herbert Santana
 
Tipos de estudos epidemiológicos
Tipos de estudos epidemiológicosTipos de estudos epidemiológicos
Tipos de estudos epidemiológicos
Arquivo-FClinico
 
Cópia de semiologia do tórax
Cópia de semiologia do tóraxCópia de semiologia do tórax
Cópia de semiologia do tórax
Jucie Vasconcelos
 
Aula 1 introdução à química orgânica.
Aula 1    introdução à química orgânica.Aula 1    introdução à química orgânica.
Aula 1 introdução à química orgânica.
Ajudar Pessoas
 
8. tabela periódica
8. tabela periódica8. tabela periódica
8. tabela periódica
Rebeca Vale
 
Ciclo celular e mitose
Ciclo celular e mitoseCiclo celular e mitose
Ciclo celular e mitose
emanuel
 
Replicacao e transcriçao DNA procariotos
Replicacao e transcriçao DNA procariotosReplicacao e transcriçao DNA procariotos
Replicacao e transcriçao DNA procariotos
UERGS
 
Mutações do material genético
Mutações do material genéticoMutações do material genético
Mutações do material genético
UERGS
 

Tendances (20)

Relatório Histologia
Relatório HistologiaRelatório Histologia
Relatório Histologia
 
Aminoácidos, peptídeos e proteínas
Aminoácidos, peptídeos e proteínasAminoácidos, peptídeos e proteínas
Aminoácidos, peptídeos e proteínas
 
Fisiologia Humana 4 - Tecido Muscular
Fisiologia Humana 4 - Tecido MuscularFisiologia Humana 4 - Tecido Muscular
Fisiologia Humana 4 - Tecido Muscular
 
Tipos de estudos epidemiológicos
Tipos de estudos epidemiológicosTipos de estudos epidemiológicos
Tipos de estudos epidemiológicos
 
Cópia de semiologia do tórax
Cópia de semiologia do tóraxCópia de semiologia do tórax
Cópia de semiologia do tórax
 
Aula 1 introdução à química orgânica.
Aula 1    introdução à química orgânica.Aula 1    introdução à química orgânica.
Aula 1 introdução à química orgânica.
 
Sistema arterial da cabeça e do pescoço
Sistema arterial da cabeça e do pescoçoSistema arterial da cabeça e do pescoço
Sistema arterial da cabeça e do pescoço
 
Aula sobre tabela periódica
Aula sobre tabela periódicaAula sobre tabela periódica
Aula sobre tabela periódica
 
A estrutura do dna
A estrutura do dnaA estrutura do dna
A estrutura do dna
 
8. tabela periódica
8. tabela periódica8. tabela periódica
8. tabela periódica
 
Vitaminas
VitaminasVitaminas
Vitaminas
 
Ciclo celular e mitose
Ciclo celular e mitoseCiclo celular e mitose
Ciclo celular e mitose
 
Replicacao e transcriçao DNA procariotos
Replicacao e transcriçao DNA procariotosReplicacao e transcriçao DNA procariotos
Replicacao e transcriçao DNA procariotos
 
Sistema tegumentar
Sistema tegumentarSistema tegumentar
Sistema tegumentar
 
Mutações do material genético
Mutações do material genéticoMutações do material genético
Mutações do material genético
 
II. 1 Água, sais minerais e vitaminas
II. 1 Água, sais minerais e vitaminasII. 1 Água, sais minerais e vitaminas
II. 1 Água, sais minerais e vitaminas
 
Cloroplastos e fotossíntese
Cloroplastos e fotossínteseCloroplastos e fotossíntese
Cloroplastos e fotossíntese
 
Carboidratos e correlações clínicas
Carboidratos e correlações clínicasCarboidratos e correlações clínicas
Carboidratos e correlações clínicas
 
Potencial de membrana e potencial de ação
Potencial de membrana e potencial de açãoPotencial de membrana e potencial de ação
Potencial de membrana e potencial de ação
 
Arterias e veias da face 2015
Arterias e veias da face 2015Arterias e veias da face 2015
Arterias e veias da face 2015
 

En vedette

Fisiologia Humana 2 - Fisiologia da Membrana
Fisiologia Humana 2 - Fisiologia da MembranaFisiologia Humana 2 - Fisiologia da Membrana
Fisiologia Humana 2 - Fisiologia da Membrana
Herbert Santana
 
As bases fisicas da função neuronal
As bases fisicas da função neuronalAs bases fisicas da função neuronal
As bases fisicas da função neuronal
Thuane Sales
 
Fisiologia Humana 1 - Introdução à Fisiologia Humana
Fisiologia Humana 1 - Introdução à Fisiologia HumanaFisiologia Humana 1 - Introdução à Fisiologia Humana
Fisiologia Humana 1 - Introdução à Fisiologia Humana
Herbert Santana
 
Aula fisiologia humana
Aula   fisiologia humanaAula   fisiologia humana
Aula fisiologia humana
santhdalcin
 
Membrana Plasmatica
Membrana PlasmaticaMembrana Plasmatica
Membrana Plasmatica
BIOGERALDO
 
Princípios da sinalização celular/ potencial em repouso/ proteina G
Princípios da sinalização celular/ potencial em repouso/ proteina GPrincípios da sinalização celular/ potencial em repouso/ proteina G
Princípios da sinalização celular/ potencial em repouso/ proteina G
Regina Rafael Teixeira
 

En vedette (20)

Fisiologia Humana 2 - Fisiologia da Membrana
Fisiologia Humana 2 - Fisiologia da MembranaFisiologia Humana 2 - Fisiologia da Membrana
Fisiologia Humana 2 - Fisiologia da Membrana
 
As bases fisicas da função neuronal
As bases fisicas da função neuronalAs bases fisicas da função neuronal
As bases fisicas da função neuronal
 
Fisiologia da Membrana Celular
Fisiologia da Membrana CelularFisiologia da Membrana Celular
Fisiologia da Membrana Celular
 
Neurofisiologia: potencial de repouso e ação
Neurofisiologia: potencial de repouso e açãoNeurofisiologia: potencial de repouso e ação
Neurofisiologia: potencial de repouso e ação
 
Introdução à Fisiologia Humana
Introdução à Fisiologia HumanaIntrodução à Fisiologia Humana
Introdução à Fisiologia Humana
 
Fisiologia Humana 1 - Introdução à Fisiologia Humana
Fisiologia Humana 1 - Introdução à Fisiologia HumanaFisiologia Humana 1 - Introdução à Fisiologia Humana
Fisiologia Humana 1 - Introdução à Fisiologia Humana
 
Membrana plasmática
Membrana plasmáticaMembrana plasmática
Membrana plasmática
 
Aula fisiologia humana
Aula   fisiologia humanaAula   fisiologia humana
Aula fisiologia humana
 
Neurofisiologia 1
Neurofisiologia 1Neurofisiologia 1
Neurofisiologia 1
 
Introdução à Fisiologia - Fisiologia
Introdução à Fisiologia - FisiologiaIntrodução à Fisiologia - Fisiologia
Introdução à Fisiologia - Fisiologia
 
Sistema nervoso
Sistema nervosoSistema nervoso
Sistema nervoso
 
Sistema nervoso
Sistema nervosoSistema nervoso
Sistema nervoso
 
Membrana Plasmatica
Membrana PlasmaticaMembrana Plasmatica
Membrana Plasmatica
 
Biofísica
BiofísicaBiofísica
Biofísica
 
Aula01: FISIOLOGIA DO SISTEMA NERVOSO
Aula01: FISIOLOGIA DO SISTEMA NERVOSOAula01: FISIOLOGIA DO SISTEMA NERVOSO
Aula01: FISIOLOGIA DO SISTEMA NERVOSO
 
Princípios da sinalização celular/ potencial em repouso/ proteina G
Princípios da sinalização celular/ potencial em repouso/ proteina GPrincípios da sinalização celular/ potencial em repouso/ proteina G
Princípios da sinalização celular/ potencial em repouso/ proteina G
 
Seminário potenciometria
Seminário potenciometriaSeminário potenciometria
Seminário potenciometria
 
Transporte através da membrana
Transporte através da membranaTransporte através da membrana
Transporte através da membrana
 
Origens e..
Origens e..Origens e..
Origens e..
 
Fisiologia celular
Fisiologia celularFisiologia celular
Fisiologia celular
 

Similaire à Fisiologia da Membrana

Fisiologia da Membrana
Fisiologia da MembranaFisiologia da Membrana
Fisiologia da Membrana
Caio Maximino
 
Fundamentos da eletricidade - Conceitos básicos
Fundamentos da eletricidade - Conceitos básicosFundamentos da eletricidade - Conceitos básicos
Fundamentos da eletricidade - Conceitos básicos
Robson Josué Molgaro
 
01 grandezas eletrostática e eletrodinamica
01 grandezas eletrostática e eletrodinamica01 grandezas eletrostática e eletrodinamica
01 grandezas eletrostática e eletrodinamica
jacondino
 
95916269 fisica-eletricidade-e-fis-moderna-questoes-de-vestibular-2011
95916269 fisica-eletricidade-e-fis-moderna-questoes-de-vestibular-201195916269 fisica-eletricidade-e-fis-moderna-questoes-de-vestibular-2011
95916269 fisica-eletricidade-e-fis-moderna-questoes-de-vestibular-2011
Edi Carlos M. de Lima
 

Similaire à Fisiologia da Membrana (20)

Fisiologia da Membrana
Fisiologia da MembranaFisiologia da Membrana
Fisiologia da Membrana
 
Membranas biológicas
Membranas biológicasMembranas biológicas
Membranas biológicas
 
AULA 1 INTRODUÇÃO ELETRICIDADE & CIRCUITOS ELÉTRICOS.pdf
AULA 1 INTRODUÇÃO ELETRICIDADE & CIRCUITOS ELÉTRICOS.pdfAULA 1 INTRODUÇÃO ELETRICIDADE & CIRCUITOS ELÉTRICOS.pdf
AULA 1 INTRODUÇÃO ELETRICIDADE & CIRCUITOS ELÉTRICOS.pdf
 
Fundamentos da eletricidade - Conceitos básicos
Fundamentos da eletricidade - Conceitos básicosFundamentos da eletricidade - Conceitos básicos
Fundamentos da eletricidade - Conceitos básicos
 
6 capacitores
6 capacitores6 capacitores
6 capacitores
 
Resumo fisica4 branco
Resumo fisica4 brancoResumo fisica4 branco
Resumo fisica4 branco
 
Corrente Eletrica
Corrente EletricaCorrente Eletrica
Corrente Eletrica
 
01 grandezas eletrostática e eletrodinamica
01 grandezas eletrostática e eletrodinamica01 grandezas eletrostática e eletrodinamica
01 grandezas eletrostática e eletrodinamica
 
Aula10
Aula10Aula10
Aula10
 
Exercicios
ExerciciosExercicios
Exercicios
 
Isolantes e semicondutores[1]
Isolantes e semicondutores[1]Isolantes e semicondutores[1]
Isolantes e semicondutores[1]
 
95916269 fisica-eletricidade-e-fis-moderna-questoes-de-vestibular-2011
95916269 fisica-eletricidade-e-fis-moderna-questoes-de-vestibular-201195916269 fisica-eletricidade-e-fis-moderna-questoes-de-vestibular-2011
95916269 fisica-eletricidade-e-fis-moderna-questoes-de-vestibular-2011
 
Materiais Isolantes - Conceitos
Materiais Isolantes - ConceitosMateriais Isolantes - Conceitos
Materiais Isolantes - Conceitos
 
3 Eletrónica Fundamental - Noções básicas de eletricidade
3   Eletrónica Fundamental - Noções básicas de eletricidade3   Eletrónica Fundamental - Noções básicas de eletricidade
3 Eletrónica Fundamental - Noções básicas de eletricidade
 
Eletricidade aplicada
Eletricidade aplicadaEletricidade aplicada
Eletricidade aplicada
 
2017 aula fisica nuclear ii
2017 aula fisica nuclear ii2017 aula fisica nuclear ii
2017 aula fisica nuclear ii
 
Eletricidade basica
Eletricidade basicaEletricidade basica
Eletricidade basica
 
Eletricidade basica
Eletricidade basicaEletricidade basica
Eletricidade basica
 
Eletricidade Basica.ppt
Eletricidade Basica.pptEletricidade Basica.ppt
Eletricidade Basica.ppt
 
Eletricidade Basica (3).ppt
Eletricidade Basica (3).pptEletricidade Basica (3).ppt
Eletricidade Basica (3).ppt
 

Plus de Caio Maximino

Plus de Caio Maximino (20)

Papel de receptores 5-HT2CL en la socialidad del pez cebra
Papel de receptores 5-HT2CL en la socialidad del pez cebraPapel de receptores 5-HT2CL en la socialidad del pez cebra
Papel de receptores 5-HT2CL en la socialidad del pez cebra
 
Efectos de fluoxetina sobre la agresión del pez cebra dependiente del fenotipo
Efectos de fluoxetina sobre la agresión del pez cebra dependiente del fenotipoEfectos de fluoxetina sobre la agresión del pez cebra dependiente del fenotipo
Efectos de fluoxetina sobre la agresión del pez cebra dependiente del fenotipo
 
Impacto del pez cebra en biología y neurociencias
Impacto del pez cebra en biología y neurocienciasImpacto del pez cebra en biología y neurociencias
Impacto del pez cebra en biología y neurociencias
 
El pez cebra en el estudio de psicofarmacos
El pez cebra en el estudio de psicofarmacosEl pez cebra en el estudio de psicofarmacos
El pez cebra en el estudio de psicofarmacos
 
Minicurso "Primeiros socorros: Em caso de ataque de pânico"
Minicurso "Primeiros socorros: Em caso de ataque de pânico"Minicurso "Primeiros socorros: Em caso de ataque de pânico"
Minicurso "Primeiros socorros: Em caso de ataque de pânico"
 
A cerebralização do sofrimento psíquico
A cerebralização do sofrimento psíquicoA cerebralização do sofrimento psíquico
A cerebralização do sofrimento psíquico
 
Human physiological response in perspective: Focus on the capitalocene
Human physiological response in perspective: Focus on the capitaloceneHuman physiological response in perspective: Focus on the capitalocene
Human physiological response in perspective: Focus on the capitalocene
 
Vertebrate stress mechanisms under change
Vertebrate stress mechanisms under changeVertebrate stress mechanisms under change
Vertebrate stress mechanisms under change
 
The nervous system: an evolutionary approach
The nervous system: an evolutionary approachThe nervous system: an evolutionary approach
The nervous system: an evolutionary approach
 
O monstruoso do capital: Ansiedades culturais e subjetividade
O monstruoso do capital: Ansiedades culturais e subjetividadeO monstruoso do capital: Ansiedades culturais e subjetividade
O monstruoso do capital: Ansiedades culturais e subjetividade
 
Por um cérebro histórico-cultural: Uma introdução à neurociência crítica
Por um cérebro histórico-cultural: Uma introdução à neurociência críticaPor um cérebro histórico-cultural: Uma introdução à neurociência crítica
Por um cérebro histórico-cultural: Uma introdução à neurociência crítica
 
Genética dos transtornos mentais: Cultura, genética e epigenética em uma pers...
Genética dos transtornos mentais: Cultura, genética e epigenética em uma pers...Genética dos transtornos mentais: Cultura, genética e epigenética em uma pers...
Genética dos transtornos mentais: Cultura, genética e epigenética em uma pers...
 
Métodos quantitativos na pesquisa em educação e ensino
Métodos quantitativos na pesquisa em educação e ensinoMétodos quantitativos na pesquisa em educação e ensino
Métodos quantitativos na pesquisa em educação e ensino
 
Aula 2: Um pouco de filosofia da ciência
Aula 2: Um pouco de filosofia da ciênciaAula 2: Um pouco de filosofia da ciência
Aula 2: Um pouco de filosofia da ciência
 
Inferência estatística nas ciências experimentais
Inferência estatística nas ciências experimentaisInferência estatística nas ciências experimentais
Inferência estatística nas ciências experimentais
 
Aprendizagem baseada em problemas: Adaptações ao ensino remoto
Aprendizagem baseada em problemas: Adaptações ao ensino remotoAprendizagem baseada em problemas: Adaptações ao ensino remoto
Aprendizagem baseada em problemas: Adaptações ao ensino remoto
 
A importância das práticas corporais para a saúde mental
A importância das práticas corporais para a saúde mentalA importância das práticas corporais para a saúde mental
A importância das práticas corporais para a saúde mental
 
Transtornos do neurodesenvolvimento
Transtornos do neurodesenvolvimentoTranstornos do neurodesenvolvimento
Transtornos do neurodesenvolvimento
 
Evidências científicas de eficácia em farmacoterapia
Evidências científicas de eficácia em farmacoterapiaEvidências científicas de eficácia em farmacoterapia
Evidências científicas de eficácia em farmacoterapia
 
Transtornos alimentares
Transtornos alimentaresTranstornos alimentares
Transtornos alimentares
 

Dernier

Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
TailsonSantos1
 
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdfReta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
WagnerCamposCEA
 
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfGEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
RavenaSales1
 
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
NarlaAquino
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
AntonioVieira539017
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
LeloIurk1
 

Dernier (20)

Aula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIXAula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIX
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
 
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdfReta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéis
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
praticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médiopraticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médio
 
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptxProjeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
 
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfGEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
 
Seminário Biologia e desenvolvimento da matrinxa.pptx
Seminário Biologia e desenvolvimento da matrinxa.pptxSeminário Biologia e desenvolvimento da matrinxa.pptx
Seminário Biologia e desenvolvimento da matrinxa.pptx
 
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...
 
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasJogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
 
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteCOMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 

Fisiologia da Membrana

  • 1. Fisiologia da membrana Prof. Me. Caio Maximino Marabá/PA 2014
  • 2. Conteúdo programático ● Eletrocinese e estrutura eletrostática da membrana ● Permeabilidade da membrana e gradientes eletroquímicos ● Transporte passivo e ativo ● Equilíbrio de Donnan e capacitância Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan
  • 3. Fundamentos de eletrostática ● A base para as considerações eletrostáticas é a carga elétrica, definida em coulombs (C = A · s) ● A menor cara elétrica possível é a carga de um íon univalente ou de um grupo carregado correspondente. ● A constante de Faraday (F) representa o número de cargas por mol de íons univalentes Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan F=9,6485⋅104 C val−1
  • 4. Fundamentos de eletrostática ● A divisão desse valor pelo número de Avogrado (N) produz o valor da carga de um único íon (e): ● Para calcular os parâmetros mecânicos resultando de interações elétricas, é preciso usar um fator de conversão, a permissividade do espaço livre (ε0): Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan e= F N =1,6021⋅10 −19 C ε0=8,854⋅10−12 CV−1 m−1
  • 5. Potencial elétrico ● Qualquer carga gera um campo elétrico que é caracterizado pelo gradiente de potencial elétrico (ψ), a quantidade de trabalho necessária para mover uma crga positiva de uma distância infinita ao ponto r. ● No caso de um campo elétrico à volta de uma carga q, o potencial elétrico é uma função radial da distância r desse ponto Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ψ= q 4⋅π⋅ε0⋅ε⋅r
  • 6. Potencial elétrico ● A força do campo elétrico (E) é um parâmetro vetorial, definido como ● No caso de um gradiente no qual o campo elétrico movimenta-se em uma única direção x, essa equação torna-se Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan E=−gradε=−∇ ε Ex= −d ε dx ⋅i
  • 7. Potencial elétrico ● Fase I e Fase II: Duas soluções de eletrólitos diferentes. ● Pontos de descontinuidade na força do campo podem ocorrer, com uma reversão da direção do campo. ● A razão para essas descontinuidades são as cargas de superfície nos limites da fase. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan Glazer, 1999
  • 8. Estrutura eletrostática da membrana ● A membrana celular é uma estrutura altamente organizada que cumpre várias funções fisiológicas: – Como superfície, forma uma matriz dinâmica para reações enzimáticas, processos receptivos, e reconhecimento imunológico – Como barreira de difusão, controla a composição iônica do citoplasma através de transportadores altamente específicos – Como folheto de isolamento elétrico, contém um mosaico de circuitos elétricos apssivos e ativos, controlando o potencial de membrana e as condições eletrodinâmicas próximas à membrana – Como estrutura mecânica, garante a integridade da célula e influencia seu formato e movimento Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan
  • 9. Estrutura eletrostática da membrana Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan Murray et al., 2003
  • 10. Efeito hidrofóbico na formação de bicamadas lipídicas Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan
  • 11. Estrutura eletrostática da membrana Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan Murray et al., 2003
  • 12. Estrutura eletrostática da membrana ● Em relação ao meio extracelular e ao citoplasma, a membrana celular apresenta resistência elétrica alta e constante dielétrica baixa. ● Essas propriedades nos autorizam a tratar a membrana como uma interface hidrofóbica extremamente fina que isola duas fases aquosas, comportando-se como um capacitor com capacitância C e resistência R. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan
  • 13. Capacitância da membrana ● A capacidade específica (Csp) pode ser calculado a partir da espessura da membrana (Δx) e da constante dielétrica (ε) ● Essa capacidade é relativamente constante, porque ambos os parâmetros não variam significativamente); para a maior parte das células, é de cerca de 10 mF m- 2 ● Assumindo Δx = 8 x 10-9 m: Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan Csp= ε0⋅ε Δ x ε= Csp⋅Δ x ε0 = 10 −2 ⋅8⋅10 −9 8.854⋅10−12
  • 14. Capacitância da membrana ● A capacidade específica indica a relação entre a quantidade de carga requerida para gerar uma diferença de potencial de membrana Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan Csp= σ Δ ψ Glazer, 1999
  • 15. Modelando a capacitância da membrana ● Abra o NEURON. ● Criar uma corpo celular (Build > Single compartment), inicialmente sem atribuir propriedades elétricas ● Abrir o gráfico de potencial (Graph > Voltage axis) ● Abrir o Painel de Controle (Tools > RunControl) e rodar uma simulação (pressione “Init & Run”); anote o que ocorreu com o potencial da membrana. ● Vamos injetar um estímulo elétrico (Tools > Point Processes > Managers > Point Manager). No menu SelectPointProcess da janela que irá abrir, selecione IClamp. ● Produza uma corrente de 1 ms de atraso, 2 ms de duração, e 0.5 nA de amplitude. Rode a simulação novamente e verifique o que acontece com o potencial de membrana. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan
  • 16. Modelando a capacitância de membrana ● Dobre a duração e divida a amplitude por 2. Rode a simulação novamente e verifique o que acontece com o potencial de membrana. ● Retorne a duração e amplitude aos seus valores iniciais. ● Insira canais de condutância passiva clocando em na caixa “pas” da janela “SingleCompartment” e repita os passos 5-7. ● No painel “RunControl”, altere o potencial de repouso de -65 para – 70 mV. ● Mude a amplitude do estímulo para 1A (1e9 nA) e rode novamente a simulação. O que ocorre com o potencial de membrana? Por quê? ● Aumente a amplitude para 1e4 nA, diminua a duração para 1e-5 ms, aumente o número de pontos (“Points plotted/ms”, no painel de controle) para 1e5, a duração do passo (“dt(ms)”) para 0.01 ms, e rode a simulação novamente. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan
  • 17. Potencial eletrostático Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● As cargas fixas na superfície da membrana devem ser consideradas cargas em um espaço, não em uma superfície. ● A densidade espacial de cargas é descrita pela equação de Poisson-Holtzmann ∇ 2 ψ=− 1 ε0⋅ε⋅(ρ+F ∑ i=1 n ¿⋅Ci0 zi e −zi e ψ kT ) Glazer, 1999
  • 18. Potencial eletrostático Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● A distância efetiva desse potencial é predizível primeiro pela espessura do glicocálix, e segundo pelo raio de Debye-Hückel (1/κ). ● Essa espessura é, por sua vez, determinada pelas interações eletrostáticas desuas cargas. ● Em um ambiente com alto potencial iônico, essas cargas “movem” as glicoproteínas mais próximas da membrana; o contrário ocorre em ambientes com baixo potencial iônico. ● Isso significa que a função ρ(x) (distribuição de cargas dos ácidos siálicos das glicoproteínas) depende de ψ(x)
  • 19. Potencial eletrostático ● O potencial eletrostático influencia todas as moléculas polares, ou polarizáveis, em sua região de influência. ● A DESPOLARIZAÇÃO de uma célula excitável altera o potencial de difusão Δψ, e a modificação resultante na força do campo muda a permeabilidade de canais de sódio e potássio, que influenciam o potencial de membrana. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan
  • 20. Equilíbrio eletroquímico Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● O movimento do íon A na direção de seu gradiente de concentração produz um aumento no Δψ através da membrana ● Eventualmente, um campo elétrico forte irá impedir a difusão posterior do íon A. ● Assim, o íon A está sujeito a duas forças opostas: o gradiente de seu potencial químico e uma força eletrostática opositora que surge como resultado de sua própria difusão. ● As condições para equilíbrio são: Glazer, 1999
  • 21. Equilíbrio eletroquímico Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● Se o potencial eletroquímico de uma substância i é dado por ● Em condição de equilíbrio teremos ● Rearranjando ● Ou ainda ~μi=μi+ zi⋅F ψ μA I +RT +ln (aA I )+zA⋅F ψ II =μA II +RT +ln(aA II )+zA⋅F ψ II ZA⋅F(ψ I −ψ II )=RT (ln(aA II )−ln (aA I )) Δ ψ≡(ψI −ψII )= RT zA F ln( aA II aA I )
  • 22. Equação de Nernst Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● A equação de Nernst permite o cálculo do potencial da membrana, que é induzido por uma distribuição desigual de íons ● Um rearranjo permite calcular a distribuição de íons em função do potencial elétrico ● Em ambos os casos, o equilíbrio termodinâmico é um requerimento! Δ ψ≡(ψI −ψII )= RT zA F ln( aA II aA I ) aA I =aA II e zA FΔ ψ RT
  • 23. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan Δ ψ= 58 z ln ( [ K +1 ]2 [ K +1 ]1 )=58⋅ln( 1 10 )=−58mV ● Se tratamos de uma solução de KCl 10 mM no lado 1 e 1 mM no lado 2, Purves et al., 2004
  • 24. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● O que ocorre se utilizarmos uma bateria (ou seja, se alterarmos Δψ)? Purves et al., 2004
  • 25. Fluxo iônico Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● A difusão de um eletrólito é induzida pelo gradiente negativo do potencial eletroquímico, e segue as mesmas leis que regulam o fluxo de substâncias sem carga: ou seja, o fluxo é um produto da concentração ([i]) e da mobilidade (wi/N) Ji=−[i] wi N RT grad[i]=−[i]wi kT grad[i] Coeficiente de difusão D (primeira lei de Fick)
  • 26. Fluxo iônico Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● Para um gradiente de concentração na direção x, o operador 'grad' pode ser substituído por um diferencial ● Para simplificar, assumamos que o coeficiente de atividade aproxime-se de 1, e portanto d~μi dx = d dx (μi 0 +RT⋅ln (ai)+zi F ψ) ai≈ci
  • 27. Equação de Nernst-Planck Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● Em um sistema isobárico (grad p = 0) e isotérmico (grad T = 0), ● Do ponto de vista do fluxo molar, d~μi dx =( RT [i] )⋅( d[i] dx )+zi F d ψ dx Ji= −[i] wi N ( RT [i] )⋅( d[i] dx )+zi F d ψ dx
  • 28. Equação de Goldman Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● Se considerarmos gradientes lineares (p. ex., uma membrana com poros aquosos grandes e não-carregados), os diferenciais podem ser substituídos por razões de diferenças, e as concentrações podem ser substituídas pela concentração média entre as fases Jix=−Pi(Δ[i]+ zi F ¯[i] RT Δ ψ) Coeficiente de permeabilidade = D/Δx
  • 29. Equação de Goldman Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● Em 1943, David Goldman integrou a equação de Nernst-Planck, assumindo condições de campo constante (i.e., E = -grad ψ = const) Jix=−Pi β [i]I−[i]II e β 1−e β ,ondeβ= zi F RT Δψ
  • 30. Equação de Goldman Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan ● Para um cátion univalente (zi = +1) com permeabilidade Pi = 10-7 m s-1, em condições isosmóticas não há fluxo sem Δψ; se há ΔC, o fluxo pode existir mesmo na ausência de Δψ ● Ji positivo representa o fluxo de I para II; Ji negativo representa o fluxo de II para I. ● Os interceptos da abcissa representam a situação em equilíbrio de Nernst Glazer, 1999
  • 31. Equação de Goldman Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan Purves et al., 2004
  • 32. No axônio gigante de lula Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan Íon Concentração intracelular (mM) Concentração extracelular (mM) Potássio 400 20 Sódio 50 440 Cloreto 40-'50 560 Cálcio 0,0001 10 Purves et al., 2004
  • 34. Simulando o axônio gigante de lula Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan
  • 37. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan 300 mM Na+ fora, 10 mM dentro ψNa⁺=81,9mV ψK ⁺=−74,168mV
  • 38. Propriedades elétricas da membrana Permeabilidade seletiva Transporte Equilíbrio de Donnan 140 mM Na+ fora, 50 mM dentro ψNa⁺=24,793mV ψK ⁺=−74,168mV