SlideShare a Scribd company logo
1 of 33
International Conference Vajont, 1963-2013
October 8-10, 2013, Padua, Italy

3D SPH NUMERICAL SIMULATION OF THE
WAVE GENERATED BY THE VAJONT
LANDSLIDE
R. Vacondio*, S. Pagani*, P. Mignosa*, R. Genevois**
* DICATeA – University of Parma, Italy
**Dept. of Geosciences, University of Padua, Italy
OUTLINE OF THE PRESENTATION

1.
2.
3.
4.

Previous works
Data available
Kinematics of the landslide
SPH fundamentals and main characteristics of the
numerical model
5. Numerical simulations and model calibration
6. Results
7. Conclusions

3D SPH numerical simulation of the wave generated by the Vajont landlslide

2/25
PREVIOUS WORKS AN MOTIVATION
Previous works concerning the kinematic of the Vajont slide:
Datei (1969), Hendron & Patton (1985), Semenza & Melidoro (1992),
Zaniboni & Tinti (2013),
Previous works concerning the wave generated by the Vajont slide:
Selli & Trevisan (1964), Viparelli & Merla (1968), Semenza (2001),
Datei (2005).
More recently Bosa & Petti (2010) have simulated the phenomenon by
means of a 2D shallow water model. The slide was schematized as a
moving vertical wall which acted as a «piston» in moving the water of
the Vajont slide.
Motivation:
To overcome the limitations of the SWE through the adoption of a fully
3D numerical model

3D SPH numerical simulation of the wave generated by the Vajont landlslide

3/25
DEM USED TO DERIVE THE GEOMETRY OF THE VAJONT VALLEY

3D SPH numerical simulation of the wave generated by the Vajont landlslide

4/25
z (m a.s.l.)

LEVEL-VOLUME CURVE OF THE VAJONT LAKE (PRE-SLIDE)

Volume at z=700,42 m a.s.l.:
112 106 m3

volume (106 m3)

Datei (2005)

Present work

3D SPH numerical simulation of the wave generated by the Vajont landlslide

5/25
RECONSTRUCTION OF THE SLIDING BODY
Intersection between:
• DEM pre-event , obtained by digitizing maps of Semenza et al. (1965);
• Sliding surface, obtained by Superchi (2011) through seismic sections
and boreholes stratigraphy interpretation)
Vajont valley
Vajont valley

Sliding
Sliding
body
surface

Vajont dam
3D SPH numerical simulation of the wave generated by the Vajont landlslide

6/25
KINEMATICS OF THE LANDSLIDE -1
We follow the 2D Datei’s approach extending it to the whole 3D
sliding body
1200
R
1000
800
m a.s.l.

m a.s.l.
CoMpre
CoMpost

800
600
400

The Centers of Mass (CoM) of the sliding body before (CoMpre) and after the
slide (CoMpost) have been calculated.

The following hypoteses have been assumed:
1. The slide moved as a rigid body (Muller, 1961, Selli & Trevisan, 1964) on a
rotational axis normal to the plane containing CoMpre and CoMpost;
2. The CoM trajectory is a circular arc of radius R (to be determined).
3D SPH numerical simulation of the wave generated by the Vajont landlslide

7/25
KINEMATICS OF THE LANDSLIDE -2
C

For each radius R:
1. the trace of the rotational axis C on the plane
containing both CoM is evaluated;
2. the sliding body is rigidly rotated around C.
The optimal radius R is obtained by minimizing the
L2 norm:
N

L2 ( R)
i 1

zirot

zipost
N

R

CoMpre

2

3D SPH numerical simulation of the wave generated by the Vajont landlslide

CoMpost

8/25
KINEMATICS OF THE LANDSLIDE -3

Section 1

Section 2

3D SPH numerical simulation of the wave generated by the Vajont landlslide

9/25
KINEMATICS OF THE LANDSLIDE -4

Section 3

Section 4

3D SPH numerical simulation of the wave generated by the Vajont landlslide

10/25
KINEMATICS OF THE LANDSLIDE -5

Section 5

Section 6

3D SPH numerical simulation of the wave generated by the Vajont landlslide

11/25
KINEMATICS OF THE LANDSLIDE -6
Assuming a constant friction coefficient f, from the
second law of dynamics, the following equation of
the CoM can be derived
d2
R 2
dt

g sen

R d
g dt

f cos

R

d
dt

0

f

R (m)
α0 (rad)
α1 (rad)
f( )
vmax (m/s)
Tf (s)

tan

max

R

m ax

1
1

cos
sin

1

CoMpre

gR
g
sin t
cos max
R cos

cos
sin

0

2

With some simplifications (Datei, 1969) and
introducing the b.c. the equation for the velocity
magnitude time history of the CoM is obtained
v

C

CoMpost

max

0
0

800
0.469
0.058
0.27
18.5
27.9

3D SPH numerical simulation of the wave generated by the Vajont landlslide

12/25
FUNDAMENTALS OF SPH METHOD
• Meshless spatial interpolation based on kernel functions
• Lagrangian
Water
particles

r’

A(r)

j
r r’ i
2h

Ai
j

j

AjWij

Compact support
of kernel

r

A r' W r r' , h dr'
mj

W(r r’, h)

Radius of
influence

A' (r)

A r' W ' r r' , h dr'
mj

'
i

A

j

AjWij'

j

3D SPH numerical simulation of the wave generated by the Vajont landlslide

13/25
ALGORITHM: WEAKLY COMPRESSIBLE – SPH SCHEME
Navier – Stokes
Equations
D
Dt
Dv
Dt

SPH
discretization

v
1

D i
Dt

p g Θ

Dv i
Dt

m j vi

vi

Wi , j

j

mj

pj

pi

2
j

2
i

j

Lagrangian particles motion:
Dx i
Dt

vj

i, j

Wi , j

g

Stiff equation of state:
pi

2
c0

0

i

1

7

0

3D SPH numerical simulation of the wave generated by the Vajont landlslide

14/25
DISCRETISATION OF SOLID BOUNDARY CONDITIONS
In a SPH framework the discretisation of solid b.c. is still an
open problem. Several options are available
Type

Sketch
Interior fluid
particles

Time consuming, not
suitable for complex
geometry

Mirror Particles
Boundary

Characteristics

Mirror (ghost) particles

Repulsive Force
(Lennard –Jones
molecular model,
Monaghan, 1994)

Dynamic boundaries

Empirical

Suitable for complex
geometry, good
accuracy and efficiency

3D SPH numerical simulation of the wave generated by the Vajont landlslide

15/25
SPH – ADVANTAGES AND DRAWBACKS
• SPH simulations of practical problem is limited by simulation time and
system size
• 3D applications have been limited until now by the maximum number
of particles in order to perform simulations within reasonable
computational time.
• Two options are available to overcome this issue:
Supercomputers
GP-GPUs

DualSPHysics code exploits the computing capability of GPUs (x 100
speedup)
3D SPH numerical simulation of the wave generated by the Vajont landlslide

16/25
DualSPHysics – EXAMPLE OF APPLICATION

3D SPH numerical simulation of the wave generated by the Vajont landlslide

17/25
3D NUMERICAL SIMULATIONS AND MODEL CALIBRATION
Discretization
1. Cubic cells of side x=5 m with a smoothing lenght h=1.5 x

Data available for calibration:
1. Historical (Semenza et al, 1965) maximum run-up of the wave;
2. Water level at rest on the residual lake after the event (712,5 m a.s.l.).
Calibration parameters:
1. Main: friction factor f maximum velocity vmax;
2. Minor: model resolution, kernel type and smoothing lenght, artificial
viscosity;
3D SPH numerical simulation of the wave generated by the Vajont landlslide

18/25
3D NUMERICAL SIMULATIONS AND MODEL CALIBRATION
Initial conditions: water at rest at z 700,42 m a.s.l.

Dam

Vajont lake

Landslide
body

3D SPH numerical simulation of the wave generated by the Vajont landlslide

19/25
CALIBRATED 3D NUMERICAL SIMULATION – PLANE VIEW
f=0.14 vmax=30 m/s

link video

3D SPH numerical simulation of the wave generated by the Vajont landlslide

20/25
CALIBRATED 3D NUMERICAL SIMULATION – PERSPECTIVE VIEW

link video

3D SPH numerical simulation of the wave generated by the Vajont landlslide

21/25
CALIBRATED 3D NUMERICAL SIMULATION – MAIN RESULTS
Comparison between historical and calculated maximum run-up of the wave
Historical (Semenza et al., 1965)
Numerical

Dam

Water level at rest on the residual lake after the event:
Calculated: 710 m a.s.l.. Historical 712,5 m a.s.l.
3D SPH numerical simulation of the wave generated by the Vajont landlslide

22/25
FLOOD WAVE OVERTOPPING THE DAM

Qmax 160·103 m3/s

time (s)

3D SPH numerical simulation of the wave generated by the Vajont landlslide

23/25
CONCLUSIONS AND FUTURE WORKS
• The results of a 3D SPH numerical simulation of the wave generated by the
Vajont rockslide are presented.
• The slide was modeled as a rigid body on a rotational axis normal to the plane
containing CoMpre and CoMpost
• The water volume before the slide was discretized by means of about 1.7
millions of liquid particles, thanks to the CUDA parallelization of the opensource DualSPHysics code.
• The sensitivity analysis of the numerical model has shown that the main
parameter is the friction factor f (which influence the total duration of the fall).
In order to correctly reproduce the maximum historical run-up a friction factor
f=0.14 was necessary.
• The comparison between the results of the numerical simulation and the data
available in literature shows that the numerical scheme is able to reasonably
reproduce, the maximum run-up and level in the residual lake after the event.
• The peak of the flood wave overtopping the dam was estimated at about 160 103
m3/s;
• The numerical results can be adopted in future works as upstream b.c. to
simulate the propagation of the wave in the Vajont gorge, downstream the dam
and in the Piave valley.
3D SPH numerical simulation of the wave generated by the Vajont landlslide

24/25
Thank you for your attention

paolo.mignosa@unipr.it
rinaldo.genevois@unipd.it

renato.vacondio@unipr.it

3D SPH numerical simulation of the wave generated by the Vajont landlslide

25/25
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

vmax=20 m/s
vmax=35 m/s

Formazione
del lago
Massalezza

Evoluzione temporale della distribuzione del modulo della velocità dell’onda nella valle del Vajont
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

Tracimazione diga

Velocità
superiori a
25 m/s

Flusso prevalente in
sinistra idraulica
Evoluzione temporale della distribuzione del modulo della velocità dell’onda in prossimità della diga
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

t = 10 s

Tracimazione diga

Mappa delle quote idriche a diversi istanti temporali
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

t = 20 s

Flusso verso il lago Massalezza

Mappa delle quote idriche a diversi istanti temporali
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

t = 30 s

Massima risalita dell’onda

Mappa delle quote idriche a diversi istanti temporali
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

t = 40 s

Discesa dell’onda

Mappa delle quote idriche a diversi istanti temporali
BIBLIOGRAFIA














Bosa S., Petti M. & Passaro M. (2010). “Modellazione ai volumi finiti dell’onda generata dalla frana del
Vajont”. XXXII Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Palermo.
Bosa S. & Petti M. (2012). “A numerical model of the wave that overtopped the Vajont dam in 1963”.
Università di Udine, Udine.
Caloi P. (1966). “L’evento del Vajont nei suoi aspetti geodinamici“. Istituto Nazionale di Geofisica,
Roma.
Ciabatti M. (1964). “La dinamica della frana del Vajont”. Giornale di Geologia, 32, 139-160.
Datei C. (1969). “Su alcune questioni di carattere dinamico relative ad un eccezionale scoscendimento
di un ammasso roccioso”. Memorie della Accademia Patavina, 89-108, Padova
Datei C. (2005). “Vajont. La storia idraulica”. Cortina, Padova.
Genevois R. & Ghirotti M. (2005). “The 1963 Vaiont Landslide”. Giornale di Geologia Applicata, 1, 41–
52.
Giudici F. & Semenza E. (1960). “Studio geologico del serbatoio del Vajont”. Report for S.A.D.E.,
Venezia.
Semenza E., Rossi D. & Giudici F. (1965). “Carte geologiche del versante settentrionale del Monte Toc
e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963”. Scala 1:5000. Istituto di
Geologia dell’Università di Padova, Padova.
Selli R. & Trevisan L. (1964). “Caratteri e interpretazione della Frana del Vajont”. Giornale di Geologia,
32, 1-154.
Semenza E. (2001). “La storia del Vajont raccontata dal geologo che ha scoperto la frana”.
Tecomproject Editore Multimediale, Ferrara.
Superchi L. (2011). “The Vajont rockslide: new techniques and tradizional method to re-evaluate the
catastrophic event”. Tesi di dottorato XXIV ciclo, PhD School in Earth Sciences, Università di Padova.
Viparelli M. & Merla G. (1968). “L'onda di piena seguita alla frana del Vajont”. Atti dell’Accademia
Pontaniana, 15.
ALGORITHM: WEAKLY COMPRESSIBLE -SPH SCHEME
The artificial viscosity term
v cij

is defined as follows:
v ij

vj

0

rij

ri r j

v ij rij

0

with

0

cij

0.5 ci

ij

hv ij rij
rij2

vi

v ij rij

ij

i, j

ij

ij

i, j

2

2

0. 5

cj
i

j

0.01h 2

Artificial viscosity v must prevent instabilitiy and
spurious oscillations. For violent phenomena has little
influence on the main characteristics of the flow (Crespo
et al., 2011). The value v=0.2 was assumed in this work
3D SPH numerical simulation of the wave generated by the Vajont landlslide

33/25

More Related Content

What's hot

Water Balance Analysis
Water Balance AnalysisWater Balance Analysis
Water Balance Analysis
C. P. Kumar
 
Simulation Modeling Upscaling Process
Simulation Modeling Upscaling ProcessSimulation Modeling Upscaling Process
Simulation Modeling Upscaling Process
Faisal Al-Jenaibi
 
Introduction to Groundwater Modelling
Introduction to Groundwater ModellingIntroduction to Groundwater Modelling
Introduction to Groundwater Modelling
C. P. Kumar
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
Deltares
 
RAINFALL RUNOFF MODELLING USING HEC-HMS
RAINFALL RUNOFF MODELLING                USING HEC-HMSRAINFALL RUNOFF MODELLING                USING HEC-HMS
RAINFALL RUNOFF MODELLING USING HEC-HMS
Pushp Aggarwal
 

What's hot (20)

Fluid Mechanic Lab - Hydrostatic Pressure
Fluid Mechanic Lab - Hydrostatic Pressure Fluid Mechanic Lab - Hydrostatic Pressure
Fluid Mechanic Lab - Hydrostatic Pressure
 
Calibration of venturi and orifice meters
Calibration of venturi and orifice metersCalibration of venturi and orifice meters
Calibration of venturi and orifice meters
 
Reynolds Number Final Report in LAB 1
Reynolds Number Final Report in LAB 1Reynolds Number Final Report in LAB 1
Reynolds Number Final Report in LAB 1
 
River morphology as_the_science_of_sustainability
River morphology as_the_science_of_sustainabilityRiver morphology as_the_science_of_sustainability
River morphology as_the_science_of_sustainability
 
FLOW OVER A SHARP CRESTED WEIR
FLOW OVER A SHARP CRESTED WEIRFLOW OVER A SHARP CRESTED WEIR
FLOW OVER A SHARP CRESTED WEIR
 
flow through venturimeter
flow through venturimeterflow through venturimeter
flow through venturimeter
 
Water Balance Analysis
Water Balance AnalysisWater Balance Analysis
Water Balance Analysis
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channels
 
Lecture on fluidization
Lecture on fluidizationLecture on fluidization
Lecture on fluidization
 
Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)
 
Simulation Modeling Upscaling Process
Simulation Modeling Upscaling ProcessSimulation Modeling Upscaling Process
Simulation Modeling Upscaling Process
 
Introduction to Groundwater Modelling
Introduction to Groundwater ModellingIntroduction to Groundwater Modelling
Introduction to Groundwater Modelling
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
 
Chapter 2 wave and tides with examples
Chapter  2 wave and tides with examplesChapter  2 wave and tides with examples
Chapter 2 wave and tides with examples
 
8. fm 9 flow in pipes major loses co 3 copy
8. fm 9 flow in pipes  major loses co 3   copy8. fm 9 flow in pipes  major loses co 3   copy
8. fm 9 flow in pipes major loses co 3 copy
 
Groundwater modelling (an Introduction)
Groundwater modelling (an Introduction)Groundwater modelling (an Introduction)
Groundwater modelling (an Introduction)
 
Iirs Role of Remote sensing and GIS in Ground water studies
Iirs Role of Remote sensing and GIS in Ground water studiesIirs Role of Remote sensing and GIS in Ground water studies
Iirs Role of Remote sensing and GIS in Ground water studies
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
RAINFALL RUNOFF MODELLING USING HEC-HMS
RAINFALL RUNOFF MODELLING                USING HEC-HMSRAINFALL RUNOFF MODELLING                USING HEC-HMS
RAINFALL RUNOFF MODELLING USING HEC-HMS
 
L5 infiltration
L5 infiltrationL5 infiltration
L5 infiltration
 

Similar to Numerical simulation

Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014
Matteo Ravasi
 
TU3.T10.5.ppt
TU3.T10.5.pptTU3.T10.5.ppt
TU3.T10.5.ppt
grssieee
 
Csp seismic data processing method for fracture oil and gas reservoir prospec...
Csp seismic data processing method for fracture oil and gas reservoir prospec...Csp seismic data processing method for fracture oil and gas reservoir prospec...
Csp seismic data processing method for fracture oil and gas reservoir prospec...
wsspsoft
 

Similar to Numerical simulation (20)

TuD20203_Sepat
TuD20203_SepatTuD20203_Sepat
TuD20203_Sepat
 
Flood routing by kinematic wave model
Flood routing by kinematic wave modelFlood routing by kinematic wave model
Flood routing by kinematic wave model
 
Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014
 
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...
 
Lecture 23 april29 static correction
Lecture 23 april29 static correctionLecture 23 april29 static correction
Lecture 23 april29 static correction
 
240708
240708240708
240708
 
Seismic Modeling ASEG 082001 Andrew Long
Seismic Modeling ASEG 082001 Andrew LongSeismic Modeling ASEG 082001 Andrew Long
Seismic Modeling ASEG 082001 Andrew Long
 
Seismic data Interpretation On Dhodak field Pakistan
Seismic data Interpretation On Dhodak field PakistanSeismic data Interpretation On Dhodak field Pakistan
Seismic data Interpretation On Dhodak field Pakistan
 
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
 
Seismic interpretation work flow final ppt
Seismic interpretation work flow final pptSeismic interpretation work flow final ppt
Seismic interpretation work flow final ppt
 
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
 
IRJET - Effect of Local Scour on Foundation of Hydraulic Structure
IRJET - Effect of Local Scour on Foundation of Hydraulic StructureIRJET - Effect of Local Scour on Foundation of Hydraulic Structure
IRJET - Effect of Local Scour on Foundation of Hydraulic Structure
 
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
 
TU3.T10.5.ppt
TU3.T10.5.pptTU3.T10.5.ppt
TU3.T10.5.ppt
 
DSD-INT 2019 Effects installation Borssele export cables - Koudstaal
DSD-INT 2019 Effects installation Borssele export cables - KoudstaalDSD-INT 2019 Effects installation Borssele export cables - Koudstaal
DSD-INT 2019 Effects installation Borssele export cables - Koudstaal
 
Csp seismic data processing method for fracture oil and gas reservoir prospec...
Csp seismic data processing method for fracture oil and gas reservoir prospec...Csp seismic data processing method for fracture oil and gas reservoir prospec...
Csp seismic data processing method for fracture oil and gas reservoir prospec...
 
Changes in dam break hydrodynamic modelling practice - Suter et al
Changes in dam break hydrodynamic modelling practice - Suter et alChanges in dam break hydrodynamic modelling practice - Suter et al
Changes in dam break hydrodynamic modelling practice - Suter et al
 
CFD modeling
CFD modelingCFD modeling
CFD modeling
 
WATERSHED ANALYSIS .pptx
WATERSHED ANALYSIS .pptxWATERSHED ANALYSIS .pptx
WATERSHED ANALYSIS .pptx
 
DRONES IN HYDROLOGY
DRONES IN HYDROLOGYDRONES IN HYDROLOGY
DRONES IN HYDROLOGY
 

More from ceriuniroma

9oct mechanics large-landslides5
9oct mechanics large-landslides59oct mechanics large-landslides5
9oct mechanics large-landslides5
ceriuniroma
 
9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction
ceriuniroma
 
9oct vajont lecture hatzor
9oct vajont lecture hatzor9oct vajont lecture hatzor
9oct vajont lecture hatzor
ceriuniroma
 
9oct paolo mazzanti-vajont
9oct paolo mazzanti-vajont9oct paolo mazzanti-vajont
9oct paolo mazzanti-vajont
ceriuniroma
 
9oct hungr vaiont-2013
9oct hungr vaiont-20139oct hungr vaiont-2013
9oct hungr vaiont-2013
ceriuniroma
 
9oct 4 crosta-monitoring and modelling
9oct 4 crosta-monitoring and modelling9oct 4 crosta-monitoring and modelling
9oct 4 crosta-monitoring and modelling
ceriuniroma
 
9oct 3 wang1-reservoir bank slope
9oct 3 wang1-reservoir bank slope9oct 3 wang1-reservoir bank slope
9oct 3 wang1-reservoir bank slope
ceriuniroma
 
9oct 2 franz-land-slide triggered
9oct 2 franz-land-slide triggered9oct 2 franz-land-slide triggered
9oct 2 franz-land-slide triggered
ceriuniroma
 
9oct 2 fabbri-hydrogeological spring
9oct 2 fabbri-hydrogeological spring9oct 2 fabbri-hydrogeological spring
9oct 2 fabbri-hydrogeological spring
ceriuniroma
 
9oct 2 bretschneider-a physically based scale
9oct 2 bretschneider-a physically based scale9oct 2 bretschneider-a physically based scale
9oct 2 bretschneider-a physically based scale
ceriuniroma
 
9oct 1 petronio-reflection seismic
9oct 1 petronio-reflection seismic9oct 1 petronio-reflection seismic
9oct 1 petronio-reflection seismic
ceriuniroma
 
9oct 1 croce-geotechnical analysis
9oct 1 croce-geotechnical analysis9oct 1 croce-geotechnical analysis
9oct 1 croce-geotechnical analysis
ceriuniroma
 
9oct vajont2013bcompresso
9oct vajont2013bcompresso9oct vajont2013bcompresso
9oct vajont2013bcompresso
ceriuniroma
 

More from ceriuniroma (20)

9oct mechanics large-landslides5
9oct mechanics large-landslides59oct mechanics large-landslides5
9oct mechanics large-landslides5
 
9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction
 
9oct vajont lecture hatzor
9oct vajont lecture hatzor9oct vajont lecture hatzor
9oct vajont lecture hatzor
 
9oct paolo mazzanti-vajont
9oct paolo mazzanti-vajont9oct paolo mazzanti-vajont
9oct paolo mazzanti-vajont
 
9oct hungr vaiont-2013
9oct hungr vaiont-20139oct hungr vaiont-2013
9oct hungr vaiont-2013
 
9oct 4 crosta-monitoring and modelling
9oct 4 crosta-monitoring and modelling9oct 4 crosta-monitoring and modelling
9oct 4 crosta-monitoring and modelling
 
9oct 3 wang1-reservoir bank slope
9oct 3 wang1-reservoir bank slope9oct 3 wang1-reservoir bank slope
9oct 3 wang1-reservoir bank slope
 
9oct 2 franz-land-slide triggered
9oct 2 franz-land-slide triggered9oct 2 franz-land-slide triggered
9oct 2 franz-land-slide triggered
 
9oct 2 fabbri-hydrogeological spring
9oct 2 fabbri-hydrogeological spring9oct 2 fabbri-hydrogeological spring
9oct 2 fabbri-hydrogeological spring
 
9oct 2 bretschneider-a physically based scale
9oct 2 bretschneider-a physically based scale9oct 2 bretschneider-a physically based scale
9oct 2 bretschneider-a physically based scale
 
9oct 1 petronio-reflection seismic
9oct 1 petronio-reflection seismic9oct 1 petronio-reflection seismic
9oct 1 petronio-reflection seismic
 
9oct 1 croce-geotechnical analysis
9oct 1 croce-geotechnical analysis9oct 1 croce-geotechnical analysis
9oct 1 croce-geotechnical analysis
 
9oct vajont2013bcompresso
9oct vajont2013bcompresso9oct vajont2013bcompresso
9oct vajont2013bcompresso
 
Cruchon - la reglementation francaise
Cruchon - la reglementation francaiseCruchon - la reglementation francaise
Cruchon - la reglementation francaise
 
Blikra - vajont 2013
Blikra - vajont 2013Blikra - vajont 2013
Blikra - vajont 2013
 
Loew - pore pressure
Loew - pore pressureLoew - pore pressure
Loew - pore pressure
 
3 notti studying and monitoring
3 notti studying and monitoring3 notti studying and monitoring
3 notti studying and monitoring
 
Hermanns - understanding long term slope
Hermanns - understanding long term slopeHermanns - understanding long term slope
Hermanns - understanding long term slope
 
Federico - modeling of runout
Federico - modeling of runoutFederico - modeling of runout
Federico - modeling of runout
 
Ricciardi - evolution of regulation
Ricciardi - evolution of  regulationRicciardi - evolution of  regulation
Ricciardi - evolution of regulation
 

Recently uploaded

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
giselly40
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 

Recently uploaded (20)

Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 

Numerical simulation

  • 1. International Conference Vajont, 1963-2013 October 8-10, 2013, Padua, Italy 3D SPH NUMERICAL SIMULATION OF THE WAVE GENERATED BY THE VAJONT LANDSLIDE R. Vacondio*, S. Pagani*, P. Mignosa*, R. Genevois** * DICATeA – University of Parma, Italy **Dept. of Geosciences, University of Padua, Italy
  • 2. OUTLINE OF THE PRESENTATION 1. 2. 3. 4. Previous works Data available Kinematics of the landslide SPH fundamentals and main characteristics of the numerical model 5. Numerical simulations and model calibration 6. Results 7. Conclusions 3D SPH numerical simulation of the wave generated by the Vajont landlslide 2/25
  • 3. PREVIOUS WORKS AN MOTIVATION Previous works concerning the kinematic of the Vajont slide: Datei (1969), Hendron & Patton (1985), Semenza & Melidoro (1992), Zaniboni & Tinti (2013), Previous works concerning the wave generated by the Vajont slide: Selli & Trevisan (1964), Viparelli & Merla (1968), Semenza (2001), Datei (2005). More recently Bosa & Petti (2010) have simulated the phenomenon by means of a 2D shallow water model. The slide was schematized as a moving vertical wall which acted as a «piston» in moving the water of the Vajont slide. Motivation: To overcome the limitations of the SWE through the adoption of a fully 3D numerical model 3D SPH numerical simulation of the wave generated by the Vajont landlslide 3/25
  • 4. DEM USED TO DERIVE THE GEOMETRY OF THE VAJONT VALLEY 3D SPH numerical simulation of the wave generated by the Vajont landlslide 4/25
  • 5. z (m a.s.l.) LEVEL-VOLUME CURVE OF THE VAJONT LAKE (PRE-SLIDE) Volume at z=700,42 m a.s.l.: 112 106 m3 volume (106 m3) Datei (2005) Present work 3D SPH numerical simulation of the wave generated by the Vajont landlslide 5/25
  • 6. RECONSTRUCTION OF THE SLIDING BODY Intersection between: • DEM pre-event , obtained by digitizing maps of Semenza et al. (1965); • Sliding surface, obtained by Superchi (2011) through seismic sections and boreholes stratigraphy interpretation) Vajont valley Vajont valley Sliding Sliding body surface Vajont dam 3D SPH numerical simulation of the wave generated by the Vajont landlslide 6/25
  • 7. KINEMATICS OF THE LANDSLIDE -1 We follow the 2D Datei’s approach extending it to the whole 3D sliding body 1200 R 1000 800 m a.s.l. m a.s.l. CoMpre CoMpost 800 600 400 The Centers of Mass (CoM) of the sliding body before (CoMpre) and after the slide (CoMpost) have been calculated. The following hypoteses have been assumed: 1. The slide moved as a rigid body (Muller, 1961, Selli & Trevisan, 1964) on a rotational axis normal to the plane containing CoMpre and CoMpost; 2. The CoM trajectory is a circular arc of radius R (to be determined). 3D SPH numerical simulation of the wave generated by the Vajont landlslide 7/25
  • 8. KINEMATICS OF THE LANDSLIDE -2 C For each radius R: 1. the trace of the rotational axis C on the plane containing both CoM is evaluated; 2. the sliding body is rigidly rotated around C. The optimal radius R is obtained by minimizing the L2 norm: N L2 ( R) i 1 zirot zipost N R CoMpre 2 3D SPH numerical simulation of the wave generated by the Vajont landlslide CoMpost 8/25
  • 9. KINEMATICS OF THE LANDSLIDE -3 Section 1 Section 2 3D SPH numerical simulation of the wave generated by the Vajont landlslide 9/25
  • 10. KINEMATICS OF THE LANDSLIDE -4 Section 3 Section 4 3D SPH numerical simulation of the wave generated by the Vajont landlslide 10/25
  • 11. KINEMATICS OF THE LANDSLIDE -5 Section 5 Section 6 3D SPH numerical simulation of the wave generated by the Vajont landlslide 11/25
  • 12. KINEMATICS OF THE LANDSLIDE -6 Assuming a constant friction coefficient f, from the second law of dynamics, the following equation of the CoM can be derived d2 R 2 dt g sen R d g dt f cos R d dt 0 f R (m) α0 (rad) α1 (rad) f( ) vmax (m/s) Tf (s) tan max R m ax 1 1 cos sin 1 CoMpre gR g sin t cos max R cos cos sin 0 2 With some simplifications (Datei, 1969) and introducing the b.c. the equation for the velocity magnitude time history of the CoM is obtained v C CoMpost max 0 0 800 0.469 0.058 0.27 18.5 27.9 3D SPH numerical simulation of the wave generated by the Vajont landlslide 12/25
  • 13. FUNDAMENTALS OF SPH METHOD • Meshless spatial interpolation based on kernel functions • Lagrangian Water particles r’ A(r) j r r’ i 2h Ai j j AjWij Compact support of kernel r A r' W r r' , h dr' mj W(r r’, h) Radius of influence A' (r) A r' W ' r r' , h dr' mj ' i A j AjWij' j 3D SPH numerical simulation of the wave generated by the Vajont landlslide 13/25
  • 14. ALGORITHM: WEAKLY COMPRESSIBLE – SPH SCHEME Navier – Stokes Equations D Dt Dv Dt SPH discretization v 1 D i Dt p g Θ Dv i Dt m j vi vi Wi , j j mj pj pi 2 j 2 i j Lagrangian particles motion: Dx i Dt vj i, j Wi , j g Stiff equation of state: pi 2 c0 0 i 1 7 0 3D SPH numerical simulation of the wave generated by the Vajont landlslide 14/25
  • 15. DISCRETISATION OF SOLID BOUNDARY CONDITIONS In a SPH framework the discretisation of solid b.c. is still an open problem. Several options are available Type Sketch Interior fluid particles Time consuming, not suitable for complex geometry Mirror Particles Boundary Characteristics Mirror (ghost) particles Repulsive Force (Lennard –Jones molecular model, Monaghan, 1994) Dynamic boundaries Empirical Suitable for complex geometry, good accuracy and efficiency 3D SPH numerical simulation of the wave generated by the Vajont landlslide 15/25
  • 16. SPH – ADVANTAGES AND DRAWBACKS • SPH simulations of practical problem is limited by simulation time and system size • 3D applications have been limited until now by the maximum number of particles in order to perform simulations within reasonable computational time. • Two options are available to overcome this issue: Supercomputers GP-GPUs DualSPHysics code exploits the computing capability of GPUs (x 100 speedup) 3D SPH numerical simulation of the wave generated by the Vajont landlslide 16/25
  • 17. DualSPHysics – EXAMPLE OF APPLICATION 3D SPH numerical simulation of the wave generated by the Vajont landlslide 17/25
  • 18. 3D NUMERICAL SIMULATIONS AND MODEL CALIBRATION Discretization 1. Cubic cells of side x=5 m with a smoothing lenght h=1.5 x Data available for calibration: 1. Historical (Semenza et al, 1965) maximum run-up of the wave; 2. Water level at rest on the residual lake after the event (712,5 m a.s.l.). Calibration parameters: 1. Main: friction factor f maximum velocity vmax; 2. Minor: model resolution, kernel type and smoothing lenght, artificial viscosity; 3D SPH numerical simulation of the wave generated by the Vajont landlslide 18/25
  • 19. 3D NUMERICAL SIMULATIONS AND MODEL CALIBRATION Initial conditions: water at rest at z 700,42 m a.s.l. Dam Vajont lake Landslide body 3D SPH numerical simulation of the wave generated by the Vajont landlslide 19/25
  • 20. CALIBRATED 3D NUMERICAL SIMULATION – PLANE VIEW f=0.14 vmax=30 m/s link video 3D SPH numerical simulation of the wave generated by the Vajont landlslide 20/25
  • 21. CALIBRATED 3D NUMERICAL SIMULATION – PERSPECTIVE VIEW link video 3D SPH numerical simulation of the wave generated by the Vajont landlslide 21/25
  • 22. CALIBRATED 3D NUMERICAL SIMULATION – MAIN RESULTS Comparison between historical and calculated maximum run-up of the wave Historical (Semenza et al., 1965) Numerical Dam Water level at rest on the residual lake after the event: Calculated: 710 m a.s.l.. Historical 712,5 m a.s.l. 3D SPH numerical simulation of the wave generated by the Vajont landlslide 22/25
  • 23. FLOOD WAVE OVERTOPPING THE DAM Qmax 160·103 m3/s time (s) 3D SPH numerical simulation of the wave generated by the Vajont landlslide 23/25
  • 24. CONCLUSIONS AND FUTURE WORKS • The results of a 3D SPH numerical simulation of the wave generated by the Vajont rockslide are presented. • The slide was modeled as a rigid body on a rotational axis normal to the plane containing CoMpre and CoMpost • The water volume before the slide was discretized by means of about 1.7 millions of liquid particles, thanks to the CUDA parallelization of the opensource DualSPHysics code. • The sensitivity analysis of the numerical model has shown that the main parameter is the friction factor f (which influence the total duration of the fall). In order to correctly reproduce the maximum historical run-up a friction factor f=0.14 was necessary. • The comparison between the results of the numerical simulation and the data available in literature shows that the numerical scheme is able to reasonably reproduce, the maximum run-up and level in the residual lake after the event. • The peak of the flood wave overtopping the dam was estimated at about 160 103 m3/s; • The numerical results can be adopted in future works as upstream b.c. to simulate the propagation of the wave in the Vajont gorge, downstream the dam and in the Piave valley. 3D SPH numerical simulation of the wave generated by the Vajont landlslide 24/25
  • 25. Thank you for your attention paolo.mignosa@unipr.it rinaldo.genevois@unipd.it renato.vacondio@unipr.it 3D SPH numerical simulation of the wave generated by the Vajont landlslide 25/25
  • 26. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s vmax=20 m/s vmax=35 m/s Formazione del lago Massalezza Evoluzione temporale della distribuzione del modulo della velocità dell’onda nella valle del Vajont
  • 27. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s Tracimazione diga Velocità superiori a 25 m/s Flusso prevalente in sinistra idraulica Evoluzione temporale della distribuzione del modulo della velocità dell’onda in prossimità della diga
  • 28. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s t = 10 s Tracimazione diga Mappa delle quote idriche a diversi istanti temporali
  • 29. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s t = 20 s Flusso verso il lago Massalezza Mappa delle quote idriche a diversi istanti temporali
  • 30. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s t = 30 s Massima risalita dell’onda Mappa delle quote idriche a diversi istanti temporali
  • 31. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s t = 40 s Discesa dell’onda Mappa delle quote idriche a diversi istanti temporali
  • 32. BIBLIOGRAFIA              Bosa S., Petti M. & Passaro M. (2010). “Modellazione ai volumi finiti dell’onda generata dalla frana del Vajont”. XXXII Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Palermo. Bosa S. & Petti M. (2012). “A numerical model of the wave that overtopped the Vajont dam in 1963”. Università di Udine, Udine. Caloi P. (1966). “L’evento del Vajont nei suoi aspetti geodinamici“. Istituto Nazionale di Geofisica, Roma. Ciabatti M. (1964). “La dinamica della frana del Vajont”. Giornale di Geologia, 32, 139-160. Datei C. (1969). “Su alcune questioni di carattere dinamico relative ad un eccezionale scoscendimento di un ammasso roccioso”. Memorie della Accademia Patavina, 89-108, Padova Datei C. (2005). “Vajont. La storia idraulica”. Cortina, Padova. Genevois R. & Ghirotti M. (2005). “The 1963 Vaiont Landslide”. Giornale di Geologia Applicata, 1, 41– 52. Giudici F. & Semenza E. (1960). “Studio geologico del serbatoio del Vajont”. Report for S.A.D.E., Venezia. Semenza E., Rossi D. & Giudici F. (1965). “Carte geologiche del versante settentrionale del Monte Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963”. Scala 1:5000. Istituto di Geologia dell’Università di Padova, Padova. Selli R. & Trevisan L. (1964). “Caratteri e interpretazione della Frana del Vajont”. Giornale di Geologia, 32, 1-154. Semenza E. (2001). “La storia del Vajont raccontata dal geologo che ha scoperto la frana”. Tecomproject Editore Multimediale, Ferrara. Superchi L. (2011). “The Vajont rockslide: new techniques and tradizional method to re-evaluate the catastrophic event”. Tesi di dottorato XXIV ciclo, PhD School in Earth Sciences, Università di Padova. Viparelli M. & Merla G. (1968). “L'onda di piena seguita alla frana del Vajont”. Atti dell’Accademia Pontaniana, 15.
  • 33. ALGORITHM: WEAKLY COMPRESSIBLE -SPH SCHEME The artificial viscosity term v cij is defined as follows: v ij vj 0 rij ri r j v ij rij 0 with 0 cij 0.5 ci ij hv ij rij rij2 vi v ij rij ij i, j ij ij i, j 2 2 0. 5 cj i j 0.01h 2 Artificial viscosity v must prevent instabilitiy and spurious oscillations. For violent phenomena has little influence on the main characteristics of the flow (Crespo et al., 2011). The value v=0.2 was assumed in this work 3D SPH numerical simulation of the wave generated by the Vajont landlslide 33/25