SlideShare a Scribd company logo
1 of 89
Download to read offline
Arthur CHARPENTIER - IBNR: quantification of uncertainty




              IBNR : quantification of uncertainty

                  Arthur Charpentier (Universit´ Rennes 1)
                                               e


                http ://blogperso.univ-rennes1.fr/arthur.charpentier/




                    Universidade Federal de Minas Gerais, March 2009




                                                                        1
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     A short introduction




                                                            2
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     A short introduction




                                                            3
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                      A short introduction
Claims reserving is an important and difficult issue. It might take years until a
claim is finally settled,
• reporting delay, between accident date and reporting date (notification at
   insurance company)
• settlement delay, between reporting date and final settlement (recovery
   process, court decisions)
• possible reopenings, due to unexpected developments
”It is hoped that more casualty actuaries will involve themselves in this important
area. IBNR reserves deserve more than just a clerical or cursory treatment and
we believe, as did Mr. Tarbell Chat ”the problem of incurred but not reported
claim reserves is essentially actuarial or statistical”. Perhaps in today’s
environment the quotation would be even more relevant if it stated that the
problem ”...is more actuarial than statistical”.” Bornhuetter & Ferguson
(1972)
=⇒ claims reserving is a prediction problem

                                                                               4
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                          On reserving risk (and uncertainty)
From July to November 2004, stock price of Converium Holding -90% after
reserve increase annoncements
              25
              20
              15
              10
              5




                   2002       2003         2004         2005   2006   2007   2008




                                                                                    5
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                             Reserve cycle
Note that there is a reserving cycle, i.e. one should focus on boni-mali modeling.




                                                                               6
Arthur CHARPENTIER - IBNR: quantification of uncertainty




               A short overview on prediction uncertainty
Basically, we have to predict some (random) future cash flow, denoted X.
Let Ft denote the information available at some time t.
Let X denote the prediction made at time t.
The (conditional) mean square error of prediction (MSE) is simply

                    mset (X) =            E [X − X]2 |Ft
                                                                                   2
                                    =       V ar(X|Ft ) +        E (X|Ft ) − X
                                          process variance
                                                             parameter estimation error
         
          a predictor for X
i.e X is
          an estimator for E(X|Ft ).



                                                                                          7
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                           On claims reserving techniques




                                                            8
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                           On claims reserving techniques




                                                            9
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                           On claims reserving techniques




                                                            10
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                           On claims reserving techniques




                                                            11
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     Notations on triangles
Information on claims is usually summarizes in payment triangles, either
incremental triangles, or cumulated payments.

             Development year j                Occurence year i   Calendar year i + j




                                                                                        12
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     Notations on triangles
Information on claims is usually summarizes in payment triangles, either
incremental triangles, or cumulated payments.

             Development year j                Occurence year i   Calendar year i + j




                                                                                        13
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     Notations on triangles
Information on claims is usually summarizes in payment triangles, either
incremental triangles, or cumulated payments.

             Development year j                Occurence year i   Calendar year i + j




                                                                                        14
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     Notations on triangles
Information on claims is usually summarizes in payment triangles, either
incremental triangles, or cumulated payments.

             Development year j                Occurence year i   Calendar year i + j




                                                                                        15
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     Notations on triangles
• Xi,j denotes incremental payments, payments of year j, for claims occurred
  year i
• Ci,j denotes cumulated payments Ci,j = Xi,0 + Xi,1 + · · · + Xi,j , i.e. payments
  seen as at year i + j.
             0        1      2      3     4    5                 0      1      2      3      4      5
       0    3209    1163     39    17     7    21           0   3209   4372   4411   4428   4435   4456
       1    3367    1292     37    24    10                 1   3367   4659   4696   4720   4730
       2    3871    1474     53    22               et et   2   3871   5345   5398   5420
       3    4239    1678    103                             3   4239   5917   6020
       4    4929    1865                                    4   4929   6794
       5    5217                                            5   5217


from Partrat et al. (2005)




                                                                                                          16
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                       Notations on triangles
• Pi,j denotes earned premium for year i
• Ni,j denotes cumulated number of claims, accdient year i seen as at year i + j
  (in thousands).


      0        1       2       3        4        5                      0        1           2     3        4        5
 0   4563    4589    4590    4591      4591     4591              0   1043.4   1045.5   1047.5   1047.7   1047.7   1047.7
 1   4718    4674    4671    4672      4672                       1   1043.0   1027.1   1028.7   1028.9   1028.7
 2   4836    4861    4861    4863                          etet   2    965.1    967.9    967.8   970.1
 3   5140    5168    5173                                         3    977.0    984.7    986.8
 4   5633    5668                                                 4   1099.0   1118.5
 5   6389                                                         5   1076.3



from Partrat et al. (2005). Using a simple Chain Ladder algorithm, the
following earned premium can be considered
                              Year i        0          1          2      3       4       5
                              Pi         4591        4672     4863     5175    5673     6431




                                                                                                                   17
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                      Notations on triangles
And finally,
• Ci,j denotes cumulated payments Ci,j = Xi,0 + Xi,1 + · · · + Xi,j , i.e. payments
  seen as at year i + j.
• Ei,j denotes cumulated estimated final charge, seen as as at.
         0        1       2       3       4       5                  0      1      2      3      4      5
   0    3209    4372    4411    4428    4435    4456            0   4795   4629   4497   4470   4456   4456
   1    3367    4659    4696    4720    4730                    1   5135   4949   4783   4760   4750
   2    3871    5345    5398    5420                    et et   2   5681   5631   5492   5470
   3    4239    5917    6020                                    3   6272   6198   6131
   4    4929    6794                                            4   7326   7087
   5    5217                                                    5   7353


those triangles are sometimes denoted paid (P ) and incurred (I) losses triangles.




                                                                                                            18
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                               The Chain Ladder estimate
We assume here that

                               Ci,j+1 = λj Ci,j for all i, j = 1, · · · , n.

A natural estimator for λj based on past history is
                                       n−j
                                       i=1 Ci,j+1
                           λj =         n−j
                                                        for all j = 1, · · · , n − 1.
                                        i=1 Ci,j

Hence, it becomes possible to estimate future payments using

                                   Ci,j = λn+1−i ...λj−1 Ci,n+1−i .




                                                                                        19
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854
   2000        50,420        102,735
   2001       56,762
          211,961
     440, 438
λ0 =          = 2.07792.
     211, 961


                                                                                                20
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854
   2000        50,420        102,735
   2001       56,762
          211,961
     440, 438
λ0 =          = 2.07792
     211, 961


                                                                                                21
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854
   2000        50,420        102,735
   2001       56,762
          211,961 440,438
     440, 438
λ0 =          = 2.07792
     211, 961


                                                                                                22
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854
   2000        50,420        102,735
   2001       56,762         117,945
          211,961 440,438
     440, 438
λ0 =          = 2.07792 and C2001,2 = 56, 762 × 2.07792 = 117, 945
     211, 961


                                                                                                23
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854
   2000        50,420        102,735
   2001       56,762         117,945
          211,961
     440, 438
λ0 =          = 2.07792 and C2001,2 = 56, 762 × 2.07792 = 117, 945
     211, 961


                                                                                                24
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854
   2000        50,420        102,735
   2001       56,762         117,945
          211,961
     469, 635
λ1 =          = 1.3091 and C2001,2 = 56, 762 × 1.3091 = 117, 945
     337, 781


                                                                                                25
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854
   2000        50,420        102,735
   2001       56,762         117,945
          211,961 337,781 469,635
     469, 635
λ1 =          = 1.3091and C2001,2 = 56, 762 × 1.3091 = 117, 945
     337, 781


                                                                                                26
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854
   2000        50,420        102,735        142,870
   2001       56,762         117,945        164,025
          211,961 337,781 469,635
     469, 635
λ1 =          = 1.3091 and C2001,3 = 117, 945 × 1.3091 = 164, 025
     337, 781


                                                                                                27
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562
   1999        49,756        101,587        136,854         158,471
   2000        50,420        102,735        142,870         165,438
   2001       56,762         117,945        164,025         189,935
          211,961            332,781 385,347
     385, 347
λ2 =          = 1.1579 and C2001,4 = 164, 025 × 1.1579 = 189, 935
     332, 781


                                                                                                28
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604
   1998        30,470          65,482         90,973        103,562   111,364
   1999        49,756        101,587        136,854         158,471   170,411
   2000        50,420        102,735        142,870         165,438   177,903
   2001       56,762         117,945        164,025         189,935   204,245
          211,961                       281,785 303,016
     303, 016
λ3 =          = 1.0753 and C2001,5 = 189, 935 × 1.0753 = 204, 245
     281, 785


                                                                                                29
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                  1               2              3             4         5         6        7
   1995        23,758          49,114         68,582         79,840    86,298    90,566   92,878
   1996        31,245          63,741         90,775        106,439   115,054   120,210
   1997        26,312          57,779         82,451         95,506   101,604   106,422
   1998        30,470          65,482         90,973        103,562   111,364   116,577
   1999        49,756        101,587        136,854         158,471   170,411   178,387
   2000        50,420        102,735        142,870         165,438   177,903   186,203
   2001       56,762         117,945        164,025         189,935   204,245   213,805
          211,961                                  201,352 210,776
     210, 776
λ4 =          = 1.0468 and C2001,6 = 204, 245 × 1.0468 = 213, 805
     201, 352


                                                                                                30
Arthur CHARPENTIER - IBNR: quantification of uncertainty




        Practical calculation of the Chain Ladder estimate

                 1               2              3              4         5         6        7
  1995        23,758          49,114         68,582          79,840    86,298    90,566    92,878
  1996        31,245          63,741         90,775         106,439   115,054   120,210   123,278
  1997        26,312          57,779         82,451          95,506   101,604   106,422   109,139
  1998        30,470          65,482         90,973         103,562   111,364   116,577   119,553
  1999        49,756        101,587        136,854          158,471   170,411   178,387   182,941
  2000        50,420        102,735        142,870          165,438   177,903   186,203   190,984
  2001        56,762        117,945        164,025          189,935   204,245   213,805   219,263
          211,961                                            90,566                       92,878
     92, 878
λ5 =         = 1.0255 and C2001,7 = 213, 805 × 1.0255 = 219, 263
     90, 566


                                                                                                31
Arthur CHARPENTIER - IBNR: quantification of uncertainty




       Practical calculation of the Chain Ladder estimate

                1               2              3              4         5         6        7
 1995
 1996                                                                          120,210   123,278
 1997                                                                101,604             109,139
 1998                                                      103,562                       119,553
 1999                                     136,854                                        182,941
 2000                      102,735                                                       190,984
 2001        56,762                                                                      219,263
            211,961




                                                                                               32
Arthur CHARPENTIER - IBNR: quantification of uncertainty




          Practical calculation of the Chain Ladder estimate

      0        1       2       3       4       5                  0       1        2        3         4        5
 0   3209    4372    4411    4428     4435    4456           0   3209    4372     4411      4428     4435     4456
 1   3367    4659    4696    4720    4730                    1   3367    4659     4696      4720    4730     4752.4
 2   3871    5345    5398    5420                    et et   2   3871    5345     5398     5420     5430.1   5455.8
 3   4239    5917    6020                                    3   4239    5917    6020     6046.15   6057.4   6086.1
 4   4929    6794                                            4   4929   6794     6871.7    6901.5   6914.3   6947.1
 5   5217                                                    5   5217   7204.3   7286.7    7318.3   7331.9   7366.7



One the triangle has been completed, we obtain the amount of reserves, with
respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 2427.




                                                                                                             33
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                               The Chain-Ladder estimate
The Chain-Ladder estimate is probably the most popular technique to estimate
claim reserves. Let Ft denote the information avalable at time t, or more formally
the filtration generated by {Ci,j , i + j ≤ t} - or equivalently {Xi,j , i + j ≤ t}
Assume that incremental payments are independent by occurence years, i.e. Ci1 ,·
Ci2 ,· are independent for any i1 and i2 .
Further, assume that (Ci,j )j≥0 is Markov, and more precisely, there exist λj ’s
     2
and σj ’s such that
                
                      i,j+1 |Fi+j ) = E(Ci,j+1 |Ci,j ) = λj · Ci,j
                 E(C
                 Var(Ci,j+1 |Fi+j ) = Var(Ci,j+1 |Ci,j ) = σ 2 · Ci,j
                                                                    j


Under those assumption, one gets

                E(Ci,j+k |Fi+j ) = E(Ci,j+k |Ci,j ) = λj · λj+1 · · · λj+k−1 Ci,j


                                                                                    34
Arthur CHARPENTIER - IBNR: quantification of uncertainty




    Underlying assumptions in the Chain-Ladder estimate
Recall, see Mack (1993), properties of the Chain-Ladder estimate rely on the
following assumptions

 H1 E (Ci,j+1 |Ci,1 , ..., Ci,j ) = λj .Cij for all i = 0, 1, .., n and j = 0, 1, ..., n − 1


    H2     (Ci,j )j=1,...,n and (Ci ,j )j=1,...,n are independent for all i = i .

                                                   2
    H3     V ar (Ci,j+1 |Ci,1 , ..., Ci,j ) = Ci,j σj for all i = 0, 1, ..., n and j = 0, 1, ..., n − 1





                                                                                               35
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                  Properties of the Chain-Ladder estimate
Further
                                                        n−j−1
                                                        i=0   Ci,j+1
                                            λj =         n−j−1
                                                         i=0   Ci,j
is an unbiased estimator for λj , given Gj , and λj and λj + h are non-correlated,
given Fj . Hence, an unbiased estimator for E(Ci,j |Fi ) is

                       Ci,j = λn−i · λn−i+1 · · · λj−2 λj−1 − 1 · Ci,n−i .

Recall that λj is the estimator with minimal variance among all linear estimators
obtained from λi,j = Ci,j+1 /Ci,j ’s. Finally, recall that
                                                  n−j−1                   2
                            2     1                         Ci,j+1
                           σj =                                    − λj       · Xi,j
                                n−j−1               i=0
                                                             Ci,j
                             2
is an unbiased estimator of σj , given Gj (see Mack (1993) or Denuit &
Charpentier (2005)).

                                                                                       36
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                          Import/export of datasets with R




In the case of Excel files, library(RODBC)
library(RODBC)
file= odbcConnectExcel("D:triangle.xls")
BASE <- sqlQuery(file, "select * from [Feuil1$D9:I15]")
odbcCloseAll()
TRIANGLE.D=as.matrix(BASE)

base = read.table("D:triangle.csv",header=FALSE,sep=";")

A more convenient way is to use source(base.R).

                                                             37
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                               Example of payment triangle
file=paste("D:/reserves/triangles/xls/","triangle.csv",sep="")
base = read.table(file,header=FALSE,sep=";")

Consider the following cumulated triangle
  base = read.table("D:vect-triangle.csv",header=TRUE,sep=";")
        year = base$year
        development = base$development
        paycum = base$paycum
        TRIANGLE.C = tapply(paycum,list(year,development),sum)

  > TRIANGLE.C
        [,1] [,2] [,3] [,4] [,5] [,6]
  [1,] 3209 4372 4411 4428 4435 4456
  [2,] 3367 4659 4696 4720 4730                NA
  [3,] 3871 5345 5398 5420              NA     NA
  [4,] 4239 5917 6020            NA     NA     NA
  [5,] 4929 6794          NA     NA     NA     NA
  [6,] 5217       NA      NA     NA     NA     NA

                                                                   38
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                Example of payment triangle
From cumulated triangles, it is possible to obtain increments
TRIANGLE.X = TRIANGLE.D; Ntr=nrow(TRIANGLE.C)
for(i in 2:Ntr){
TRIANGLE.X[1:(Ntr+1-i),i]= TRIANGLE.C[1:(Ntr+1-i),i]- TRIANGLE.C[1:(Ntr+1-i),i-1]}

i.e.
  > TRIANGLE.C                                               > TRIANGLE.X
         [,1] [,2] [,3] [,4] [,5] [,6]                            [,1] [,2] [,3] [,4] [,5] [,6]
  [1,] 3209 4372 4411 4428 4435 4456                         [1,] 3209 1163       39   17    7   21
  [2,] 3367 4659 4696 4720 4730                 NA           [2,] 3367 1292       37   24   10   NA
  [3,] 3871 5345 5398 5420               NA     NA           [3,] 3871 1474       53   22   NA   NA
  [4,] 4239 5917 6020             NA     NA     NA           [4,] 4239 1678      103   NA   NA   NA
  [5,] 4929 6794           NA     NA     NA     NA           [5,] 4929 1865       NA   NA   NA   NA
  [6,] 5217        NA      NA     NA     NA     NA           [6,] 5217      NA    NA   NA   NA   NA


                                                                                                      39
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                              Example of payment triangle
In regression models, it will be useful to have data in a dataset, i.e. we have to
transform matrices in vectors.
vec.D=as.vector(TRIANGLE.C)[is.na(as.vector(TRIANGLE.C))==FALSE]
vec.C=as.vector(TRIANGLE.X)[is.na(as.vector(TRIANGLE.X))==FALSE]
year=NA; dev=NA
for(i in 1:Ntr){
year=c(year,1:(Ntr-i+1)); dev=c(dev,rep(i,Ntr-i+1))}
year=year[is.na(year)==FALSE]; dev=dev[is.na(dev)==FALSE]
triangle= data.frame(year,dev,vec.D,vec.C)

> triangle
   year dev vec.C vec.X                      year dev vec.C vec.X        year dev vec.C vec.X
1     1   1 3209 3209                   8       2   2 4659 1292     15      4   3 6020    103
2     2   1 3367 3367                   9       3   2 5345 1474     16      1   4 4428     17
3     3   1 3871 3871                   10      4   2 5917 1678     17      2   4 4720     24
4     4   1 4239 4239                   11      5   2 6794 1865     18      3   4 5420     22
5     5   1 4929 4929                   12      1   3 4411     39   19      1   5 4435      7
6     6   1 5217 5217                   13      2   3 4696     37   20      2   5 4730     10
7     1   2 4372 1163                   14      3   3 5398     53   21      1   6 4456     21

                                                                                            40
Arthur CHARPENTIER - IBNR: quantification of uncertainty




An alternative to obtain incremental triangles from cumulated ones is simply to
use inc <- cbind(cum[,1], t(apply(cum,1,diff))), and dualy, to obtain cumulated
triangles from incremental ones cum <- t(apply(inc,1, cumsum)).




                                                                            41
Arthur CHARPENTIER - IBNR: quantification of uncertainty




With R, those two vectors can be obtained using functions lambda(triangle) and
sigma(triangle), the algorithm being simply
           LAMBDA = matrix(NA,1,Ntr-1)
           for(i in 1:(Ntr-1)){
             LAMBDA[i] = sum(TRIANGLE.C[1:(Ntr-i),i+1])/
                   sum(TRIANGLE.C[1:(Ntr-i),i])}

Hence,
> LAMBDA
         [,1]     [,2]     [,3]     [,4]     [,5]
[1,] 1.380933 1.011433 1.004343 1.001858 1.004735

An alternative is to remember that the chain ladder estimate is obtained as the
coefficient of a weighted regression,
x <- TRIANGLE.C[,1]
y <- TRIANGLE.C[,2]
lm(y ~ x + 0, weights=1/x)

we obtain here
Call:

                                                                             42
Arthur CHARPENTIER - IBNR: quantification of uncertainty



lm(formula = y ~ x + 0, weights = 1/x)

Coefficients:
    x
1.381

which is the value of the first link ratio. Actually more details can be obtained
> summary(lm(y ~ x + 0, weights=1/x))

Call:
lm(formula = y ~ x + 0, weights = 1/x)

Residuals:
     1988     1989      1990                   1991      1992
-1.048825 0.161975 -0.009507               0.971088 -0.179734

Coefficients:
  Estimate Std. Error t value Pr(>|t|)
x 1.380933   0.005176   266.8 1.18e-09 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1                 1

                                                                               43
Arthur CHARPENTIER - IBNR: quantification of uncertainty




Residual standard error: 0.7249              on 4 degrees of freedom
  (1 observation deleted due to              missingness)
Multiple R-squared: 0.9999,                  Adjusted R-squared: 0.9999
F-statistic: 7.119e+04 on 1 and              4 DF, p-value: 1.184e-09

If f denotes the triangle of λi,j = Di,j+1 /Di,j ,
  f=TRIANGLE.D[,2:Ntr]/TRIANGLE.D[,1:(Ntr-1)]
        SIGMA = matrix(NA,1,Ntr-1)
        for(i in 1:(Ntr-1)){
                D=TRIANGLE.D[,i]*(f[,i]-t(rep(LAMBDA[i],Ntr)))^2
                SIGMA[i]<-1/(Ntr-i-1)*sum(D[,1:(Ntr-1)])}
        SIGMA[Ntr-1]<-min(SIGMA[(Ntr-3):(Ntr-2)])




                                                                          44
Arthur CHARPENTIER - IBNR: quantification of uncertainty




Hence,
> SIGMA
           [,1]        [,2]        [,3]        [,4]        [,5]
[1] 0.525418785 0.102633234 0.002104330 0.000660780 0.000660780

In order to complete the triangle, one can simply use
for(i in 1:(Ntr-1)){
TRIANGLE.D[(Ntr-i+1):(Ntr),i+1]=LAMBDA[i]*TRIANGLE.D[(Ntr-i+1):(Ntr),i]}

Hence,
  > TRIANGLE.D
             0            1            2            3       4   5
  1988 3209 4372.000 4411.000 4428.000 4435.000 4456.000
  1989 3367 4659.000 4696.000 4720.000 4730.000 4752.397
  1990 3871 5345.000 5398.000 5420.000 5430.072 5455.784
  1991 4239 5917.000 6020.000 6046.147 6057.383 6086.065
  1992 4929 6794.000 6871.672 6901.518 6914.344 6947.084
  1993 5217 7204.327 7286.691 7318.339 7331.939 7366.656

                                                                           45
Arthur CHARPENTIER - IBNR: quantification of uncertainty




The total amount of reserve is the obtained comparing the last column (estimated
ultimate loss amont) and the second diagonal (total payments as at now).
ultimate = TRIANGLE.D[,6]*(1+0.00)
payment.as.at = diag(TRIANGLE.D[,6:1])
RESERVES = ultimate-payment.as.at

> RESERVES
[1]    0.00000         22.39103        35.79342        65.67668   153.36790 2149.65640

Hence, here sum(RESERVES) is equal to 2426.885.




                                                                                         46
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                   Mack’s approach with R
A ChainLadder-package grew out of presentations the author gave at the Stochastic
Reserving Seminar at the Institute of Actuaries in November 2007. This package
implements the Mack and Munich Chain Ladder model using weighted linear
regression.
A link with Excel (through the RExcel-Addin) can be used.
MackChainLadder      can be used to obtain λj ’s and σj ’s.
MunichChainLadder




                                                                             47
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     Mack’s approach with R
> MackChainLadder(TRIANGLE.D)
    Latest Dev.To.Date Ultimate                IBNR Mack.S.E          CoV
1    4,456           1.000           4,456       0.0         0.000    NaN
2    4,730           0.995           4,752     22.4          0.639 0.0285
3    5,420           0.993           5,456     35.8          2.503 0.0699
4    6,020           0.989           6,086     66.1          5.046 0.0764
5    6,794           0.978           6,947    153.1         31.332 0.2047
6    5,217           0.708           7,367 2,149.7          68.449 0.0318
                        Totals:
Sum of Latest:            32,637
Sum of Ultimate:          35,064
Sum of IBNR:               2,427
Total Mack S.E.:                79
Total CoV:                       3

The total amount of reserves is here 2,427.

                                                                            48
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     Mack’s approach with R
 > MackChainLadder(TRIANGLE.D)
     Latest Dev.To.Date Ultimate               IBNR Mack.S.E          CoV
 1    4,456          1.000           4,456       0.0         0.000    NaN
 2    4,730          0.995           4,752     22.4          0.639 0.0285
 3    5,420          0.993           5,456     35.8          2.503 0.0699
 4    6,020          0.989           6,086     66.1          5.046 0.0764
 5    6,794          0.978           6,947    153.1         31.332 0.2047
 6    5,217          0.708           7,367 2,149.7          68.449 0.0318
                        Totals:
 Sum of Latest:           32,637
 Sum of Ultimate:         35,064
 Sum of IBNR:              2,427
 Total Mack S.E.:               79
 Total CoV:                      3

The link-ratios σj ’s.

                                                                            49
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                   Mack’s approach with R
> MackChainLadder(TRIANGLE.D)$FullTriangle
    F1       F2       F3       F4       F5                        F6
1 3209 4372.000 4411.000 4428.000 4435.000                  4456.000
2 3367 4659.000 4696.000 4720.000 4730.000                  4752.397
3 3871 5345.000 5398.000 5420.000 5430.072                  5455.784
4 4239 5917.000 6020.000 6046.147 6057.383                  6086.065
5 4929 6794.000 6871.672 6901.518 6914.344                  6947.084
6 5217 7204.327 7286.691 7318.339 7331.939                  7366.656

> MackChainLadder(TRIANGLE.D)$f
[1] 1.380933 1.011433 1.004343 1.001858 1.004735 1.000000

> TRIANGLE=MackChainLadder(TRIANGLE.D)$FullTriangle
> sum(TRIANGLE[,Ntr]-rev(diag(TRIANGLE[Ntr:1,])))
[1] 2426.985

It is also possible to use plot(MackChainLadder(TRIANGLE.D))


                                                                       50
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                                                                 Mack’s approach with R
                                                                Mack Chain Ladder Results                                                                                 Chain ladder developments by origin year
                                   7000



                                                                                                                      q
                                                                                                           q
                                                                                            q                                                                                   5




                                                                                                                                                        4000 6000
          Amounts




                                                                                                                               Amounts
                                                                          q
                                                           q
                                                                                                                      IBNR                                                      4             4
                                              q
                                                                                                                      Latest                                                    3             3                 3
                                   3000




                                                                                                                                                                    6
                                                                                                                                                                    5           2             2                 2
                                                                                                                                                                                                                1             2
                                                                                                                                                                                                                              1         1
                                                                                                                                                                    4           1             1
                                                                                                                                                                    3
                                                                                                                                                                    2
                                                                                                                                                                    1
                                   0




                                              1            2              3                 4              5          6                                             1           2             3                 4             5         6

                                                                              Origin year                                                                                                     Development year
          Standardised residuals




                                                                                                                               Standardised residuals
                                                                                                     q                                                                                                                    q
                                   1.5




                                                                                                                                                        1.5
                                                      q                                         q                                                                                   q                                     q
                                                      q                                                                                                                             q

                                                  q                                                                                                                                 q
                                   0.0




                                                                                                                                                        0.0
                                                                      q                                                                                                                               q
                                                                          q                                                q                                                                          q                                 q
                                          q                               q                                                                                         q                                 q
                                          q
                                          q           q                                                                                                             q
                                                                                                                                                                    q               q
                                   −1.5




                                                                                                                                                        −1.5
                                          q                                                                                                                         q


                                          4500            5000            5500                      6000       6500                                                 1               2                 3                   4             5

                                                                                Fitted                                                                                                            Origin year
          Standardised residuals




                                                                                                                               Standardised residuals
                                                                                                                           q                                                            q
                                   1.5




                                                                                                                                                        1.5
                                                                                                           q
                                                                                                           q                                                        q                                               q
                                                                                                                           q                                                                                                            q

                                                            q                                                                                                       q
                                   0.0




                                                                                                                                                        0.0
                                                                                  q                                                                                 q
                                                                                                           q               q                                        q                   q
                                                            q                                                              q                                                            q                           q
                                                                                  q                        q                                                                            q                           q                   q
                                   −1.5




                                                                                                                                                        −1.5

                                          q                                                                                                                         q


                                          1                2                      3                        4               5                                        1.0   1.5           2.0          2.5            3.0           3.5   4.0

                                                                          Calendar year                                                                                                       Development year




                                                                                                                                                                                                                                              51
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                        Munich Chain-Ladder
>   P=as.matrix(read.table("D:triangleE.csv",sep=";",header=FALSE))
>   I=as.matrix(read.table("D:triangleC.csv",sep=";",header=FALSE))
>   MCL=MunichChainLadder(Paid=P, Incurred=I)
>   MCL
    LatestPaid LatestIncurred Latest.P.I.Ratio UltimatePaid UltimateIncurred Ultimate.P.I.Ra
1        4,456          4,456             1.00        4,456            4,456
2        4,750          4,730             1.00        4,750            4,753
3        5,470          5,420             1.01        5,454            5,455
4        6,131          6,020             1.02        6,085            6,086
5        7,087          6,794             1.04        6,980            6,983
6        7,353          5,217             1.41        7,537            7,544
>   plot(MCL)




                                                                                  52
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                                    Munich Chain Ladder Results                                                                          Munich Chain Ladder vs. Standard Chain Ladder




                                                                                                                                           20 40 60 80
                                                                                                 MCL Paid                                                                                                               SCL P/I
                                    5000




                                                                                                 MCL Incurred                                                                                                           MCL P/I
          Amounts




                                                                                                                 %
                                    2000
                                    0




                                                                                                                                           0
                                                1       2           3                4       5           6                                                    1       2            3                4           5          6

                                                                    origin year                                                                                                    origin year



                                                              Paid residual plot                                                                                           Incurred residual plot
                                    2




                                                                                                                                           2
          Incurred/Paid residuals




                                                                                                                 Paid/Incurred residuals
                                                                                         q                                                                                     q           q
                                                                                                                                                                                               q
                                    1




                                                                                                                                           1
                                                                             q   q                   q
                                                                                                 q                                                                    q
                                                                                                                                                                                                            q
                                                               q         q                                                                                                                              q
                                    0




                                                                                                                                           0
                                                                        qq                                                                                                             q
                                                             q                                                                                                                                 qq
                                                              q                                                                                                   q                                     q
                                                             q                                                                                                                                          q           q
                                    −1




                                                                                                                                           −1
                                                    q
                                                    q
                                                    q                                                                                                                                                               q
                                    −2




                                           −2           −1                   0               1               2                             −2            −2               −1               0                    1              2

                                                                   Paid residuals                                                                                              Incurred residuals




                                                                                                                                                                                                                                   53
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                    Basics on GLM with R
X=c(1,2,3); Y=c(1,2,4); D=data.frame(X,Y)
REG=lm(Y~X,data=D); summary(REG)
x0=seq(0.1,3.9,by=0.05); D0=data.frame(X=x0)
y0=predict(REG,newdata=D0)
                    5




                                                                q
                    4
                    3




                                                            q
                    2




                                          q
                    1
                    0




                         0                1                 2   3   4




                                  Figure 1 – Gaussian LM model.

                                                                        54
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                    Basics on GLM with R
REG=glm(Y~X,data=D,family=gaussian(link = "identity"))
x0=seq(0.1,3.9,by=0.05); D0=data.frame(X=x0)
y0=predict(REG,newdata=D0)
                    5




                                                                q
                    4
                    3




                                                            q
                    2




                                          q
                    1
                    0




                         0                1                 2   3   4




       Figure 2 – Gaussian GLM model, Identity link function (canonical).


                                                                            55
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                    Basics on GLM with R
REG=glm(Y~X,data=D,family=poisson(link = "log"))
x0=seq(0.1,3.9,by=0.05); D0=data.frame(X=x0)
y0=exp(predict(REG,newdata=D0))
                    5




                                                                q
                    4
                    3




                                                            q
                    2




                                          q
                    1
                    0




                         0                1                 2   3   4




            Figure 3 – Poisson GLM model, log link function (canonical).


                                                                           56
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                    Basics on GLM with R
REG=glm(Y~X,data=D,family=Gamma(link = "inverse"))
x0=seq(0.1,3.5,by=0.05); D0=data.frame(X=x0)
y0=1/predict(REG,newdata=D0)
                    5




                                                                q
                    4
                    3




                                                            q
                    2




                                          q
                    1
                    0




                         0                1                 2   3   4




        Figure 4 – Gamma GLM model, Identity link function (canonical).


                                                                          57
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                    Basics on GLM with R
REG=glm(Y~X,data=D,family=poisson(link = "identity"))
x0=seq(0.1,3.9,by=0.05); D0=data.frame(X=x0)
y0=predict(REG,newdata=D0)
                    5




                                                                q
                    4
                    3




                                                            q
                    2




                                          q
                    1
                    0




                         0                1                 2   3   4




      Figure 5 – Poisson GLM model, Identity link function (noncanonical).


                                                                             58
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                    Basics on GLM with R
REG=glm(Y~X,data=D,family=poisson(link = "inverse"))
x0=seq(0.1,3.7,by=0.05); D0=data.frame(X=x0)
y0=1/predict(REG,newdata=D0)
                    5




                                                                q
                    4
                    3




                                                            q
                    2




                                          q
                    1
                    0




                         0                1                 2   3   4




      Figure 6 – Poisson GLM model, inverse link function (noncanonical).


                                                                            59
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                        A factor model in claims reserving
A natural idea is to assume that incremental payments Yi,j can be explained by
two factors : one related to occurrence year i, and one development factor,
related to j. Formally, we assume that

             Yi,j ∼ L(ϕ(1(occurrence year = i), 1(development year = j))),

i.e. Yi,j is a random variable, with distribution L, where parameter(s) can be
related to the two factors, and where ϕ is a given function, called link function.




                                                                                60
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                     Poisson regression in claims reserving
Renshaw & Verrall (1998) proposed to use a Poisson regression for incremental
payments to estimate claim reserve, i.e.

Yi,j ∼ P      exp α +             βu 1(occurrence year u = i) +             γv 1(development year v = j)
                              u                                        v

    devF=as.factor(development); anF=as.factor(year)
    REG=glm(vec.C~devF+anF, family = "Poisson")

Here,
> summary(REG)
Call:
glm(formula = vec.C ~ anF + devF, family = poisson(link = "log"),
    data = triangle)

Deviance Residuals:
       Min          1Q               Median                3Q         Max
-2.343e+00 -4.996e-01             9.978e-07         2.770e-01   3.936e+00



                                                                                                61
Arthur CHARPENTIER - IBNR: quantification of uncertainty



Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.05697     0.01551 519.426 < 2e-16 ***
anF1989      0.06440    0.02090   3.081 0.00206 **
anF1990      0.20242    0.02025   9.995 < 2e-16 ***
anF1991      0.31175    0.01980 15.744 < 2e-16 ***
anF1992      0.44407    0.01933 22.971 < 2e-16 ***
anF1993      0.50271    0.02079 24.179 < 2e-16 ***
devF1       -0.96513    0.01359 -70.994 < 2e-16 ***
devF2       -4.14853    0.06613 -62.729 < 2e-16 ***
devF3       -5.10499    0.12632 -40.413 < 2e-16 ***
devF4       -5.94962    0.24279 -24.505 < 2e-16 ***
devF5       -5.01244    0.21877 -22.912 < 2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 46695.269              on 20     degrees of freedom
Residual deviance:    30.214              on 10     degrees of freedom
AIC: 209.52

                                                                         62
Arthur CHARPENTIER - IBNR: quantification of uncertainty




Number of Fisher Scoring iterations: 4

Again, it is possible to summarize this information in triangles....
Predictions can be used to complete the triangle.
on r´cup`re alors les pr´dictions pour compl´ter le triangle.
    e   e               e                   e
       ANew=rep(1 :Ntr),times=Ntr) ; DNew=rep(0 :(Ntr-1),each=Ntr)
       P=predict(REG, newdata=data.frame(A=as.factor(ANew),D=as.factor(DNew)))
       payinc.pred= exp(matrix(as.numeric(P),nrow=n,ncol=n))
       noise = payinc-payinc.pred
      year development paycum payinc payinc.pred         noise
1     1988           0   3209   3209 3155.699242 5.330076e+01
2     1989           0   3367   3367 3365.604828 1.395172e+00
3     1990           0   3871   3871 3863.737217 7.262783e+00
4     1991           0   4239   4239 4310.096418 -7.109642e+01
5     1992           0   4929   4929 4919.862296 9.137704e+00
6     1993           0   5217   5217 5217.000000 1.818989e-12
7     1988           1   4372   1163 1202.109851 -3.910985e+01
8     1989           1   4659   1292 1282.069808 9.930192e+00
9     1990           1   5345   1474 1471.824853 2.175147e+00

                                                                                 63
Arthur CHARPENTIER - IBNR: quantification of uncertainty




10   1991               1     5917      1678 1641.857784 3.614222e+01
11   1992               1     6794      1865 1874.137704 -9.137704e+00
12   1988               2     4411        39   49.820712 -1.082071e+01
13   1989               2     4696        37   53.134604 -1.613460e+01
14   1990               2     5398        53   60.998886 -7.998886e+00
15   1991               2     6020       103   68.045798 3.495420e+01
16   1988               3     4428        17   19.143790 -2.143790e+00
17   1989               3     4720        24   20.417165 3.582835e+00
18   1990               3     5420        22   23.439044 -1.439044e+00
19   1988               4     4435         7    8.226405 -1.226405e+00
20   1989               4     4730        10    8.773595 1.226405e+00
21   1988               5     4456        21   21.000000 -2.842171e-14

Residuals are obtained using the residual function, with one of the following
options deviance, pearson, working, response or partial.
The pearson residuals are
                                                       Xi,j − µi,j
                                              εP =
                                               i,j                 ,
                                                            µi,j


                                                                                64
Arthur CHARPENTIER - IBNR: quantification of uncertainty




The deviance residuals are
                                                       Xi,j − µi,j
                                              εD
                                               i,j   =             ,
                                                            di,j

Pearson’s error can be obtained from function resid=residuals(REG,"pearson"), and
summarized in a triangle
> PEARSON
                [,1]        [,2]      [,3]       [,4]       [,5]          [,6]
[1,]    9.488238e-01 -1.12801295 -1.533031 -0.4899687 -0.4275912 -6.202125e-15
[2,]    2.404895e-02 0.27733318 -2.213449 0.7929194 0.4140426               NA
[3,]    1.168421e-01 0.05669707 -1.024162 -0.2972380          NA            NA
[4,]   -1.082940e+00 0.89196334 4.237393           NA         NA            NA
[5,]    1.302749e-01 -0.21107479        NA         NA         NA            NA
[6,]    2.518371e-14          NA        NA         NA         NA            NA




                                                                                 65
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                                  Errors in GLMs
                              Pearson's error                                              Deviance's error




                                                                        4
                                           q                                                            q
           4




                                                                        3
           3




                                                                        2
           2
   Error




                                                                Error

                                                                        1
                                                                              q                         q
           1




                 q                                                                   q
                                           q
                        q
                                                                                     q
                        q                                                            q
                        q                                                                    q
                                                                                             q                  q
                                                                              q      q                                 q




                                                                        0
                                q
                                q                  q
                 q      q                                 q
           0




                                                                                                                q
                                                                                             q
                                q                  q                          q
                                                                              q
                 q
                 q




                                                                        −1
                                                                                             q          q
           −1




                                q                                             q
                 q                         q

                                                                              q
                 q




                                                                        −2
           −2




                        q                                                            q



                1988   1989   1990       1991     1992   1993                1988   1989    1990      1991     1992   1993

                              Year of occurence                                            Year of occurence




                                                                                                                             66
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                           Errors in GLMs
                         Pearson's error                                        Deviance's error




                                                                   4
                           q                                                      q
           4




                                                                   3
           3




                                                                   2
           2
   Error




                                                           Error

                                                                   1
                                                                        q   q
           1




                q                                                                             q
                    q
                                       q
                                                                                                   q
                                            q                               q
                    q                                                   q   q
                                                                        q                              q




                                                                   0
                q   q
                q                                   q
           0




                                                                            q
                                                                                              q
                    q                  q                                                           q
                                                                                              q
                                       q    q




                                                                   −1
                                                                        q         q
           −1




                           q                                                q
                q   q
                                                                                  q
                           q




                                                                   −2
           −2




                           q                                                      q



                0   1      2           3   4        5                   0   1     2           3    4   5

                               Delai                                                  Delai




                                                                                                           67
Arthur CHARPENTIER - IBNR: quantification of uncertainty




Finally, the theoretical triangles of Yi,j ’s, defined as
> resid*sqrt(payinc.pred)+payinc.pred
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3209 1163   39   17    7   21
[2,] 3367 1292   37   24   10   NA
[3,] 3871 1474   53   22   NA   NA
[4,] 4239 1678 103    NA   NA   NA
[5,] 4929 1865   NA   NA   NA   NA
[6,] 5217   NA   NA   NA   NA   NA




                                                            68
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                    Uncertainty and bootstrap simulations
Based on that theoretical triangle, it is possible to generate residuals to obtain a
simulated triangle. Since the size of the sample is small (here 21 observed values),
assuming normality for Pearson’s residuals can be too restrictive. Resampling
bootstrap procedure can then be more robust.
In order to get the loss distribution, it is possible to use bootstrap techniques to
generate a matrix of errors, see Renshaw & Verrall (1994). They suggest to
boostrap Pearson’s residuals, and the simulation procedure is the following
• estimate the model parameter (GLM), β,
                                                          Yi,j − µi,j
• calculate fitted values µi,j , and the residuals ri,j =               ,
                                                             V (µi,j )
• forecast with original data µi,j for i + j > n.
Then can start the bootstrap loops, repeating B times
                                                                       (b)
• resample the residuals with resample, and get a new sample ri,j ,
                                   ∗                        (b)
• create a pseudo sample solving Yi,j = µi,j + ri,j × V (µi,j ),
• estimate the model using GLM procedure and derive boostrap forecast

                                                                                 69
Arthur CHARPENTIER - IBNR: quantification of uncertainty




Let resid.sim be resampled residuals. Note that REG$fitted.values (called here
payinc.pred) is the vector containing the µi,j ’s. And further V (µi,j ) is here simply
REG$fitted.values since the variance function for the Poisson regression is the
identity function. Hence, here
                                          ∗                 (b)
                                        Yi,j = µi,j + ri,j ×      µi,j

and thus, set
resid.sim = sample(resid,Ntr*(Ntr+1)/2,replace=TRUE)
payinc.sim = resid.sim*sqrt(payinc.pred)+payinc.pred

    [,1]     [,2]     [,3]      [,4]     [,5]      [,6]
[1,] 3155.699 1216.465 42.17691 18.22026 9.021844 22.89738
[2,] 3381.694 1245.399 84.02244 18.20322 11.122243      NA
[3,] 3726.151 1432.534 61.44170 23.43904        NA      NA
[4,] 4337.279 1642.832 74.58658       NA        NA      NA
[5,] 4929.000 1879.777       NA       NA        NA      NA
[6,] 5186.116       NA       NA       NA        NA      NA

For this simulated triangle, we can use Chain-Ladder estimate to derive a

                                                                                   70
Arthur CHARPENTIER - IBNR: quantification of uncertainty




simulated reserve amount (here 2448.175). Figure 7 shows the empirical
distribution of those amounts based on 10, 000 random simulations.

                                                                  Estimated density of total reserves                           Estimated quantile of total reserves
                                                                  (with Gaussian fitted distribution)                            (with Gaussian fitted distribution)
        0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007




                                                                                                           2600

                                                                                                                  2650
                                                                                                           2500

                                                                                                                  2550
                                                                                                                         0.95    0.96   0.97    0.98   0.99     1.00




                                                                                                           2400
                                                                                                           2300
                                                          2200   2300    2400     2500     2600     2700          0.0             0.2          0.4        0.6          0.8   1.0




      Figure 7 – Distribution of claim reserves, using bootstrap techniques.

                                                                                                                                                                                   71
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                    Parametric or nonparametric Monte Carlo ?
A natural idea would be to assume that Pearson residual have a Gaussian
distribution, qqnorm(R) ; qqline(R)

                                           QQ plot of Pearson residuals                                                       QQ plot of Pearson residuals (Cook's distance)

                                                                                               q                                                                                                       q
                          4




                                                                                                                         4
                          3




                                                                                                                         3
    Empirical quantiles




                                                                                                   Empirical quantiles
                          2




                                                                                                                         2
                                                                                                                                                                                                 q
                          1




                                                                                                                         1
                                                                                     q
                                                                               q q                                                                                                       q   q

                                                                           q                                                                                                         q
                                                                       q                                                                                                         q
                                                             qqqqq q
                                                                                                                                                                          q q
                                                                                                                                                                      q q
                          0




                                                                                                                         0
                                                     q   q                                                                                                    q q
                                                  qq                                                                                                    q q
                          −1




                                                                                                                         −1
                                          q q q                                                                                              q
                                                                                                                                                    q

                                      q                                                                                                  q
                          −2




                                                                                                                         −2
                               q                                                                                              q


                                   −1.5   −1.0    −0.5       0.0    0.5        1.0       1.5                                      −1.5       −1.0       −0.5        0.0    0.5           1.0     1.5

                                                  Theoritical quantiles                                                                                  Theoritical quantiles




The graph on the right draw point with a size proportional to its Cook’s distance.

                                                                                                                                                                                                           72
Arthur CHARPENTIER - IBNR: quantification of uncertainty




Instead of resampling in the sample obtained, we can also directly draw from a
normal distribution, i.e.
rnorm(length(R),mean=mean(R),sd=sd(R))

                                           QQ plot of Pearson residuals                                                     Distribution of the reserves, B=10,000

                                                                                               q
                          4




                                                                                                             0.005
                          3




                                                                                                             0.004
    Empirical quantiles

                          2




                                                                                                             0.003
                                                                                                   Density
                          1




                                                                                     q
                                                                               q q
                                                                           q




                                                                                                             0.002
                                                                       q
                                                             qqqqq q
                          0




                                                     q   q
                                                  qq




                                                                                                             0.001
                          −1




                                          q q q
                                      q
                          −2




                               q                                                                             0.000

                                   −1.5   −1.0    −0.5       0.0    0.5        1.0       1.5                         2100   2200   2300     2400     2500       2600   2700

                                                  Theoritical quantiles                                                              Total amount of reserves




                                                                                                                                                                              73
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                    QQ plot of Pearson residual (Student)                                    Distribution of the reserves, B=10,000

                                                                                q
                          4




                                                                                              0.005
                          3




                                                                                              0.004
    Empirical quantiles

                          2




                                                                                              0.003
                                                                                    Density
                          1




                                                                            q
                                                                      q q
                                                                q




                                                                                              0.002
                                                            q
                                                      qq qqq
                                                        q
                          0




                                                    qq
                                                  qq




                                                                                              0.001
                          −1




                                           q qq
                                      q
                          −2




                                                                                              0.000
                               q

                               −3     −2     −1        0         1          2   3                     2100   2200   2300     2400     2500       2600   2700

                                              Theoritical quantiles                                                   Total amount of reserves




The second triangle is obtained using a Student t distribution (the blue line
being the bootstrap estimate).


                                                                                                                                                               74
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                                                  VaR for total reserves




                                                 2700
                                                 2650
                                                                Student
                                                                Normal




                                                 2600
                                                                bootstrap




                                quantile level

                                                 2550
                                                 2500
                                                 2450
                                                 2400




                                                        0.80   0.85          0.90          0.95   1.00

                                                                       probability level




Note that the bootstrap technique is valid only in the case were the residuals are
perfectly independent.
In R, it is also possible to use the BootChainLadder(Triangle , R = 999, process.distr
= "od.pois") function.

                                                                                                         75
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                             Going further
So far, we have derived a ditrisbution for the best estimate of total reserves.
Note tat it is possible to estimate a scale parameter φ. England and Verrall
(1999) suggested
                                             ε2
                                              i,j
                                     φ=
                                          n−p
where the summation is over all past observations.
It is possible to sample from the estimated process distribution, i.e. generate a
single Poisson P( αi βj ), where the sum is over the future.
P286
The overall algorithm is simply



                                                                                  76
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                Analytical estimate of the prediction error
So far, we have been using bootstrap technique to derive a confidence interval of
future payments. But it is possible to use outputs of a GLM function.
Recall that
                                                            2
                     2
E [Xi,j − Xi,j ]          = E[Xi,j ] − E[Xi,j ]                 +V ar(Xi,j −Xi,j ) ≈ V ar(Xi,j )+V ar(Xi,j ),

since
• the squared bias is small and can be neglected,
• the future loss and its forecast (computed from past losses) are independent.
In the case of a log-Poisson model, E Xi,j = µi,j = exp(ηi,j ) and
V ar(Xi,j = ϕ · µi,j , hence,
                                                                     2
                                                 ∂µi,j
                                  V ar(Xi,j ) =≈                         V ar(ηi,j ).
                                                 ∂ηi,j
Thus,
                            E [Xi,j − Xi,j ]2 ≈ ϕµi,j + µ2 V ar(ηi,j ).
                                                         i,j


                                                                                                      77
Arthur CHARPENTIER - IBNR: quantification of uncertainty




So finally, E(R − R)2 can be computed and

                               E(R − R)2 ≈                  ϕµi,j + µ V ar(η)µ.
                                                     i,j




                                                                                  78
Arthur CHARPENTIER - IBNR: quantification of uncertainty




                                     Bootstrap Chain-Ladder
> I=as.matrix(read.table("D:triangleC.csv",sep=";",header=FALSE))
> BCL <- BootChainLadder(Triangle = I, R = 999, process.distr = "od.pois")
> BCL
BootChainLadder(Triangle = I, R = 999, process.distr = "od.pois")

    Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95%
1    4,456         4,456       0.0     0.0        0        0
2    4,730         4,752      22.0    11.8       28       45
3    5,420         5,455      35.3    14.6       44       61
4    6,020         6,086      66.2    20.8       78      102
5    6,794         6,947     152.7    29.1      170      205
6    5,217         7,364   2,146.9   112.5    2,214    2,327

               Totals
Latest:        32,637
Mean Ultimate: 35,060
Mean IBNR:      2,423
SD IBNR:          131
Total IBNR 75%: 2,501
Total IBNR 95%: 2,653

                                                                             79
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master

More Related Content

What's hot

PRML読書会#4資料+補足
PRML読書会#4資料+補足PRML読書会#4資料+補足
PRML読書会#4資料+補足Hiromasa Ohashi
 
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介Yusuke Nakata
 
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process ModelsDeep Learning JP
 
WBICによる混合正規分布の分離と抽出
WBICによる混合正規分布の分離と抽出WBICによる混合正規分布の分離と抽出
WBICによる混合正規分布の分離と抽出Yusuke TAMAI
 
DISTRIBUSI HIPERGEOMETRIK
DISTRIBUSI HIPERGEOMETRIKDISTRIBUSI HIPERGEOMETRIK
DISTRIBUSI HIPERGEOMETRIKRarasenggar
 
Fast Unbalanced Optimal Transport on a Tree
Fast Unbalanced Optimal Transport on a TreeFast Unbalanced Optimal Transport on a Tree
Fast Unbalanced Optimal Transport on a Treejoisino
 
20191006 bayesian dl_1_pub
20191006 bayesian dl_1_pub20191006 bayesian dl_1_pub
20191006 bayesian dl_1_pubYoichi Tokita
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章nocchi_airport
 
éCrire une critique de bd
éCrire une critique de bdéCrire une critique de bd
éCrire une critique de bddalilarollet
 
階層ベイズと自由エネルギー
階層ベイズと自由エネルギー階層ベイズと自由エネルギー
階層ベイズと自由エネルギーHiroshi Shimizu
 
スーパーコンピュータとアプリケーションの性能
スーパーコンピュータとアプリケーションの性能スーパーコンピュータとアプリケーションの性能
スーパーコンピュータとアプリケーションの性能RCCSRENKEI
 
PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)Yasunori Ozaki
 
回帰不連続デザイン(Regression Discontinuity Design, RDD)
回帰不連続デザイン(Regression Discontinuity Design, RDD)回帰不連続デザイン(Regression Discontinuity Design, RDD)
回帰不連続デザイン(Regression Discontinuity Design, RDD)Jaehyun Song
 

What's hot (20)

PRML読書会#4資料+補足
PRML読書会#4資料+補足PRML読書会#4資料+補足
PRML読書会#4資料+補足
 
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
 
Chapter2.3.6
Chapter2.3.6Chapter2.3.6
Chapter2.3.6
 
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
 
1 1.はじめに
1 1.はじめに1 1.はじめに
1 1.はじめに
 
WBICによる混合正規分布の分離と抽出
WBICによる混合正規分布の分離と抽出WBICによる混合正規分布の分離と抽出
WBICによる混合正規分布の分離と抽出
 
DISTRIBUSI HIPERGEOMETRIK
DISTRIBUSI HIPERGEOMETRIKDISTRIBUSI HIPERGEOMETRIK
DISTRIBUSI HIPERGEOMETRIK
 
内発的動機づけの計算モデル, 岡夏樹
内発的動機づけの計算モデル, 岡夏樹内発的動機づけの計算モデル, 岡夏樹
内発的動機づけの計算モデル, 岡夏樹
 
Fast Unbalanced Optimal Transport on a Tree
Fast Unbalanced Optimal Transport on a TreeFast Unbalanced Optimal Transport on a Tree
Fast Unbalanced Optimal Transport on a Tree
 
20191006 bayesian dl_1_pub
20191006 bayesian dl_1_pub20191006 bayesian dl_1_pub
20191006 bayesian dl_1_pub
 
Prml2.1 2.2,2.4-2.5
Prml2.1 2.2,2.4-2.5Prml2.1 2.2,2.4-2.5
Prml2.1 2.2,2.4-2.5
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
 
éCrire une critique de bd
éCrire une critique de bdéCrire une critique de bd
éCrire une critique de bd
 
PRML 2.4
PRML 2.4PRML 2.4
PRML 2.4
 
階層ベイズと自由エネルギー
階層ベイズと自由エネルギー階層ベイズと自由エネルギー
階層ベイズと自由エネルギー
 
1 2.t検定
1 2.t検定1 2.t検定
1 2.t検定
 
スーパーコンピュータとアプリケーションの性能
スーパーコンピュータとアプリケーションの性能スーパーコンピュータとアプリケーションの性能
スーパーコンピュータとアプリケーションの性能
 
Prml 2.3
Prml 2.3Prml 2.3
Prml 2.3
 
PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)
 
回帰不連続デザイン(Regression Discontinuity Design, RDD)
回帰不連続デザイン(Regression Discontinuity Design, RDD)回帰不連続デザイン(Regression Discontinuity Design, RDD)
回帰不連続デザイン(Regression Discontinuity Design, RDD)
 

Viewers also liked (17)

Milliman risque de réserve - arthur
Milliman   risque de réserve - arthurMilliman   risque de réserve - arthur
Milliman risque de réserve - arthur
 
Slides ensae 11bis
Slides ensae 11bisSlides ensae 11bis
Slides ensae 11bis
 
Slides ensae-2016-10
Slides ensae-2016-10Slides ensae-2016-10
Slides ensae-2016-10
 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
 
Property Casualty Insurance 06 10
Property  Casualty Insurance 06 10Property  Casualty Insurance 06 10
Property Casualty Insurance 06 10
 
Slides 2040-7
Slides 2040-7Slides 2040-7
Slides 2040-7
 
Slides ensae-2016-2
Slides ensae-2016-2Slides ensae-2016-2
Slides ensae-2016-2
 
Slides ensae-2016-1
Slides ensae-2016-1Slides ensae-2016-1
Slides ensae-2016-1
 
Slides ensae-2016-6
Slides ensae-2016-6Slides ensae-2016-6
Slides ensae-2016-6
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
 
Slides ensae-2016-5
Slides ensae-2016-5Slides ensae-2016-5
Slides ensae-2016-5
 
Slides ensae-2016-3
Slides ensae-2016-3Slides ensae-2016-3
Slides ensae-2016-3
 
Slides ensae-2016-4
Slides ensae-2016-4Slides ensae-2016-4
Slides ensae-2016-4
 
Slides ensae 10
Slides ensae 10Slides ensae 10
Slides ensae 10
 
Slides 2040-8-2013
Slides 2040-8-2013Slides 2040-8-2013
Slides 2040-8-2013
 

More from Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Slides ibnr-belo-horizonte-master

  • 1. Arthur CHARPENTIER - IBNR: quantification of uncertainty IBNR : quantification of uncertainty Arthur Charpentier (Universit´ Rennes 1) e http ://blogperso.univ-rennes1.fr/arthur.charpentier/ Universidade Federal de Minas Gerais, March 2009 1
  • 2. Arthur CHARPENTIER - IBNR: quantification of uncertainty A short introduction 2
  • 3. Arthur CHARPENTIER - IBNR: quantification of uncertainty A short introduction 3
  • 4. Arthur CHARPENTIER - IBNR: quantification of uncertainty A short introduction Claims reserving is an important and difficult issue. It might take years until a claim is finally settled, • reporting delay, between accident date and reporting date (notification at insurance company) • settlement delay, between reporting date and final settlement (recovery process, court decisions) • possible reopenings, due to unexpected developments ”It is hoped that more casualty actuaries will involve themselves in this important area. IBNR reserves deserve more than just a clerical or cursory treatment and we believe, as did Mr. Tarbell Chat ”the problem of incurred but not reported claim reserves is essentially actuarial or statistical”. Perhaps in today’s environment the quotation would be even more relevant if it stated that the problem ”...is more actuarial than statistical”.” Bornhuetter & Ferguson (1972) =⇒ claims reserving is a prediction problem 4
  • 5. Arthur CHARPENTIER - IBNR: quantification of uncertainty On reserving risk (and uncertainty) From July to November 2004, stock price of Converium Holding -90% after reserve increase annoncements 25 20 15 10 5 2002 2003 2004 2005 2006 2007 2008 5
  • 6. Arthur CHARPENTIER - IBNR: quantification of uncertainty Reserve cycle Note that there is a reserving cycle, i.e. one should focus on boni-mali modeling. 6
  • 7. Arthur CHARPENTIER - IBNR: quantification of uncertainty A short overview on prediction uncertainty Basically, we have to predict some (random) future cash flow, denoted X. Let Ft denote the information available at some time t. Let X denote the prediction made at time t. The (conditional) mean square error of prediction (MSE) is simply mset (X) = E [X − X]2 |Ft 2 = V ar(X|Ft ) + E (X|Ft ) − X process variance parameter estimation error   a predictor for X i.e X is  an estimator for E(X|Ft ). 7
  • 8. Arthur CHARPENTIER - IBNR: quantification of uncertainty On claims reserving techniques 8
  • 9. Arthur CHARPENTIER - IBNR: quantification of uncertainty On claims reserving techniques 9
  • 10. Arthur CHARPENTIER - IBNR: quantification of uncertainty On claims reserving techniques 10
  • 11. Arthur CHARPENTIER - IBNR: quantification of uncertainty On claims reserving techniques 11
  • 12. Arthur CHARPENTIER - IBNR: quantification of uncertainty Notations on triangles Information on claims is usually summarizes in payment triangles, either incremental triangles, or cumulated payments. Development year j Occurence year i Calendar year i + j 12
  • 13. Arthur CHARPENTIER - IBNR: quantification of uncertainty Notations on triangles Information on claims is usually summarizes in payment triangles, either incremental triangles, or cumulated payments. Development year j Occurence year i Calendar year i + j 13
  • 14. Arthur CHARPENTIER - IBNR: quantification of uncertainty Notations on triangles Information on claims is usually summarizes in payment triangles, either incremental triangles, or cumulated payments. Development year j Occurence year i Calendar year i + j 14
  • 15. Arthur CHARPENTIER - IBNR: quantification of uncertainty Notations on triangles Information on claims is usually summarizes in payment triangles, either incremental triangles, or cumulated payments. Development year j Occurence year i Calendar year i + j 15
  • 16. Arthur CHARPENTIER - IBNR: quantification of uncertainty Notations on triangles • Xi,j denotes incremental payments, payments of year j, for claims occurred year i • Ci,j denotes cumulated payments Ci,j = Xi,0 + Xi,1 + · · · + Xi,j , i.e. payments seen as at year i + j. 0 1 2 3 4 5 0 1 2 3 4 5 0 3209 1163 39 17 7 21 0 3209 4372 4411 4428 4435 4456 1 3367 1292 37 24 10 1 3367 4659 4696 4720 4730 2 3871 1474 53 22 et et 2 3871 5345 5398 5420 3 4239 1678 103 3 4239 5917 6020 4 4929 1865 4 4929 6794 5 5217 5 5217 from Partrat et al. (2005) 16
  • 17. Arthur CHARPENTIER - IBNR: quantification of uncertainty Notations on triangles • Pi,j denotes earned premium for year i • Ni,j denotes cumulated number of claims, accdient year i seen as at year i + j (in thousands). 0 1 2 3 4 5 0 1 2 3 4 5 0 4563 4589 4590 4591 4591 4591 0 1043.4 1045.5 1047.5 1047.7 1047.7 1047.7 1 4718 4674 4671 4672 4672 1 1043.0 1027.1 1028.7 1028.9 1028.7 2 4836 4861 4861 4863 etet 2 965.1 967.9 967.8 970.1 3 5140 5168 5173 3 977.0 984.7 986.8 4 5633 5668 4 1099.0 1118.5 5 6389 5 1076.3 from Partrat et al. (2005). Using a simple Chain Ladder algorithm, the following earned premium can be considered Year i 0 1 2 3 4 5 Pi 4591 4672 4863 5175 5673 6431 17
  • 18. Arthur CHARPENTIER - IBNR: quantification of uncertainty Notations on triangles And finally, • Ci,j denotes cumulated payments Ci,j = Xi,0 + Xi,1 + · · · + Xi,j , i.e. payments seen as at year i + j. • Ei,j denotes cumulated estimated final charge, seen as as at. 0 1 2 3 4 5 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 0 4795 4629 4497 4470 4456 4456 1 3367 4659 4696 4720 4730 1 5135 4949 4783 4760 4750 2 3871 5345 5398 5420 et et 2 5681 5631 5492 5470 3 4239 5917 6020 3 6272 6198 6131 4 4929 6794 4 7326 7087 5 5217 5 7353 those triangles are sometimes denoted paid (P ) and incurred (I) losses triangles. 18
  • 19. Arthur CHARPENTIER - IBNR: quantification of uncertainty The Chain Ladder estimate We assume here that Ci,j+1 = λj Ci,j for all i, j = 1, · · · , n. A natural estimator for λj based on past history is n−j i=1 Ci,j+1 λj = n−j for all j = 1, · · · , n − 1. i=1 Ci,j Hence, it becomes possible to estimate future payments using Ci,j = λn+1−i ...λj−1 Ci,n+1−i . 19
  • 20. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 2000 50,420 102,735 2001 56,762 211,961 440, 438 λ0 = = 2.07792. 211, 961 20
  • 21. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 2000 50,420 102,735 2001 56,762 211,961 440, 438 λ0 = = 2.07792 211, 961 21
  • 22. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 2000 50,420 102,735 2001 56,762 211,961 440,438 440, 438 λ0 = = 2.07792 211, 961 22
  • 23. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 2000 50,420 102,735 2001 56,762 117,945 211,961 440,438 440, 438 λ0 = = 2.07792 and C2001,2 = 56, 762 × 2.07792 = 117, 945 211, 961 23
  • 24. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 2000 50,420 102,735 2001 56,762 117,945 211,961 440, 438 λ0 = = 2.07792 and C2001,2 = 56, 762 × 2.07792 = 117, 945 211, 961 24
  • 25. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 2000 50,420 102,735 2001 56,762 117,945 211,961 469, 635 λ1 = = 1.3091 and C2001,2 = 56, 762 × 1.3091 = 117, 945 337, 781 25
  • 26. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 2000 50,420 102,735 2001 56,762 117,945 211,961 337,781 469,635 469, 635 λ1 = = 1.3091and C2001,2 = 56, 762 × 1.3091 = 117, 945 337, 781 26
  • 27. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 2000 50,420 102,735 142,870 2001 56,762 117,945 164,025 211,961 337,781 469,635 469, 635 λ1 = = 1.3091 and C2001,3 = 117, 945 × 1.3091 = 164, 025 337, 781 27
  • 28. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 1999 49,756 101,587 136,854 158,471 2000 50,420 102,735 142,870 165,438 2001 56,762 117,945 164,025 189,935 211,961 332,781 385,347 385, 347 λ2 = = 1.1579 and C2001,4 = 164, 025 × 1.1579 = 189, 935 332, 781 28
  • 29. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 1998 30,470 65,482 90,973 103,562 111,364 1999 49,756 101,587 136,854 158,471 170,411 2000 50,420 102,735 142,870 165,438 177,903 2001 56,762 117,945 164,025 189,935 204,245 211,961 281,785 303,016 303, 016 λ3 = = 1.0753 and C2001,5 = 189, 935 × 1.0753 = 204, 245 281, 785 29
  • 30. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 1997 26,312 57,779 82,451 95,506 101,604 106,422 1998 30,470 65,482 90,973 103,562 111,364 116,577 1999 49,756 101,587 136,854 158,471 170,411 178,387 2000 50,420 102,735 142,870 165,438 177,903 186,203 2001 56,762 117,945 164,025 189,935 204,245 213,805 211,961 201,352 210,776 210, 776 λ4 = = 1.0468 and C2001,6 = 204, 245 × 1.0468 = 213, 805 201, 352 30
  • 31. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 23,758 49,114 68,582 79,840 86,298 90,566 92,878 1996 31,245 63,741 90,775 106,439 115,054 120,210 123,278 1997 26,312 57,779 82,451 95,506 101,604 106,422 109,139 1998 30,470 65,482 90,973 103,562 111,364 116,577 119,553 1999 49,756 101,587 136,854 158,471 170,411 178,387 182,941 2000 50,420 102,735 142,870 165,438 177,903 186,203 190,984 2001 56,762 117,945 164,025 189,935 204,245 213,805 219,263 211,961 90,566 92,878 92, 878 λ5 = = 1.0255 and C2001,7 = 213, 805 × 1.0255 = 219, 263 90, 566 31
  • 32. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 1 2 3 4 5 6 7 1995 1996 120,210 123,278 1997 101,604 109,139 1998 103,562 119,553 1999 136,854 182,941 2000 102,735 190,984 2001 56,762 219,263 211,961 32
  • 33. Arthur CHARPENTIER - IBNR: quantification of uncertainty Practical calculation of the Chain Ladder estimate 0 1 2 3 4 5 0 1 2 3 4 5 0 3209 4372 4411 4428 4435 4456 0 3209 4372 4411 4428 4435 4456 1 3367 4659 4696 4720 4730 1 3367 4659 4696 4720 4730 4752.4 2 3871 5345 5398 5420 et et 2 3871 5345 5398 5420 5430.1 5455.8 3 4239 5917 6020 3 4239 5917 6020 6046.15 6057.4 6086.1 4 4929 6794 4 4929 6794 6871.7 6901.5 6914.3 6947.1 5 5217 5 5217 7204.3 7286.7 7318.3 7331.9 7366.7 One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 2427. 33
  • 34. Arthur CHARPENTIER - IBNR: quantification of uncertainty The Chain-Ladder estimate The Chain-Ladder estimate is probably the most popular technique to estimate claim reserves. Let Ft denote the information avalable at time t, or more formally the filtration generated by {Ci,j , i + j ≤ t} - or equivalently {Xi,j , i + j ≤ t} Assume that incremental payments are independent by occurence years, i.e. Ci1 ,· Ci2 ,· are independent for any i1 and i2 . Further, assume that (Ci,j )j≥0 is Markov, and more precisely, there exist λj ’s 2 and σj ’s such that  i,j+1 |Fi+j ) = E(Ci,j+1 |Ci,j ) = λj · Ci,j  E(C  Var(Ci,j+1 |Fi+j ) = Var(Ci,j+1 |Ci,j ) = σ 2 · Ci,j j Under those assumption, one gets E(Ci,j+k |Fi+j ) = E(Ci,j+k |Ci,j ) = λj · λj+1 · · · λj+k−1 Ci,j 34
  • 35. Arthur CHARPENTIER - IBNR: quantification of uncertainty Underlying assumptions in the Chain-Ladder estimate Recall, see Mack (1993), properties of the Chain-Ladder estimate rely on the following assumptions   H1 E (Ci,j+1 |Ci,1 , ..., Ci,j ) = λj .Cij for all i = 0, 1, .., n and j = 0, 1, ..., n − 1   H2 (Ci,j )j=1,...,n and (Ci ,j )j=1,...,n are independent for all i = i .   2 H3 V ar (Ci,j+1 |Ci,1 , ..., Ci,j ) = Ci,j σj for all i = 0, 1, ..., n and j = 0, 1, ..., n − 1  35
  • 36. Arthur CHARPENTIER - IBNR: quantification of uncertainty Properties of the Chain-Ladder estimate Further n−j−1 i=0 Ci,j+1 λj = n−j−1 i=0 Ci,j is an unbiased estimator for λj , given Gj , and λj and λj + h are non-correlated, given Fj . Hence, an unbiased estimator for E(Ci,j |Fi ) is Ci,j = λn−i · λn−i+1 · · · λj−2 λj−1 − 1 · Ci,n−i . Recall that λj is the estimator with minimal variance among all linear estimators obtained from λi,j = Ci,j+1 /Ci,j ’s. Finally, recall that n−j−1 2 2 1 Ci,j+1 σj = − λj · Xi,j n−j−1 i=0 Ci,j 2 is an unbiased estimator of σj , given Gj (see Mack (1993) or Denuit & Charpentier (2005)). 36
  • 37. Arthur CHARPENTIER - IBNR: quantification of uncertainty Import/export of datasets with R In the case of Excel files, library(RODBC) library(RODBC) file= odbcConnectExcel("D:triangle.xls") BASE <- sqlQuery(file, "select * from [Feuil1$D9:I15]") odbcCloseAll() TRIANGLE.D=as.matrix(BASE) base = read.table("D:triangle.csv",header=FALSE,sep=";") A more convenient way is to use source(base.R). 37
  • 38. Arthur CHARPENTIER - IBNR: quantification of uncertainty Example of payment triangle file=paste("D:/reserves/triangles/xls/","triangle.csv",sep="") base = read.table(file,header=FALSE,sep=";") Consider the following cumulated triangle base = read.table("D:vect-triangle.csv",header=TRUE,sep=";") year = base$year development = base$development paycum = base$paycum TRIANGLE.C = tapply(paycum,list(year,development),sum) > TRIANGLE.C [,1] [,2] [,3] [,4] [,5] [,6] [1,] 3209 4372 4411 4428 4435 4456 [2,] 3367 4659 4696 4720 4730 NA [3,] 3871 5345 5398 5420 NA NA [4,] 4239 5917 6020 NA NA NA [5,] 4929 6794 NA NA NA NA [6,] 5217 NA NA NA NA NA 38
  • 39. Arthur CHARPENTIER - IBNR: quantification of uncertainty Example of payment triangle From cumulated triangles, it is possible to obtain increments TRIANGLE.X = TRIANGLE.D; Ntr=nrow(TRIANGLE.C) for(i in 2:Ntr){ TRIANGLE.X[1:(Ntr+1-i),i]= TRIANGLE.C[1:(Ntr+1-i),i]- TRIANGLE.C[1:(Ntr+1-i),i-1]} i.e. > TRIANGLE.C > TRIANGLE.X [,1] [,2] [,3] [,4] [,5] [,6] [,1] [,2] [,3] [,4] [,5] [,6] [1,] 3209 4372 4411 4428 4435 4456 [1,] 3209 1163 39 17 7 21 [2,] 3367 4659 4696 4720 4730 NA [2,] 3367 1292 37 24 10 NA [3,] 3871 5345 5398 5420 NA NA [3,] 3871 1474 53 22 NA NA [4,] 4239 5917 6020 NA NA NA [4,] 4239 1678 103 NA NA NA [5,] 4929 6794 NA NA NA NA [5,] 4929 1865 NA NA NA NA [6,] 5217 NA NA NA NA NA [6,] 5217 NA NA NA NA NA 39
  • 40. Arthur CHARPENTIER - IBNR: quantification of uncertainty Example of payment triangle In regression models, it will be useful to have data in a dataset, i.e. we have to transform matrices in vectors. vec.D=as.vector(TRIANGLE.C)[is.na(as.vector(TRIANGLE.C))==FALSE] vec.C=as.vector(TRIANGLE.X)[is.na(as.vector(TRIANGLE.X))==FALSE] year=NA; dev=NA for(i in 1:Ntr){ year=c(year,1:(Ntr-i+1)); dev=c(dev,rep(i,Ntr-i+1))} year=year[is.na(year)==FALSE]; dev=dev[is.na(dev)==FALSE] triangle= data.frame(year,dev,vec.D,vec.C) > triangle year dev vec.C vec.X year dev vec.C vec.X year dev vec.C vec.X 1 1 1 3209 3209 8 2 2 4659 1292 15 4 3 6020 103 2 2 1 3367 3367 9 3 2 5345 1474 16 1 4 4428 17 3 3 1 3871 3871 10 4 2 5917 1678 17 2 4 4720 24 4 4 1 4239 4239 11 5 2 6794 1865 18 3 4 5420 22 5 5 1 4929 4929 12 1 3 4411 39 19 1 5 4435 7 6 6 1 5217 5217 13 2 3 4696 37 20 2 5 4730 10 7 1 2 4372 1163 14 3 3 5398 53 21 1 6 4456 21 40
  • 41. Arthur CHARPENTIER - IBNR: quantification of uncertainty An alternative to obtain incremental triangles from cumulated ones is simply to use inc <- cbind(cum[,1], t(apply(cum,1,diff))), and dualy, to obtain cumulated triangles from incremental ones cum <- t(apply(inc,1, cumsum)). 41
  • 42. Arthur CHARPENTIER - IBNR: quantification of uncertainty With R, those two vectors can be obtained using functions lambda(triangle) and sigma(triangle), the algorithm being simply LAMBDA = matrix(NA,1,Ntr-1) for(i in 1:(Ntr-1)){ LAMBDA[i] = sum(TRIANGLE.C[1:(Ntr-i),i+1])/ sum(TRIANGLE.C[1:(Ntr-i),i])} Hence, > LAMBDA [,1] [,2] [,3] [,4] [,5] [1,] 1.380933 1.011433 1.004343 1.001858 1.004735 An alternative is to remember that the chain ladder estimate is obtained as the coefficient of a weighted regression, x <- TRIANGLE.C[,1] y <- TRIANGLE.C[,2] lm(y ~ x + 0, weights=1/x) we obtain here Call: 42
  • 43. Arthur CHARPENTIER - IBNR: quantification of uncertainty lm(formula = y ~ x + 0, weights = 1/x) Coefficients: x 1.381 which is the value of the first link ratio. Actually more details can be obtained > summary(lm(y ~ x + 0, weights=1/x)) Call: lm(formula = y ~ x + 0, weights = 1/x) Residuals: 1988 1989 1990 1991 1992 -1.048825 0.161975 -0.009507 0.971088 -0.179734 Coefficients: Estimate Std. Error t value Pr(>|t|) x 1.380933 0.005176 266.8 1.18e-09 *** --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 43
  • 44. Arthur CHARPENTIER - IBNR: quantification of uncertainty Residual standard error: 0.7249 on 4 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999 F-statistic: 7.119e+04 on 1 and 4 DF, p-value: 1.184e-09 If f denotes the triangle of λi,j = Di,j+1 /Di,j , f=TRIANGLE.D[,2:Ntr]/TRIANGLE.D[,1:(Ntr-1)] SIGMA = matrix(NA,1,Ntr-1) for(i in 1:(Ntr-1)){ D=TRIANGLE.D[,i]*(f[,i]-t(rep(LAMBDA[i],Ntr)))^2 SIGMA[i]<-1/(Ntr-i-1)*sum(D[,1:(Ntr-1)])} SIGMA[Ntr-1]<-min(SIGMA[(Ntr-3):(Ntr-2)]) 44
  • 45. Arthur CHARPENTIER - IBNR: quantification of uncertainty Hence, > SIGMA [,1] [,2] [,3] [,4] [,5] [1] 0.525418785 0.102633234 0.002104330 0.000660780 0.000660780 In order to complete the triangle, one can simply use for(i in 1:(Ntr-1)){ TRIANGLE.D[(Ntr-i+1):(Ntr),i+1]=LAMBDA[i]*TRIANGLE.D[(Ntr-i+1):(Ntr),i]} Hence, > TRIANGLE.D 0 1 2 3 4 5 1988 3209 4372.000 4411.000 4428.000 4435.000 4456.000 1989 3367 4659.000 4696.000 4720.000 4730.000 4752.397 1990 3871 5345.000 5398.000 5420.000 5430.072 5455.784 1991 4239 5917.000 6020.000 6046.147 6057.383 6086.065 1992 4929 6794.000 6871.672 6901.518 6914.344 6947.084 1993 5217 7204.327 7286.691 7318.339 7331.939 7366.656 45
  • 46. Arthur CHARPENTIER - IBNR: quantification of uncertainty The total amount of reserve is the obtained comparing the last column (estimated ultimate loss amont) and the second diagonal (total payments as at now). ultimate = TRIANGLE.D[,6]*(1+0.00) payment.as.at = diag(TRIANGLE.D[,6:1]) RESERVES = ultimate-payment.as.at > RESERVES [1] 0.00000 22.39103 35.79342 65.67668 153.36790 2149.65640 Hence, here sum(RESERVES) is equal to 2426.885. 46
  • 47. Arthur CHARPENTIER - IBNR: quantification of uncertainty Mack’s approach with R A ChainLadder-package grew out of presentations the author gave at the Stochastic Reserving Seminar at the Institute of Actuaries in November 2007. This package implements the Mack and Munich Chain Ladder model using weighted linear regression. A link with Excel (through the RExcel-Addin) can be used. MackChainLadder can be used to obtain λj ’s and σj ’s. MunichChainLadder 47
  • 48. Arthur CHARPENTIER - IBNR: quantification of uncertainty Mack’s approach with R > MackChainLadder(TRIANGLE.D) Latest Dev.To.Date Ultimate IBNR Mack.S.E CoV 1 4,456 1.000 4,456 0.0 0.000 NaN 2 4,730 0.995 4,752 22.4 0.639 0.0285 3 5,420 0.993 5,456 35.8 2.503 0.0699 4 6,020 0.989 6,086 66.1 5.046 0.0764 5 6,794 0.978 6,947 153.1 31.332 0.2047 6 5,217 0.708 7,367 2,149.7 68.449 0.0318 Totals: Sum of Latest: 32,637 Sum of Ultimate: 35,064 Sum of IBNR: 2,427 Total Mack S.E.: 79 Total CoV: 3 The total amount of reserves is here 2,427. 48
  • 49. Arthur CHARPENTIER - IBNR: quantification of uncertainty Mack’s approach with R > MackChainLadder(TRIANGLE.D) Latest Dev.To.Date Ultimate IBNR Mack.S.E CoV 1 4,456 1.000 4,456 0.0 0.000 NaN 2 4,730 0.995 4,752 22.4 0.639 0.0285 3 5,420 0.993 5,456 35.8 2.503 0.0699 4 6,020 0.989 6,086 66.1 5.046 0.0764 5 6,794 0.978 6,947 153.1 31.332 0.2047 6 5,217 0.708 7,367 2,149.7 68.449 0.0318 Totals: Sum of Latest: 32,637 Sum of Ultimate: 35,064 Sum of IBNR: 2,427 Total Mack S.E.: 79 Total CoV: 3 The link-ratios σj ’s. 49
  • 50. Arthur CHARPENTIER - IBNR: quantification of uncertainty Mack’s approach with R > MackChainLadder(TRIANGLE.D)$FullTriangle F1 F2 F3 F4 F5 F6 1 3209 4372.000 4411.000 4428.000 4435.000 4456.000 2 3367 4659.000 4696.000 4720.000 4730.000 4752.397 3 3871 5345.000 5398.000 5420.000 5430.072 5455.784 4 4239 5917.000 6020.000 6046.147 6057.383 6086.065 5 4929 6794.000 6871.672 6901.518 6914.344 6947.084 6 5217 7204.327 7286.691 7318.339 7331.939 7366.656 > MackChainLadder(TRIANGLE.D)$f [1] 1.380933 1.011433 1.004343 1.001858 1.004735 1.000000 > TRIANGLE=MackChainLadder(TRIANGLE.D)$FullTriangle > sum(TRIANGLE[,Ntr]-rev(diag(TRIANGLE[Ntr:1,]))) [1] 2426.985 It is also possible to use plot(MackChainLadder(TRIANGLE.D)) 50
  • 51. Arthur CHARPENTIER - IBNR: quantification of uncertainty Mack’s approach with R Mack Chain Ladder Results Chain ladder developments by origin year 7000 q q q 5 4000 6000 Amounts Amounts q q IBNR 4 4 q Latest 3 3 3 3000 6 5 2 2 2 1 2 1 1 4 1 1 3 2 1 0 1 2 3 4 5 6 1 2 3 4 5 6 Origin year Development year Standardised residuals Standardised residuals q q 1.5 1.5 q q q q q q q q 0.0 0.0 q q q q q q q q q q q q q q q q −1.5 −1.5 q q 4500 5000 5500 6000 6500 1 2 3 4 5 Fitted Origin year Standardised residuals Standardised residuals q q 1.5 1.5 q q q q q q q q 0.0 0.0 q q q q q q q q q q q q q q q −1.5 −1.5 q q 1 2 3 4 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Calendar year Development year 51
  • 52. Arthur CHARPENTIER - IBNR: quantification of uncertainty Munich Chain-Ladder > P=as.matrix(read.table("D:triangleE.csv",sep=";",header=FALSE)) > I=as.matrix(read.table("D:triangleC.csv",sep=";",header=FALSE)) > MCL=MunichChainLadder(Paid=P, Incurred=I) > MCL LatestPaid LatestIncurred Latest.P.I.Ratio UltimatePaid UltimateIncurred Ultimate.P.I.Ra 1 4,456 4,456 1.00 4,456 4,456 2 4,750 4,730 1.00 4,750 4,753 3 5,470 5,420 1.01 5,454 5,455 4 6,131 6,020 1.02 6,085 6,086 5 7,087 6,794 1.04 6,980 6,983 6 7,353 5,217 1.41 7,537 7,544 > plot(MCL) 52
  • 53. Arthur CHARPENTIER - IBNR: quantification of uncertainty Munich Chain Ladder Results Munich Chain Ladder vs. Standard Chain Ladder 20 40 60 80 MCL Paid SCL P/I 5000 MCL Incurred MCL P/I Amounts % 2000 0 0 1 2 3 4 5 6 1 2 3 4 5 6 origin year origin year Paid residual plot Incurred residual plot 2 2 Incurred/Paid residuals Paid/Incurred residuals q q q q 1 1 q q q q q q q q q 0 0 qq q q qq q q q q q q −1 −1 q q q q −2 −2 −1 0 1 2 −2 −2 −1 0 1 2 Paid residuals Incurred residuals 53
  • 54. Arthur CHARPENTIER - IBNR: quantification of uncertainty Basics on GLM with R X=c(1,2,3); Y=c(1,2,4); D=data.frame(X,Y) REG=lm(Y~X,data=D); summary(REG) x0=seq(0.1,3.9,by=0.05); D0=data.frame(X=x0) y0=predict(REG,newdata=D0) 5 q 4 3 q 2 q 1 0 0 1 2 3 4 Figure 1 – Gaussian LM model. 54
  • 55. Arthur CHARPENTIER - IBNR: quantification of uncertainty Basics on GLM with R REG=glm(Y~X,data=D,family=gaussian(link = "identity")) x0=seq(0.1,3.9,by=0.05); D0=data.frame(X=x0) y0=predict(REG,newdata=D0) 5 q 4 3 q 2 q 1 0 0 1 2 3 4 Figure 2 – Gaussian GLM model, Identity link function (canonical). 55
  • 56. Arthur CHARPENTIER - IBNR: quantification of uncertainty Basics on GLM with R REG=glm(Y~X,data=D,family=poisson(link = "log")) x0=seq(0.1,3.9,by=0.05); D0=data.frame(X=x0) y0=exp(predict(REG,newdata=D0)) 5 q 4 3 q 2 q 1 0 0 1 2 3 4 Figure 3 – Poisson GLM model, log link function (canonical). 56
  • 57. Arthur CHARPENTIER - IBNR: quantification of uncertainty Basics on GLM with R REG=glm(Y~X,data=D,family=Gamma(link = "inverse")) x0=seq(0.1,3.5,by=0.05); D0=data.frame(X=x0) y0=1/predict(REG,newdata=D0) 5 q 4 3 q 2 q 1 0 0 1 2 3 4 Figure 4 – Gamma GLM model, Identity link function (canonical). 57
  • 58. Arthur CHARPENTIER - IBNR: quantification of uncertainty Basics on GLM with R REG=glm(Y~X,data=D,family=poisson(link = "identity")) x0=seq(0.1,3.9,by=0.05); D0=data.frame(X=x0) y0=predict(REG,newdata=D0) 5 q 4 3 q 2 q 1 0 0 1 2 3 4 Figure 5 – Poisson GLM model, Identity link function (noncanonical). 58
  • 59. Arthur CHARPENTIER - IBNR: quantification of uncertainty Basics on GLM with R REG=glm(Y~X,data=D,family=poisson(link = "inverse")) x0=seq(0.1,3.7,by=0.05); D0=data.frame(X=x0) y0=1/predict(REG,newdata=D0) 5 q 4 3 q 2 q 1 0 0 1 2 3 4 Figure 6 – Poisson GLM model, inverse link function (noncanonical). 59
  • 60. Arthur CHARPENTIER - IBNR: quantification of uncertainty A factor model in claims reserving A natural idea is to assume that incremental payments Yi,j can be explained by two factors : one related to occurrence year i, and one development factor, related to j. Formally, we assume that Yi,j ∼ L(ϕ(1(occurrence year = i), 1(development year = j))), i.e. Yi,j is a random variable, with distribution L, where parameter(s) can be related to the two factors, and where ϕ is a given function, called link function. 60
  • 61. Arthur CHARPENTIER - IBNR: quantification of uncertainty Poisson regression in claims reserving Renshaw & Verrall (1998) proposed to use a Poisson regression for incremental payments to estimate claim reserve, i.e. Yi,j ∼ P exp α + βu 1(occurrence year u = i) + γv 1(development year v = j) u v devF=as.factor(development); anF=as.factor(year) REG=glm(vec.C~devF+anF, family = "Poisson") Here, > summary(REG) Call: glm(formula = vec.C ~ anF + devF, family = poisson(link = "log"), data = triangle) Deviance Residuals: Min 1Q Median 3Q Max -2.343e+00 -4.996e-01 9.978e-07 2.770e-01 3.936e+00 61
  • 62. Arthur CHARPENTIER - IBNR: quantification of uncertainty Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 8.05697 0.01551 519.426 < 2e-16 *** anF1989 0.06440 0.02090 3.081 0.00206 ** anF1990 0.20242 0.02025 9.995 < 2e-16 *** anF1991 0.31175 0.01980 15.744 < 2e-16 *** anF1992 0.44407 0.01933 22.971 < 2e-16 *** anF1993 0.50271 0.02079 24.179 < 2e-16 *** devF1 -0.96513 0.01359 -70.994 < 2e-16 *** devF2 -4.14853 0.06613 -62.729 < 2e-16 *** devF3 -5.10499 0.12632 -40.413 < 2e-16 *** devF4 -5.94962 0.24279 -24.505 < 2e-16 *** devF5 -5.01244 0.21877 -22.912 < 2e-16 *** --- Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 46695.269 on 20 degrees of freedom Residual deviance: 30.214 on 10 degrees of freedom AIC: 209.52 62
  • 63. Arthur CHARPENTIER - IBNR: quantification of uncertainty Number of Fisher Scoring iterations: 4 Again, it is possible to summarize this information in triangles.... Predictions can be used to complete the triangle. on r´cup`re alors les pr´dictions pour compl´ter le triangle. e e e e ANew=rep(1 :Ntr),times=Ntr) ; DNew=rep(0 :(Ntr-1),each=Ntr) P=predict(REG, newdata=data.frame(A=as.factor(ANew),D=as.factor(DNew))) payinc.pred= exp(matrix(as.numeric(P),nrow=n,ncol=n)) noise = payinc-payinc.pred year development paycum payinc payinc.pred noise 1 1988 0 3209 3209 3155.699242 5.330076e+01 2 1989 0 3367 3367 3365.604828 1.395172e+00 3 1990 0 3871 3871 3863.737217 7.262783e+00 4 1991 0 4239 4239 4310.096418 -7.109642e+01 5 1992 0 4929 4929 4919.862296 9.137704e+00 6 1993 0 5217 5217 5217.000000 1.818989e-12 7 1988 1 4372 1163 1202.109851 -3.910985e+01 8 1989 1 4659 1292 1282.069808 9.930192e+00 9 1990 1 5345 1474 1471.824853 2.175147e+00 63
  • 64. Arthur CHARPENTIER - IBNR: quantification of uncertainty 10 1991 1 5917 1678 1641.857784 3.614222e+01 11 1992 1 6794 1865 1874.137704 -9.137704e+00 12 1988 2 4411 39 49.820712 -1.082071e+01 13 1989 2 4696 37 53.134604 -1.613460e+01 14 1990 2 5398 53 60.998886 -7.998886e+00 15 1991 2 6020 103 68.045798 3.495420e+01 16 1988 3 4428 17 19.143790 -2.143790e+00 17 1989 3 4720 24 20.417165 3.582835e+00 18 1990 3 5420 22 23.439044 -1.439044e+00 19 1988 4 4435 7 8.226405 -1.226405e+00 20 1989 4 4730 10 8.773595 1.226405e+00 21 1988 5 4456 21 21.000000 -2.842171e-14 Residuals are obtained using the residual function, with one of the following options deviance, pearson, working, response or partial. The pearson residuals are Xi,j − µi,j εP = i,j , µi,j 64
  • 65. Arthur CHARPENTIER - IBNR: quantification of uncertainty The deviance residuals are Xi,j − µi,j εD i,j = , di,j Pearson’s error can be obtained from function resid=residuals(REG,"pearson"), and summarized in a triangle > PEARSON [,1] [,2] [,3] [,4] [,5] [,6] [1,] 9.488238e-01 -1.12801295 -1.533031 -0.4899687 -0.4275912 -6.202125e-15 [2,] 2.404895e-02 0.27733318 -2.213449 0.7929194 0.4140426 NA [3,] 1.168421e-01 0.05669707 -1.024162 -0.2972380 NA NA [4,] -1.082940e+00 0.89196334 4.237393 NA NA NA [5,] 1.302749e-01 -0.21107479 NA NA NA NA [6,] 2.518371e-14 NA NA NA NA NA 65
  • 66. Arthur CHARPENTIER - IBNR: quantification of uncertainty Errors in GLMs Pearson's error Deviance's error 4 q q 4 3 3 2 2 Error Error 1 q q 1 q q q q q q q q q q q q q q 0 q q q q q q 0 q q q q q q q q −1 q q −1 q q q q q q −2 −2 q q 1988 1989 1990 1991 1992 1993 1988 1989 1990 1991 1992 1993 Year of occurence Year of occurence 66
  • 67. Arthur CHARPENTIER - IBNR: quantification of uncertainty Errors in GLMs Pearson's error Deviance's error 4 q q 4 3 3 2 2 Error Error 1 q q 1 q q q q q q q q q q q q 0 q q q q 0 q q q q q q q q −1 q q −1 q q q q q q −2 −2 q q 0 1 2 3 4 5 0 1 2 3 4 5 Delai Delai 67
  • 68. Arthur CHARPENTIER - IBNR: quantification of uncertainty Finally, the theoretical triangles of Yi,j ’s, defined as > resid*sqrt(payinc.pred)+payinc.pred [,1] [,2] [,3] [,4] [,5] [,6] [1,] 3209 1163 39 17 7 21 [2,] 3367 1292 37 24 10 NA [3,] 3871 1474 53 22 NA NA [4,] 4239 1678 103 NA NA NA [5,] 4929 1865 NA NA NA NA [6,] 5217 NA NA NA NA NA 68
  • 69. Arthur CHARPENTIER - IBNR: quantification of uncertainty Uncertainty and bootstrap simulations Based on that theoretical triangle, it is possible to generate residuals to obtain a simulated triangle. Since the size of the sample is small (here 21 observed values), assuming normality for Pearson’s residuals can be too restrictive. Resampling bootstrap procedure can then be more robust. In order to get the loss distribution, it is possible to use bootstrap techniques to generate a matrix of errors, see Renshaw & Verrall (1994). They suggest to boostrap Pearson’s residuals, and the simulation procedure is the following • estimate the model parameter (GLM), β, Yi,j − µi,j • calculate fitted values µi,j , and the residuals ri,j = , V (µi,j ) • forecast with original data µi,j for i + j > n. Then can start the bootstrap loops, repeating B times (b) • resample the residuals with resample, and get a new sample ri,j , ∗ (b) • create a pseudo sample solving Yi,j = µi,j + ri,j × V (µi,j ), • estimate the model using GLM procedure and derive boostrap forecast 69
  • 70. Arthur CHARPENTIER - IBNR: quantification of uncertainty Let resid.sim be resampled residuals. Note that REG$fitted.values (called here payinc.pred) is the vector containing the µi,j ’s. And further V (µi,j ) is here simply REG$fitted.values since the variance function for the Poisson regression is the identity function. Hence, here ∗ (b) Yi,j = µi,j + ri,j × µi,j and thus, set resid.sim = sample(resid,Ntr*(Ntr+1)/2,replace=TRUE) payinc.sim = resid.sim*sqrt(payinc.pred)+payinc.pred [,1] [,2] [,3] [,4] [,5] [,6] [1,] 3155.699 1216.465 42.17691 18.22026 9.021844 22.89738 [2,] 3381.694 1245.399 84.02244 18.20322 11.122243 NA [3,] 3726.151 1432.534 61.44170 23.43904 NA NA [4,] 4337.279 1642.832 74.58658 NA NA NA [5,] 4929.000 1879.777 NA NA NA NA [6,] 5186.116 NA NA NA NA NA For this simulated triangle, we can use Chain-Ladder estimate to derive a 70
  • 71. Arthur CHARPENTIER - IBNR: quantification of uncertainty simulated reserve amount (here 2448.175). Figure 7 shows the empirical distribution of those amounts based on 10, 000 random simulations. Estimated density of total reserves Estimated quantile of total reserves (with Gaussian fitted distribution) (with Gaussian fitted distribution) 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 2600 2650 2500 2550 0.95 0.96 0.97 0.98 0.99 1.00 2400 2300 2200 2300 2400 2500 2600 2700 0.0 0.2 0.4 0.6 0.8 1.0 Figure 7 – Distribution of claim reserves, using bootstrap techniques. 71
  • 72. Arthur CHARPENTIER - IBNR: quantification of uncertainty Parametric or nonparametric Monte Carlo ? A natural idea would be to assume that Pearson residual have a Gaussian distribution, qqnorm(R) ; qqline(R) QQ plot of Pearson residuals QQ plot of Pearson residuals (Cook's distance) q q 4 4 3 3 Empirical quantiles Empirical quantiles 2 2 q 1 1 q q q q q q q q q qqqqq q q q q q 0 0 q q q q qq q q −1 −1 q q q q q q q −2 −2 q q −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 Theoritical quantiles Theoritical quantiles The graph on the right draw point with a size proportional to its Cook’s distance. 72
  • 73. Arthur CHARPENTIER - IBNR: quantification of uncertainty Instead of resampling in the sample obtained, we can also directly draw from a normal distribution, i.e. rnorm(length(R),mean=mean(R),sd=sd(R)) QQ plot of Pearson residuals Distribution of the reserves, B=10,000 q 4 0.005 3 0.004 Empirical quantiles 2 0.003 Density 1 q q q q 0.002 q qqqqq q 0 q q qq 0.001 −1 q q q q −2 q 0.000 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2100 2200 2300 2400 2500 2600 2700 Theoritical quantiles Total amount of reserves 73
  • 74. Arthur CHARPENTIER - IBNR: quantification of uncertainty QQ plot of Pearson residual (Student) Distribution of the reserves, B=10,000 q 4 0.005 3 0.004 Empirical quantiles 2 0.003 Density 1 q q q q 0.002 q qq qqq q 0 qq qq 0.001 −1 q qq q −2 0.000 q −3 −2 −1 0 1 2 3 2100 2200 2300 2400 2500 2600 2700 Theoritical quantiles Total amount of reserves The second triangle is obtained using a Student t distribution (the blue line being the bootstrap estimate). 74
  • 75. Arthur CHARPENTIER - IBNR: quantification of uncertainty VaR for total reserves 2700 2650 Student Normal 2600 bootstrap quantile level 2550 2500 2450 2400 0.80 0.85 0.90 0.95 1.00 probability level Note that the bootstrap technique is valid only in the case were the residuals are perfectly independent. In R, it is also possible to use the BootChainLadder(Triangle , R = 999, process.distr = "od.pois") function. 75
  • 76. Arthur CHARPENTIER - IBNR: quantification of uncertainty Going further So far, we have derived a ditrisbution for the best estimate of total reserves. Note tat it is possible to estimate a scale parameter φ. England and Verrall (1999) suggested ε2 i,j φ= n−p where the summation is over all past observations. It is possible to sample from the estimated process distribution, i.e. generate a single Poisson P( αi βj ), where the sum is over the future. P286 The overall algorithm is simply 76
  • 77. Arthur CHARPENTIER - IBNR: quantification of uncertainty Analytical estimate of the prediction error So far, we have been using bootstrap technique to derive a confidence interval of future payments. But it is possible to use outputs of a GLM function. Recall that 2 2 E [Xi,j − Xi,j ] = E[Xi,j ] − E[Xi,j ] +V ar(Xi,j −Xi,j ) ≈ V ar(Xi,j )+V ar(Xi,j ), since • the squared bias is small and can be neglected, • the future loss and its forecast (computed from past losses) are independent. In the case of a log-Poisson model, E Xi,j = µi,j = exp(ηi,j ) and V ar(Xi,j = ϕ · µi,j , hence, 2 ∂µi,j V ar(Xi,j ) =≈ V ar(ηi,j ). ∂ηi,j Thus, E [Xi,j − Xi,j ]2 ≈ ϕµi,j + µ2 V ar(ηi,j ). i,j 77
  • 78. Arthur CHARPENTIER - IBNR: quantification of uncertainty So finally, E(R − R)2 can be computed and E(R − R)2 ≈ ϕµi,j + µ V ar(η)µ. i,j 78
  • 79. Arthur CHARPENTIER - IBNR: quantification of uncertainty Bootstrap Chain-Ladder > I=as.matrix(read.table("D:triangleC.csv",sep=";",header=FALSE)) > BCL <- BootChainLadder(Triangle = I, R = 999, process.distr = "od.pois") > BCL BootChainLadder(Triangle = I, R = 999, process.distr = "od.pois") Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95% 1 4,456 4,456 0.0 0.0 0 0 2 4,730 4,752 22.0 11.8 28 45 3 5,420 5,455 35.3 14.6 44 61 4 6,020 6,086 66.2 20.8 78 102 5 6,794 6,947 152.7 29.1 170 205 6 5,217 7,364 2,146.9 112.5 2,214 2,327 Totals Latest: 32,637 Mean Ultimate: 35,060 Mean IBNR: 2,423 SD IBNR: 131 Total IBNR 75%: 2,501 Total IBNR 95%: 2,653 79