SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
EE 290C

CMOS Analog Design Using
All-region MOSFET Modeling

           Carlos Galup-Montoro

    Univ. of Santa Catarina, Brazil; UC Berkeley
                     373 Cory Hall
              carlosgalup@gmail.com
          http://eel.ufsc.br/~lci/faculty.html
290C Basics

 Course Format: Two hours of lecture and one hour
 of project discussion per week

 Prerequisites: EE140 Linear Integrated Circuits or
 equivalent

 Grading Policy: Homework 50% + Project 50%

 Textbook: CMOS Analog Design Using All-region
 MOSFET Modeling, M. C. Schneider and C. Galup-
 Montoro, Cambridge University Press, 2009
                 CMOS Analog Design Using All Region MOSFET Modeling   2
Analog Bipolar and MOS Circuits


•Bipolar and MOS

A. B. Grebene, Bipolar and MOS Analog Integrated Circuit Design, 1983.
K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and
Systems, 1994.
D. A. Johns and K. Martin, Analog Integrated Circuit Design, 1997.
P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of
Analog Integrated Circuits, Fourth Edition, 2001.
W. M. C. Sansen, Analog Design Essentials, Springer, Dordrecht, 2006

•MOS
B. Razavi, Design of Analog CMOS Integrated Circuits, 2001.
F. Maloberti, Analog Design for CMOS VLSI Systems, 2001.
P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2002.
                              CMOS Analog Design Using All Region MOSFET Modeling   3
Important Differences between Bipolar
Transistors (BJTs) and MOSFETs

 A) BJTs are three-terminal devices and MOSFETs are four-
    terminal devices

 B) Differences in the internal symmetries of the most
 commonly used BJTs and MOSFETs

 C) BJT exponential current law vs. MOS current law

 D) The geometric degrees of freedom for MOSFETs in
 analog design

 E) Quality of BJT and MOSFET models


                      CMOS Analog Design Using All Region MOSFET Modeling   4
Ebers-Moll Equivalent Circuit of an npn
Transistor
Forward and reverse currents

            IE
                                                                                     IC
                      α R IR                                 αFIF


                        DE                                                                C
                                                              DC
        E




                                                      IR
                                     IF


   IC = α F I F − I R                            IB



   IE = αR IR − IF                          B




    I B = −( I C + I E ) = (1 − α F ) I F + (1 − α R ) I R
                                                                                              5

                               CMOS Analog Design Using All Region MOSFET Modeling
The Capacitive Model of the MOS
Structure

               VGB             VGB
 depletion
                                     ′
                                    Cox
 region
                                            φs                    ′
                                                          dφs    Cox     1
                                                              =        =
φs
                                                                ′    ′
                                                         dVGB Cox + Cb n
                                       ′
                                      Cb
          p- type neutral
          region




                        CMOS Analog Design Using All Region MOSFET Modeling   6
MOSFET: Symmetric Strong and Weak
 Inversion Models


     Strong inversion                                           VGB
                                                                                                      VDB
                                      VSB
                                                                                             ID

  ID = IF − IR
                                                         n+                             n+

           β                                 2
              (V    − nVSB ( DB ) − VT 0 )
IF (R) =                                                           p-type substrate
               GB
           2n
                                                                                  (b)
                                                    W
                                                         ′
                                             β=       µ Cox
     weak inversion                                 L

                     W (VGB −VT 0 − nVSB ) / nφt
                                (                                                                 )
                                                 − e( GB T 0 DB ) t
                                                                 / nφ
                                                     V −V − nV
I D = I F − I R = I0   e
                     L                                                                                7
                                CMOS Analog Design Using All Region MOSFET Modeling
Intrinsic Gain Stages: (a) Common-
Source and (b) Common-Emitter
Amplifiers




             CMOS Analog Design Using All Region MOSFET Modeling   8
Small-Signal Circuit and Frequency
Response of the Amplifiers




                                                             gm
                                                     vo ≅ −      vi
                                                            jωCL
                                                     ω >> ωb
                                                                  9
         CMOS Analog Design Using All Region MOSFET Modeling
Design of Common-Emitter and
        Common-Source Amplifiers
           Av (ωu ) = 1         g m = ω u C L = 2 π .G B W .C L

        BJT                 VBE /φt
                IC = I S e                      I C = g mφt = 2π .GBW .CL .φt


        MOSFET
                                                                                        2
          1        W                                                               ng m
                                            2
              µ Cox  (VGB − VT 0 − nVSB )
                  ′
        =                                                                    =
I Dsi                                                                I Dsi
                                                                               2 µ Cox (W / L )
          2n       L                                                              ′
                               CMOS Analog Design Using All Region MOSFET Modeling          10
Example: GBW = 10 MHz, CL = 10 pF
    µ Cox = 80·10-6 A/V2, n = 1.35
       ′
      g m = 2π .GBW .CL = 628µ A / V

                    IDsi (µA)1                             ID (µA)2
W/L                       µ                                    µ
                    0                                      22
∞
500                 6.6                                    28.6
100                 33.2                                   55.2
50                  66.4                                   88.4
10                  332                                    354
      1Strong inversion model. 2 Accurate all-
      region MOSFET model
                    CMOS Analog Design Using All Region MOSFET Modeling   11
All Region “Empirical” Model of the
MOSFET

                I D = 22 µA + I Dsi
       IWI = ng mφt = 1.35 ⋅ 628 ⋅10−6.26 ⋅10−3 = 22 µA

                                                  
                                       gm
                     = ng mφt 1 +                 
I D = IWI + I Dsi
                               2 µ Coxφt (W / L ) 
                                     ′
                                                  
              (W / L )th 
             1 +          
 I D = IWI                                     g m = (W / L )th µ ( 2Coxφt )
                                                                      ′
                  (W / L ) 
             
                          
                                                                               12
                       CMOS Analog Design Using All Region MOSFET Modeling
Aspect Ratio vs. Current Excess in a
MOSFET Design


                                                  (W / L )th 
                                                 1 +          
                                I D = IWI
                                                      (W / L ) 
                                                 
                                                              




             CMOS Analog Design Using All Region MOSFET Modeling   13
Consistent Modeling of FETs: Use of
Series Associations of FETs
          D
                  ID
     MD
                           WD
                           LD

                                          W
                            I       =(      )    [g( V , V ) - g( V , V )]
 G            X
                                D             eq      G   S        G   D
                                          L
                           WS
                           LS
                                                               W      W
     MS
                                                                     (
                                                                 ) D ( )S
                                                     W         L      L
                                                    ( ) eq =
          S            B
                                                              W        W
                                                     L
                                                             ( ) D + ( )S
                                                              L        L




                                    CMOS Analog Design Using All Region MOSFET Modeling   14
Series-Parallel Associations of FETs




             CMOS Analog Design Using All Region MOSFET Modeling   15
Series Associations of FET’s vs. Long
  Channel MOSFETs

Series association                Long-channel
nominal VT                        L-dependent VT


Characterize one                  L-dependent characterization
transistor ( performance          (halo/pocket implants effects)
of the shortest transistor
is “optimized”)
                                  L-dependent accuracy
“accurate” for current
mirrors
Gate current more
predictable              CMOS Analog Design Using All Region MOSFET Modeling   16
M:1
                                                          Iin
Application of Series                                                                                   IOut
                                                                  ∆βaj, ∆VTaj
                              M                                                           ∆βB ∆VTB
                                                 A

Parallel Associations of FETs-                       Ma                                                          MB
                                                                                              VG
Three M:1 Current Mirrors                                                                                       (a)
                                                             MA = M parallel Ma transistors


      a) M :1                                                                                                  IOut
                                                                       N2 : 1                      MB


                                                       Iin
                                                                                                                           N
                                                                    MA                                           Mb2
                                                                                              VG
                                                 Ma1
      B) N=√M, N:1/N                                               N
                                                                                                                  (b)

                                                                                                                IOut
                                                                                       MB

                                                 Iin            M:1
                                                                                                                               N
                                                                                                                      Mb
      C) M: N/N                                                            MA
                                            Ma

                                                           M                                             N
                                                                                                                       (c)



                    CMOS Analog Design Using All Region MOSFET Modeling                                                17
Current Mismatch in Two M:1 Current
Mirrors




                                                  Arnaud, JSSC Sep. 06


                                                                     18
            CMOS Analog Design Using All Region MOSFET Modeling
M-2M Digital-to-Analog Converter 1:
Mbb can be substituted by set of four transistors

                                       ID2
                  ID1




             Mc                  Md



                                                                              ID

                                 Mbc                  Mbd




             Ma                  Mba                  Mbb
VG

                  ID1                  ID2a               ID2b



                        CMOS Analog Design Using All Region MOSFET Modeling        19
M-2M Digital-to-Analog Converter 2:
     8 bit DAC with M-2M Ladder
IB         VB     VR         IR



     MB1               M71                               M61        M64                    M01        M04          M00



     MB2               M72            M73                M62       M63                     M02        M03
                Q7                           -Q7   Q6                         -Q6   Q0                       -Q0
                                             Q7                               Q6                             Q0
                -Q7                                -Q6                              -Q0

                                                                                                                         I0
                                                                                                                         V0
                                                                                                                         IG
GB                                                                                                                       VG
                                            Q7               Q6                Q1                    Q0

                      Di                                                                                    Do
                                  D     Q          D     Q          D     Q               D      Q
                                  ck               ck               ck                    ck
                      Ck



                                                    CMOS Analog Design Using All Region MOSFET Modeling                  20
M-2M Digital-to-Analog Converter 3:
Normalized current mismatch for a 10 µm x 10 µm
transistor




                                                                       21
                 CMOS Analog Design Using All Region MOSFET Modeling
M-2M Digital-to-Analog Converter 4




 Standard deviation of the measured error from 20
 samples of DAC0       CMOS Analog Design Using All Region MOSFET Modeling   22
M-2M Digital-to-Analog Converter 5




Klimach. ISCAS 08


         Top area is the M-2M ladder and the bottom area is the
         serial register.     CMOS Analog Design Using All Region MOSFET Modeling   23
290C Course Outline

   - MOSFET modeling (3 weeks)

   - Mismatch and noise (2 weeks)

   - Basic CMOS building blocks (5 weeks)

   - Op amps ( 4 weeks)




                                                                     24
               CMOS Analog Design Using All Region MOSFET Modeling
290C Learning Goals



 Understand and use an all-region ( accumulation,
 WI, MI and SI) compact MOSFET model for analog
 design
 Acquire a deep understanding ( nonlinearities,
 noise, mismatch) of the basic CMOS build blocks
 and op amps
 Apply the above concepts in a design project


                                                                      25
                CMOS Analog Design Using All Region MOSFET Modeling
Similar Approaches to CMOS Design

Paul G. A. Jespers; The gm/ID Design Methodology for CMOS
Analog Low Power Integrated Circuits
2009, ISBN: 978-0-387-47100-6

D. M. Binkley; Tradeoffs and Optimization in Analog CMOS
Design ISBN: 978-0-470-03136-0, Wiley 2008.



 Danica Stefanovic and Maher Kayal; Structured Analog CMOS
 Design Series: Analog Circuits and Signal Processing
  2009, ISBN: 978-1-4020-8572-7




                      CMOS Analog Design Using All Region MOSFET Modeling   26

Contenu connexe

Tendances

Phase locked loop
Phase locked loopPhase locked loop
Phase locked loopPreet_patel
 
Cmos design
Cmos designCmos design
Cmos designMahi
 
MOS-Nonideal charecteristics
MOS-Nonideal charecteristicsMOS-Nonideal charecteristics
MOS-Nonideal charecteristicsShanmuga Raju
 
Antenna PARAMETERS
Antenna PARAMETERSAntenna PARAMETERS
Antenna PARAMETERSAJAL A J
 
Microwave engineering basics
Microwave engineering basicsMicrowave engineering basics
Microwave engineering basicsAJAL A J
 
MicroStrip Antenna
MicroStrip AntennaMicroStrip Antenna
MicroStrip AntennaTarek Nader
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filtersop205
 
Link power and rise time budget analysis
Link power and rise time budget analysisLink power and rise time budget analysis
Link power and rise time budget analysisCKSunith1
 
Fir filter design using windows
Fir filter design using windowsFir filter design using windows
Fir filter design using windowsSarang Joshi
 
Presentation on Scaling
Presentation on ScalingPresentation on Scaling
Presentation on ScalingRaviraj Kaur
 
Stick Diagram and Lambda Based Design Rules
Stick Diagram and Lambda Based Design RulesStick Diagram and Lambda Based Design Rules
Stick Diagram and Lambda Based Design RulesTahsin Al Mahi
 

Tendances (20)

Analog CMOS
Analog CMOSAnalog CMOS
Analog CMOS
 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loop
 
Cmos design
Cmos designCmos design
Cmos design
 
MOS-Nonideal charecteristics
MOS-Nonideal charecteristicsMOS-Nonideal charecteristics
MOS-Nonideal charecteristics
 
Antenna PARAMETERS
Antenna PARAMETERSAntenna PARAMETERS
Antenna PARAMETERS
 
Microwave engineering basics
Microwave engineering basicsMicrowave engineering basics
Microwave engineering basics
 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
 
Lecture21
Lecture21Lecture21
Lecture21
 
Design of Filters PPT
Design of Filters PPTDesign of Filters PPT
Design of Filters PPT
 
MicroStrip Antenna
MicroStrip AntennaMicroStrip Antenna
MicroStrip Antenna
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filters
 
Link power and rise time budget analysis
Link power and rise time budget analysisLink power and rise time budget analysis
Link power and rise time budget analysis
 
VLSI routing
VLSI routingVLSI routing
VLSI routing
 
Fir filter design using windows
Fir filter design using windowsFir filter design using windows
Fir filter design using windows
 
Analog CMOS design
Analog CMOS designAnalog CMOS design
Analog CMOS design
 
Shifters
ShiftersShifters
Shifters
 
Presentation on Scaling
Presentation on ScalingPresentation on Scaling
Presentation on Scaling
 
Stick Diagram and Lambda Based Design Rules
Stick Diagram and Lambda Based Design RulesStick Diagram and Lambda Based Design Rules
Stick Diagram and Lambda Based Design Rules
 
Multipliers in VLSI
Multipliers in VLSIMultipliers in VLSI
Multipliers in VLSI
 
S parameters
S parametersS parameters
S parameters
 

Similaire à CMOS Analog Design Using All-Region MOSFET Modeling

CMOS Analog Design Lect 4
CMOS Analog Design  Lect 4CMOS Analog Design  Lect 4
CMOS Analog Design Lect 4carlosgalup
 
BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfGunaG14
 
CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2carlosgalup
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfetMahoneyKadir
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...SEENET-MTP
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCPei-Che Chang
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)aicdesign
 
CMOS Analog Design Lect 3
CMOS Analog Design  Lect 3CMOS Analog Design  Lect 3
CMOS Analog Design Lect 3carlosgalup
 
V3_Multistage Amplifier n Current Mirror.pdf
V3_Multistage Amplifier n Current Mirror.pdfV3_Multistage Amplifier n Current Mirror.pdf
V3_Multistage Amplifier n Current Mirror.pdfShajedurRahman14
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1Napex Terra
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsDr Naim R Kidwai
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelDr Naim R Kidwai
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital ElectronicsPraveen Vadlamudi
 

Similaire à CMOS Analog Design Using All-Region MOSFET Modeling (20)

CMOS Analog Design Lect 4
CMOS Analog Design  Lect 4CMOS Analog Design  Lect 4
CMOS Analog Design Lect 4
 
BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
 
CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
 
Lecture 8 bjt_1
Lecture 8 bjt_1Lecture 8 bjt_1
Lecture 8 bjt_1
 
Bjts
BjtsBjts
Bjts
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOC
 
Lect2 up350 (100328)
Lect2 up350 (100328)Lect2 up350 (100328)
Lect2 up350 (100328)
 
CMOS Analog Design Lect 3
CMOS Analog Design  Lect 3CMOS Analog Design  Lect 3
CMOS Analog Design Lect 3
 
Bjt1
Bjt1Bjt1
Bjt1
 
V3_Multistage Amplifier n Current Mirror.pdf
V3_Multistage Amplifier n Current Mirror.pdfV3_Multistage Amplifier n Current Mirror.pdf
V3_Multistage Amplifier n Current Mirror.pdf
 
Bjts
BjtsBjts
Bjts
 
Bjts
Bjts Bjts
Bjts
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
 
Bipolar Junction Transistors BJT
Bipolar Junction Transistors BJTBipolar Junction Transistors BJT
Bipolar Junction Transistors BJT
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
 
B bjt-characteristics
B bjt-characteristicsB bjt-characteristics
B bjt-characteristics
 

Dernier

The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 

Dernier (20)

The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 

CMOS Analog Design Using All-Region MOSFET Modeling

  • 1. EE 290C CMOS Analog Design Using All-region MOSFET Modeling Carlos Galup-Montoro Univ. of Santa Catarina, Brazil; UC Berkeley 373 Cory Hall carlosgalup@gmail.com http://eel.ufsc.br/~lci/faculty.html
  • 2. 290C Basics Course Format: Two hours of lecture and one hour of project discussion per week Prerequisites: EE140 Linear Integrated Circuits or equivalent Grading Policy: Homework 50% + Project 50% Textbook: CMOS Analog Design Using All-region MOSFET Modeling, M. C. Schneider and C. Galup- Montoro, Cambridge University Press, 2009 CMOS Analog Design Using All Region MOSFET Modeling 2
  • 3. Analog Bipolar and MOS Circuits •Bipolar and MOS A. B. Grebene, Bipolar and MOS Analog Integrated Circuit Design, 1983. K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and Systems, 1994. D. A. Johns and K. Martin, Analog Integrated Circuit Design, 1997. P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Fourth Edition, 2001. W. M. C. Sansen, Analog Design Essentials, Springer, Dordrecht, 2006 •MOS B. Razavi, Design of Analog CMOS Integrated Circuits, 2001. F. Maloberti, Analog Design for CMOS VLSI Systems, 2001. P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2002. CMOS Analog Design Using All Region MOSFET Modeling 3
  • 4. Important Differences between Bipolar Transistors (BJTs) and MOSFETs A) BJTs are three-terminal devices and MOSFETs are four- terminal devices B) Differences in the internal symmetries of the most commonly used BJTs and MOSFETs C) BJT exponential current law vs. MOS current law D) The geometric degrees of freedom for MOSFETs in analog design E) Quality of BJT and MOSFET models CMOS Analog Design Using All Region MOSFET Modeling 4
  • 5. Ebers-Moll Equivalent Circuit of an npn Transistor Forward and reverse currents IE IC α R IR αFIF DE C DC E IR IF IC = α F I F − I R IB IE = αR IR − IF B I B = −( I C + I E ) = (1 − α F ) I F + (1 − α R ) I R 5 CMOS Analog Design Using All Region MOSFET Modeling
  • 6. The Capacitive Model of the MOS Structure VGB VGB depletion ′ Cox region φs ′ dφs Cox 1 = = φs ′ ′ dVGB Cox + Cb n ′ Cb p- type neutral region CMOS Analog Design Using All Region MOSFET Modeling 6
  • 7. MOSFET: Symmetric Strong and Weak Inversion Models Strong inversion VGB VDB VSB ID ID = IF − IR n+ n+ β 2 (V − nVSB ( DB ) − VT 0 ) IF (R) = p-type substrate GB 2n (b) W ′ β= µ Cox weak inversion L W (VGB −VT 0 − nVSB ) / nφt ( ) − e( GB T 0 DB ) t / nφ V −V − nV I D = I F − I R = I0 e L 7 CMOS Analog Design Using All Region MOSFET Modeling
  • 8. Intrinsic Gain Stages: (a) Common- Source and (b) Common-Emitter Amplifiers CMOS Analog Design Using All Region MOSFET Modeling 8
  • 9. Small-Signal Circuit and Frequency Response of the Amplifiers gm vo ≅ − vi jωCL ω >> ωb 9 CMOS Analog Design Using All Region MOSFET Modeling
  • 10. Design of Common-Emitter and Common-Source Amplifiers Av (ωu ) = 1 g m = ω u C L = 2 π .G B W .C L BJT VBE /φt IC = I S e I C = g mφt = 2π .GBW .CL .φt MOSFET 2 1 W ng m 2  µ Cox  (VGB − VT 0 − nVSB ) ′ = = I Dsi I Dsi 2 µ Cox (W / L ) 2n  L ′ CMOS Analog Design Using All Region MOSFET Modeling 10
  • 11. Example: GBW = 10 MHz, CL = 10 pF µ Cox = 80·10-6 A/V2, n = 1.35 ′ g m = 2π .GBW .CL = 628µ A / V IDsi (µA)1 ID (µA)2 W/L µ µ 0 22 ∞ 500 6.6 28.6 100 33.2 55.2 50 66.4 88.4 10 332 354 1Strong inversion model. 2 Accurate all- region MOSFET model CMOS Analog Design Using All Region MOSFET Modeling 11
  • 12. All Region “Empirical” Model of the MOSFET I D = 22 µA + I Dsi IWI = ng mφt = 1.35 ⋅ 628 ⋅10−6.26 ⋅10−3 = 22 µA   gm = ng mφt 1 +  I D = IWI + I Dsi  2 µ Coxφt (W / L )  ′    (W / L )th  1 +  I D = IWI g m = (W / L )th µ ( 2Coxφt ) ′ (W / L )     12 CMOS Analog Design Using All Region MOSFET Modeling
  • 13. Aspect Ratio vs. Current Excess in a MOSFET Design  (W / L )th  1 +  I D = IWI (W / L )     CMOS Analog Design Using All Region MOSFET Modeling 13
  • 14. Consistent Modeling of FETs: Use of Series Associations of FETs D ID MD WD LD W I =( ) [g( V , V ) - g( V , V )] G X D eq G S G D L WS LS W W MS ( ) D ( )S W L L ( ) eq = S B W W L ( ) D + ( )S L L CMOS Analog Design Using All Region MOSFET Modeling 14
  • 15. Series-Parallel Associations of FETs CMOS Analog Design Using All Region MOSFET Modeling 15
  • 16. Series Associations of FET’s vs. Long Channel MOSFETs Series association Long-channel nominal VT L-dependent VT Characterize one L-dependent characterization transistor ( performance (halo/pocket implants effects) of the shortest transistor is “optimized”) L-dependent accuracy “accurate” for current mirrors Gate current more predictable CMOS Analog Design Using All Region MOSFET Modeling 16
  • 17. M:1 Iin Application of Series IOut ∆βaj, ∆VTaj M ∆βB ∆VTB A Parallel Associations of FETs- Ma MB VG Three M:1 Current Mirrors (a) MA = M parallel Ma transistors a) M :1 IOut N2 : 1 MB Iin N MA Mb2 VG Ma1 B) N=√M, N:1/N N (b) IOut MB Iin M:1 N Mb C) M: N/N MA Ma M N (c) CMOS Analog Design Using All Region MOSFET Modeling 17
  • 18. Current Mismatch in Two M:1 Current Mirrors Arnaud, JSSC Sep. 06 18 CMOS Analog Design Using All Region MOSFET Modeling
  • 19. M-2M Digital-to-Analog Converter 1: Mbb can be substituted by set of four transistors ID2 ID1 Mc Md ID Mbc Mbd Ma Mba Mbb VG ID1 ID2a ID2b CMOS Analog Design Using All Region MOSFET Modeling 19
  • 20. M-2M Digital-to-Analog Converter 2: 8 bit DAC with M-2M Ladder IB VB VR IR MB1 M71 M61 M64 M01 M04 M00 MB2 M72 M73 M62 M63 M02 M03 Q7 -Q7 Q6 -Q6 Q0 -Q0 Q7 Q6 Q0 -Q7 -Q6 -Q0 I0 V0 IG GB VG Q7 Q6 Q1 Q0 Di Do D Q D Q D Q D Q ck ck ck ck Ck CMOS Analog Design Using All Region MOSFET Modeling 20
  • 21. M-2M Digital-to-Analog Converter 3: Normalized current mismatch for a 10 µm x 10 µm transistor 21 CMOS Analog Design Using All Region MOSFET Modeling
  • 22. M-2M Digital-to-Analog Converter 4 Standard deviation of the measured error from 20 samples of DAC0 CMOS Analog Design Using All Region MOSFET Modeling 22
  • 23. M-2M Digital-to-Analog Converter 5 Klimach. ISCAS 08 Top area is the M-2M ladder and the bottom area is the serial register. CMOS Analog Design Using All Region MOSFET Modeling 23
  • 24. 290C Course Outline - MOSFET modeling (3 weeks) - Mismatch and noise (2 weeks) - Basic CMOS building blocks (5 weeks) - Op amps ( 4 weeks) 24 CMOS Analog Design Using All Region MOSFET Modeling
  • 25. 290C Learning Goals Understand and use an all-region ( accumulation, WI, MI and SI) compact MOSFET model for analog design Acquire a deep understanding ( nonlinearities, noise, mismatch) of the basic CMOS build blocks and op amps Apply the above concepts in a design project 25 CMOS Analog Design Using All Region MOSFET Modeling
  • 26. Similar Approaches to CMOS Design Paul G. A. Jespers; The gm/ID Design Methodology for CMOS Analog Low Power Integrated Circuits 2009, ISBN: 978-0-387-47100-6 D. M. Binkley; Tradeoffs and Optimization in Analog CMOS Design ISBN: 978-0-470-03136-0, Wiley 2008. Danica Stefanovic and Maher Kayal; Structured Analog CMOS Design Series: Analog Circuits and Signal Processing 2009, ISBN: 978-1-4020-8572-7 CMOS Analog Design Using All Region MOSFET Modeling 26