SlideShare une entreprise Scribd logo
1  sur  24
Télécharger pour lire hors ligne
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Dynamic dependence ordering
for Archimedean copulas
Arthur Charpentier
http ://perso.univ-rennes1.fr/arthur.charpentier/
International Workshop on Applied Probability, July 2008
1
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Motivations : dependence and copulas
Definition 1. A copula C is a joint distribution function on [0, 1]d
, with
uniform margins on [0, 1].
Theorem 2. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginal
distributions, then F(x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, with
F ∈ F(F1, . . . , Fd).
Conversely, if F ∈ F(F1, . . . , Fd), there exists C such that
F(x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C is
unique, and given by
C(u) = F(F−1
1 (u1), . . . , F−1
d (ud)) for all ui ∈ [0, 1]
We will then define the copula of F, or the copula of X.
2
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Motivations : dependence and copulas
Given a random vector X with continuous margins. The copula of C satisfies
P[X1 ≤ x1, · · · , Xd ≤ xd] = C (P[X1 ≤ x1], · · · , P[Xd ≤ xd])
and its survival copula C satisfies
P[X1 > x1, · · · , Xd > xd] = C (P[X1 > x1], · · · , P[Xd > xd])
3
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Copula density Level curves of the copula
Fig. 1 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v).
4
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Copula density Level curves of the copula
Fig. 2 – Density of a copula, c(u, v) =
∂2
C(u, v)
∂u∂v
.
5
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Archimedean copulas
Definition 3. A copula C is called Archimedean if it is of the form
C(u1, · · · , ud) = φ−1
(φ(u1) + · · · + φ(ud)) ,
where the generator φ : [0, 1] → [0, ∞] is convex, decreasing and satisfies φ(1) = 0.
A necessary and sufficient condition is that φ−1
is d-monotone.
6
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Some examples of Archimedean copulas
φ(t) range θ
(1) 1
θ
(t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978)
(2) (1 − t)θ [1, ∞)
(3) log
1−θ(1−t)
t
[−1, 1) Ali-Mikhail-Haq
(4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986)
(5) − log e−θt−1
e−θ−1
(−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987)
(6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993)
(7) − log{θt + (1 − θ)} (0, 1]
(8) 1−t
1+(θ−1)t
[1, ∞)
(9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960)
(10) log(2t−θ − 1) (0, 1]
(11) log(2 − tθ) (0, 1/2]
(12) ( 1
t
− 1)θ [1, ∞)
(13) (1 − log t)θ − 1 (0, ∞)
(14) (t−1/θ − 1)θ [1, ∞)
(15) (1 − t1/θ)θ [1, ∞) Genest & Ghoudi (1994)
(16) ( θ
t
+ 1)(1 − t) [0, ∞)
7
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Why Archimedean copulas ?
Assume that X and Y are conditionally independent, given the value of an
heterogeneous component Θ. Assume further that
P(X ≤ x|Θ = θ) = (GX(x))θ
and P(Y ≤ y|Θ = θ) = (GY (y))θ
for some baseline distribution functions GX and GY . Then
F(x, y) = ψ(ψ−1
(FX(x)) + ψ−1
(FY (y))).
where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ
).
8
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
0 5 10 15
05101520
Conditional independence, two classes
!3 !2 !1 0 1 2 3
!3!2!10123
Conditional independence, two classes
Fig. 3 – Two classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
9
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
0 5 10 15 20 25 30
010203040
Conditional independence, three classes
!3 !2 !1 0 1 2 3
!3!2!10123
Conditional independence, three classes
Fig. 4 – Three classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
10
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
0 20 40 60 80 100
020406080100
Conditional independence, continuous risk factor
!3 !2 !1 0 1 2 3
!3!2!10123
Conditional independence, continuous risk factor
Fig. 5 – Continuous classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
11
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Conditioning with Archimedean copulas
Proposition 4. If (U, V ) has copula C, with generator φ. Then the copula of
(U, V ) given U, V ≤ u is also Archimedean, with generator
φu(x) = φ(x · C(u, u)) − φ(C(u, u)), for all x ∈ (0, 1].
Ageing with Archimedean copulas
Proposition 5. If (X, Y ) is exchangeable, with survival copula C, with generator
φ. Then the survival copula Ct of (X, Y ) given X, Y > t is also Archimedean,
with generator
φt(x) = φ(x · γt) − φ(γt), for all x ∈ (0, 1], t ∈ [0, ∞),
where γt = C(F(t), F(t)) = P(X > t, Y > t).
12
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Ageing with Archimedean copulas
0.0 0.2 0.4 0.6 0.8 1.0
0246810
q
Fig. 6 – Initial Archimedean generator, · → φ(·) on (0, 1].
13
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Ageing with Archimedean copulas
0.0 0.2 0.4 0.6 0.8 1.0
0246810
P(X>t,Y>t)
q
Fig. 7 – Initial Archimedean generator, · → φ(·) on (0, 1].
14
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Ageing with Archimedean copulas
0.0 0.2 0.4 0.6 0.8 1.0
0246810
q
Fig. 8 – Initial Archimedean generator, · → φ(·) on (0, γt], γt = C(F(t), F(t)).
15
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Ageing with Archimedean copulas
0.0 0.2 0.4 0.6 0.8 1.0
0246810
q
Fig. 9 – Initial Archimedean generator, · → φ(·) on (0, γt].
16
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Ageing with Archimedean copulas
0.0 0.2 0.4 0.6 0.8 1.0
0246810
q
Fig. 10 – Initial Archimedean generator, · → φ(·γt) on [0, 1].
17
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Ageing with Archimedean copulas
0.0 0.2 0.4 0.6 0.8 1.0
0246810
q
Fig. 11 – Initial Archimedean generator, · → φ(·γt) − phi(γt) on [0, 1].
18
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Ageing with Frailty-Archimedean copulas
Proposition 6. If (X, Y ) is exchangeable with a frailty representation (where Θ
has Laplace transform ψ). Then (X, Y ) given X, Y > t also has a failty
representation, and the factor has Laplace transform
ψt(x) =
ψ[x + ψ−1
(γt)]
γt
, for all x ∈ [0, ∞), t ∈ [0, ∞).
where γt = C(F(t), F(t)).
D´emonstration. The only technical part is to proof that (X, Y ) given X, Y > t
are conditionally independent.
19
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Ordering tails of Archimedean copulas
Proposition 7. Set C1 = C(t1, t1) and C2 = C(t2, t2). Given φ, define



f12(x) = φ C1
C2
φ−1
(x + φ(C2)) − φ(C1)
f21(x) = φ C2
C1
φ−1
(x + φ(C1)) − φ(C2)
Then 


Ct2
Ct1
if and only if f21 is subadditive
Ct2 Ct1 if and only if f12 is subadditive
Lemma 8. If φ is twice differentiable, set ψ(t) = log(−φ (t)).



if ψ is concave on (0, 1), Ct2 Ct1 for all 0 < t1 ≤ t2
if ψ is convex on (0, 1), Ct2
Ct1
for all 0 < t1 ≤ t2
20
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Some examples : Frank copula
Frank copula has generator φ(t) = − log
e−αx
− 1
e−α − 1
, α ≥ 0
C(u, v) = −
1
α
log 1 +
(e−αu
− 1)(e−αv
− 1)
e−α − 1
on [0, 1] × [0, 1].
ψ(x) = log α − αx − log[1 − e−αx
] is concave, and thus
C Ct1
Ct2
C⊥
, for all 0 ≤ t1 ≤ t2,
with Ct → C as t → ∞. The random pair is less and less positively dependent.
21
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Some examples : Clayton copula
Clayton copula has generator φ(t) = t−α
− 1, α ≥ 0,
C(u, v) = u−α
+ v−α
− 1
−1/α
on [0, 1] × [0, 1].
f12 and f21 are linear (see also Lemma 5.5.8. in Schweizer and Sklar
(1983)), hence
Ct1 = Ct2 = C.
22
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Some examples : Ali-Mikhail-Haq copula
Ali-Mikhail-Haq copula has generator φ(t) = ...1, α ∈ [0, 1),
C(u, v) =
uv
1 − α(1 − u
(1 − v) on [0, 1] × [0, 1].
ψ(x) = log
1
x
−
α
1 − α[1 − x]
is concave, and thus
C Ct1
Ct2
C⊥
, for all 0 ≤ t1 ≤ t2,
with Ct → C as t → ∞.
23
Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas
Some examples : Gumbel copula
Gumbel copula has generator φ(t) = (− log t)α
, α ≥ 0,
C(u, v) = exp − [(− log u)α
+ (− log v)α
]
1
α
) on [0, 1] × [0, 1].
ψ(x) = log α − log x + (α − 1) log[− log x] is neither concave, nor convex.
But see C − Ct is always positive, i.e.
C Ct C⊥
, for all 0 < t.
24

Contenu connexe

Tendances (20)

Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Fougeres Besancon Archimax
Fougeres Besancon ArchimaxFougeres Besancon Archimax
Fougeres Besancon Archimax
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Berlin
BerlinBerlin
Berlin
 
Slides irisa
Slides irisaSlides irisa
Slides irisa
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides guanauato
Slides guanauatoSlides guanauato
Slides guanauato
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides edf-2
Slides edf-2Slides edf-2
Slides edf-2
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
Slides ineq-4
Slides ineq-4Slides ineq-4
Slides ineq-4
 
Slides ensae 9
Slides ensae 9Slides ensae 9
Slides ensae 9
 
Multiattribute utility copula
Multiattribute utility copulaMultiattribute utility copula
Multiattribute utility copula
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 

En vedette (18)

Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
 
Slides p6
Slides p6Slides p6
Slides p6
 
Slides picard-6
Slides picard-6Slides picard-6
Slides picard-6
 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
 
Slides lyon-anr
Slides lyon-anrSlides lyon-anr
Slides lyon-anr
 
Slides ensae-2016-1
Slides ensae-2016-1Slides ensae-2016-1
Slides ensae-2016-1
 
Slides ensae-2016-2
Slides ensae-2016-2Slides ensae-2016-2
Slides ensae-2016-2
 
Slides ensae-2016-6
Slides ensae-2016-6Slides ensae-2016-6
Slides ensae-2016-6
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
 
Slides ensae-2016-5
Slides ensae-2016-5Slides ensae-2016-5
Slides ensae-2016-5
 
Slides ensae-2016-3
Slides ensae-2016-3Slides ensae-2016-3
Slides ensae-2016-3
 
Slides ensae-2016-4
Slides ensae-2016-4Slides ensae-2016-4
Slides ensae-2016-4
 
Slides ensae-2016-10
Slides ensae-2016-10Slides ensae-2016-10
Slides ensae-2016-10
 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 

Similaire à Dynamic dependence ordering for Archimedean copulas

Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Dahua Lin
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderJuliho Castillo
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon informationFrank Nielsen
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013Madd Maths
 
Approximate Bayesian Computation with Quasi-Likelihoods
Approximate Bayesian Computation with Quasi-LikelihoodsApproximate Bayesian Computation with Quasi-Likelihoods
Approximate Bayesian Computation with Quasi-LikelihoodsStefano Cabras
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Daisuke Yoneoka
 

Similaire à Dynamic dependence ordering for Archimedean copulas (20)

Slides ima
Slides imaSlides ima
Slides ima
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Slides mc gill-v4
Slides mc gill-v4Slides mc gill-v4
Slides mc gill-v4
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides essec
Slides essecSlides essec
Slides essec
 
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Rdnd2008
Rdnd2008Rdnd2008
Rdnd2008
 
Adc
AdcAdc
Adc
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Slides rmetrics-1
Slides rmetrics-1Slides rmetrics-1
Slides rmetrics-1
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
 
Approximate Bayesian Computation with Quasi-Likelihoods
Approximate Bayesian Computation with Quasi-LikelihoodsApproximate Bayesian Computation with Quasi-Likelihoods
Approximate Bayesian Computation with Quasi-Likelihoods
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 

Plus de Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Dernier

Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Aggregage
 
Pitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckPitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckHajeJanKamps
 
Send Files | Sendbig.comSend Files | Sendbig.com
Send Files | Sendbig.comSend Files | Sendbig.comSend Files | Sendbig.comSend Files | Sendbig.com
Send Files | Sendbig.comSend Files | Sendbig.comSendBig4
 
Appkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxAppkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxappkodes
 
Darshan Hiranandani (Son of Niranjan Hiranandani).pdf
Darshan Hiranandani (Son of Niranjan Hiranandani).pdfDarshan Hiranandani (Son of Niranjan Hiranandani).pdf
Darshan Hiranandani (Son of Niranjan Hiranandani).pdfShashank Mehta
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxRakhi Bazaar
 
Interoperability and ecosystems: Assembling the industrial metaverse
Interoperability and ecosystems:  Assembling the industrial metaverseInteroperability and ecosystems:  Assembling the industrial metaverse
Interoperability and ecosystems: Assembling the industrial metaverseSiemens
 
Customizable Contents Restoration Training
Customizable Contents Restoration TrainingCustomizable Contents Restoration Training
Customizable Contents Restoration TrainingCalvinarnold843
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers referencessuser2c065e
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersPeter Horsten
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024Adnet Communications
 
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdfChris Skinner
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
WSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfWSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfJamesConcepcion7
 
Neha Jhalani Hiranandani: A Guide to Her Life and Career
Neha Jhalani Hiranandani: A Guide to Her Life and CareerNeha Jhalani Hiranandani: A Guide to Her Life and Career
Neha Jhalani Hiranandani: A Guide to Her Life and Careerr98588472
 
Lessons from Shanavas M.P. (AKA SHAN) For The Mastering in Entrepreneurship
Lessons from Shanavas M.P. (AKA SHAN) For The Mastering in EntrepreneurshipLessons from Shanavas M.P. (AKA SHAN) For The Mastering in Entrepreneurship
Lessons from Shanavas M.P. (AKA SHAN) For The Mastering in EntrepreneurshipDoge Mining Website
 
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...Hector Del Castillo, CPM, CPMM
 
Environmental Impact Of Rotary Screw Compressors
Environmental Impact Of Rotary Screw CompressorsEnvironmental Impact Of Rotary Screw Compressors
Environmental Impact Of Rotary Screw Compressorselgieurope
 
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdftrending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdfMintel Group
 

Dernier (20)

WAM Corporate Presentation April 12 2024.pdf
WAM Corporate Presentation April 12 2024.pdfWAM Corporate Presentation April 12 2024.pdf
WAM Corporate Presentation April 12 2024.pdf
 
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
 
Pitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckPitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deck
 
Send Files | Sendbig.comSend Files | Sendbig.com
Send Files | Sendbig.comSend Files | Sendbig.comSend Files | Sendbig.comSend Files | Sendbig.com
Send Files | Sendbig.comSend Files | Sendbig.com
 
Appkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxAppkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptx
 
Darshan Hiranandani (Son of Niranjan Hiranandani).pdf
Darshan Hiranandani (Son of Niranjan Hiranandani).pdfDarshan Hiranandani (Son of Niranjan Hiranandani).pdf
Darshan Hiranandani (Son of Niranjan Hiranandani).pdf
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
 
Interoperability and ecosystems: Assembling the industrial metaverse
Interoperability and ecosystems:  Assembling the industrial metaverseInteroperability and ecosystems:  Assembling the industrial metaverse
Interoperability and ecosystems: Assembling the industrial metaverse
 
Customizable Contents Restoration Training
Customizable Contents Restoration TrainingCustomizable Contents Restoration Training
Customizable Contents Restoration Training
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers reference
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exporters
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024
 
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors Data
 
WSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfWSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdf
 
Neha Jhalani Hiranandani: A Guide to Her Life and Career
Neha Jhalani Hiranandani: A Guide to Her Life and CareerNeha Jhalani Hiranandani: A Guide to Her Life and Career
Neha Jhalani Hiranandani: A Guide to Her Life and Career
 
Lessons from Shanavas M.P. (AKA SHAN) For The Mastering in Entrepreneurship
Lessons from Shanavas M.P. (AKA SHAN) For The Mastering in EntrepreneurshipLessons from Shanavas M.P. (AKA SHAN) For The Mastering in Entrepreneurship
Lessons from Shanavas M.P. (AKA SHAN) For The Mastering in Entrepreneurship
 
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
How Generative AI Is Transforming Your Business | Byond Growth Insights | Apr...
 
Environmental Impact Of Rotary Screw Compressors
Environmental Impact Of Rotary Screw CompressorsEnvironmental Impact Of Rotary Screw Compressors
Environmental Impact Of Rotary Screw Compressors
 
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdftrending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
 

Dynamic dependence ordering for Archimedean copulas

  • 1. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Dynamic dependence ordering for Archimedean copulas Arthur Charpentier http ://perso.univ-rennes1.fr/arthur.charpentier/ International Workshop on Applied Probability, July 2008 1
  • 2. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Motivations : dependence and copulas Definition 1. A copula C is a joint distribution function on [0, 1]d , with uniform margins on [0, 1]. Theorem 2. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginal distributions, then F(x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, with F ∈ F(F1, . . . , Fd). Conversely, if F ∈ F(F1, . . . , Fd), there exists C such that F(x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C is unique, and given by C(u) = F(F−1 1 (u1), . . . , F−1 d (ud)) for all ui ∈ [0, 1] We will then define the copula of F, or the copula of X. 2
  • 3. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Motivations : dependence and copulas Given a random vector X with continuous margins. The copula of C satisfies P[X1 ≤ x1, · · · , Xd ≤ xd] = C (P[X1 ≤ x1], · · · , P[Xd ≤ xd]) and its survival copula C satisfies P[X1 > x1, · · · , Xd > xd] = C (P[X1 > x1], · · · , P[Xd > xd]) 3
  • 4. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Copula density Level curves of the copula Fig. 1 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v). 4
  • 5. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Copula density Level curves of the copula Fig. 2 – Density of a copula, c(u, v) = ∂2 C(u, v) ∂u∂v . 5
  • 6. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Archimedean copulas Definition 3. A copula C is called Archimedean if it is of the form C(u1, · · · , ud) = φ−1 (φ(u1) + · · · + φ(ud)) , where the generator φ : [0, 1] → [0, ∞] is convex, decreasing and satisfies φ(1) = 0. A necessary and sufficient condition is that φ−1 is d-monotone. 6
  • 7. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Some examples of Archimedean copulas φ(t) range θ (1) 1 θ (t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978) (2) (1 − t)θ [1, ∞) (3) log 1−θ(1−t) t [−1, 1) Ali-Mikhail-Haq (4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986) (5) − log e−θt−1 e−θ−1 (−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987) (6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993) (7) − log{θt + (1 − θ)} (0, 1] (8) 1−t 1+(θ−1)t [1, ∞) (9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960) (10) log(2t−θ − 1) (0, 1] (11) log(2 − tθ) (0, 1/2] (12) ( 1 t − 1)θ [1, ∞) (13) (1 − log t)θ − 1 (0, ∞) (14) (t−1/θ − 1)θ [1, ∞) (15) (1 − t1/θ)θ [1, ∞) Genest & Ghoudi (1994) (16) ( θ t + 1)(1 − t) [0, ∞) 7
  • 8. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Why Archimedean copulas ? Assume that X and Y are conditionally independent, given the value of an heterogeneous component Θ. Assume further that P(X ≤ x|Θ = θ) = (GX(x))θ and P(Y ≤ y|Θ = θ) = (GY (y))θ for some baseline distribution functions GX and GY . Then F(x, y) = ψ(ψ−1 (FX(x)) + ψ−1 (FY (y))). where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ ). 8
  • 9. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas 0 5 10 15 05101520 Conditional independence, two classes !3 !2 !1 0 1 2 3 !3!2!10123 Conditional independence, two classes Fig. 3 – Two classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 9
  • 10. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas 0 5 10 15 20 25 30 010203040 Conditional independence, three classes !3 !2 !1 0 1 2 3 !3!2!10123 Conditional independence, three classes Fig. 4 – Three classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 10
  • 11. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas 0 20 40 60 80 100 020406080100 Conditional independence, continuous risk factor !3 !2 !1 0 1 2 3 !3!2!10123 Conditional independence, continuous risk factor Fig. 5 – Continuous classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 11
  • 12. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Conditioning with Archimedean copulas Proposition 4. If (U, V ) has copula C, with generator φ. Then the copula of (U, V ) given U, V ≤ u is also Archimedean, with generator φu(x) = φ(x · C(u, u)) − φ(C(u, u)), for all x ∈ (0, 1]. Ageing with Archimedean copulas Proposition 5. If (X, Y ) is exchangeable, with survival copula C, with generator φ. Then the survival copula Ct of (X, Y ) given X, Y > t is also Archimedean, with generator φt(x) = φ(x · γt) − φ(γt), for all x ∈ (0, 1], t ∈ [0, ∞), where γt = C(F(t), F(t)) = P(X > t, Y > t). 12
  • 13. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Ageing with Archimedean copulas 0.0 0.2 0.4 0.6 0.8 1.0 0246810 q Fig. 6 – Initial Archimedean generator, · → φ(·) on (0, 1]. 13
  • 14. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Ageing with Archimedean copulas 0.0 0.2 0.4 0.6 0.8 1.0 0246810 P(X>t,Y>t) q Fig. 7 – Initial Archimedean generator, · → φ(·) on (0, 1]. 14
  • 15. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Ageing with Archimedean copulas 0.0 0.2 0.4 0.6 0.8 1.0 0246810 q Fig. 8 – Initial Archimedean generator, · → φ(·) on (0, γt], γt = C(F(t), F(t)). 15
  • 16. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Ageing with Archimedean copulas 0.0 0.2 0.4 0.6 0.8 1.0 0246810 q Fig. 9 – Initial Archimedean generator, · → φ(·) on (0, γt]. 16
  • 17. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Ageing with Archimedean copulas 0.0 0.2 0.4 0.6 0.8 1.0 0246810 q Fig. 10 – Initial Archimedean generator, · → φ(·γt) on [0, 1]. 17
  • 18. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Ageing with Archimedean copulas 0.0 0.2 0.4 0.6 0.8 1.0 0246810 q Fig. 11 – Initial Archimedean generator, · → φ(·γt) − phi(γt) on [0, 1]. 18
  • 19. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Ageing with Frailty-Archimedean copulas Proposition 6. If (X, Y ) is exchangeable with a frailty representation (where Θ has Laplace transform ψ). Then (X, Y ) given X, Y > t also has a failty representation, and the factor has Laplace transform ψt(x) = ψ[x + ψ−1 (γt)] γt , for all x ∈ [0, ∞), t ∈ [0, ∞). where γt = C(F(t), F(t)). D´emonstration. The only technical part is to proof that (X, Y ) given X, Y > t are conditionally independent. 19
  • 20. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Ordering tails of Archimedean copulas Proposition 7. Set C1 = C(t1, t1) and C2 = C(t2, t2). Given φ, define    f12(x) = φ C1 C2 φ−1 (x + φ(C2)) − φ(C1) f21(x) = φ C2 C1 φ−1 (x + φ(C1)) − φ(C2) Then    Ct2 Ct1 if and only if f21 is subadditive Ct2 Ct1 if and only if f12 is subadditive Lemma 8. If φ is twice differentiable, set ψ(t) = log(−φ (t)).    if ψ is concave on (0, 1), Ct2 Ct1 for all 0 < t1 ≤ t2 if ψ is convex on (0, 1), Ct2 Ct1 for all 0 < t1 ≤ t2 20
  • 21. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Some examples : Frank copula Frank copula has generator φ(t) = − log e−αx − 1 e−α − 1 , α ≥ 0 C(u, v) = − 1 α log 1 + (e−αu − 1)(e−αv − 1) e−α − 1 on [0, 1] × [0, 1]. ψ(x) = log α − αx − log[1 − e−αx ] is concave, and thus C Ct1 Ct2 C⊥ , for all 0 ≤ t1 ≤ t2, with Ct → C as t → ∞. The random pair is less and less positively dependent. 21
  • 22. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Some examples : Clayton copula Clayton copula has generator φ(t) = t−α − 1, α ≥ 0, C(u, v) = u−α + v−α − 1 −1/α on [0, 1] × [0, 1]. f12 and f21 are linear (see also Lemma 5.5.8. in Schweizer and Sklar (1983)), hence Ct1 = Ct2 = C. 22
  • 23. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Some examples : Ali-Mikhail-Haq copula Ali-Mikhail-Haq copula has generator φ(t) = ...1, α ∈ [0, 1), C(u, v) = uv 1 − α(1 − u (1 − v) on [0, 1] × [0, 1]. ψ(x) = log 1 x − α 1 − α[1 − x] is concave, and thus C Ct1 Ct2 C⊥ , for all 0 ≤ t1 ≤ t2, with Ct → C as t → ∞. 23
  • 24. Arthur CHARPENTIER - Dynamic dependence ordering for Archimedean copulas Some examples : Gumbel copula Gumbel copula has generator φ(t) = (− log t)α , α ≥ 0, C(u, v) = exp − [(− log u)α + (− log v)α ] 1 α ) on [0, 1] × [0, 1]. ψ(x) = log α − log x + (α − 1) log[− log x] is neither concave, nor convex. But see C − Ct is always positive, i.e. C Ct C⊥ , for all 0 < t. 24