SlideShare une entreprise Scribd logo
1  sur  72
Télécharger pour lire hors ligne
LLVM Register
Allocation
Kai
kai@skymizer.com
Outline
• Introduction to Register Allocation Problem
• LLVM Base Register Allocation Interface
• LLVM Basic Register Allocation
• LLVM Greedy Register Allocation
Introduction to Register
Allocation
• Definition
• Register allocation is the problem of mapping
program variables to either machine registers or
memory addresses.
• Best solution
• minimise the number of loads/stores from/to memory
• NP-complete
int main()
{
int i, j;
int answer;
for (i = 1; i < 10; i++)
for (j = 1; j < 10; j++) {
answer = i * j;
}
return 0;
}
_main:
@ BB#0:
sub sp, #16
movs r0, #0
str r0, [sp, #12]
movs r0, #1
str r0, [sp, #8]
b LBB0_2
LBB0_1:
adds r1, #1
str r1, [sp, #8]
LBB0_2:
ldr r1, [sp, #8]
cmp r1, #9
bgt LBB0_6
@ BB#3:
str r0, [sp, #4]
b LBB0_5
LBB0_4:
ldr r2, [sp, #4]
muls r1, r2, r1
str r1, [sp]
ldr r1, [sp, #4]
adds r1, #1
Graph Coloring
• For an arbitrary graph G; a coloring of G assigns a
color to each node in G so that no pair of adjacent
nodes have the same color.
2-colorable 3-colorable
Graph Coloring for RA
• Node: Live interval
• Edge: Two live intervals have interference
• Color: Physical register
• Find a feasible colouring for the graph
…
a0 = …
b0 = …
… = b0
d0 = …
c0 = …
…
d1 = c0
… = a0
… = d1
B0
B1 B2
B3
…
LIa = …
LIb = …
… = LIb
LIc = …
…
LId = LIc
… = LIa
… = LId
B0
B1 B2
B3
LRa
LRb LRc
LRd
…
LIa = …
LIb = …
… = LIb
LIc = …
…
LId = LIc
… = LIa
… = LId
B0
B1 B2
B3
An Example from “Engineering A Compiler”
Why Not Graph Coloring
• Interference graph is expensive to build
• Spill code placement is more important than
colouring
• Need to model aliases and overlapping register
classes
• Flexibility is more important than the coloring
algorithm
(Adopted from “Register Allocation in LLVM 3.0”)
Excerpt from tricore_llvm.pdf
SSA Properties
* Each definition in the procedure creates a unique name.
* Each use refers to a single definition.
LLVM Register Allocation
• Basic
• Provide a minimal implementation of the basic register allocator
• Greedy
• Global live range splitting.
• Fast
• This register allocator allocates registers to a basic block at a
time.
• PBQP
• Partitioned Boolean Quadratic Programming (PBQP) based
register allocator for LLVM
LLVM Base Register Allocation Interface
Calculate
LiveInterval Weight
Enqueue All
LiveInterval
selectOrSplit for One
LiveInterval
Assign the Physical
Register
Enqueue Split
LiveInterval
dequeue
physical register is available
split live interval
update LiveInterval.weight
(spill cost)
allocatePhysRegs
enqueue
seedLiveRegs
Q
customised by new RA algorithm
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (MRI->reg_nodbg_empty(Reg))
continue;
enqueue(&LIS->getInterval(Reg));
}
LLVM Basic Register Allocation
Calculate
LiveInterval Weight
Enqueue All
LiveInterval
RABasic::selectOrSplit
Assign the Physical
Register
Enqueue Split
LiveInterval
dequeue
physical register is available
split live interval
update LiveInterval.weight
(spill cost)
allocatePhysRegs
enqueue
seedLiveRegs
priority Q
(spill cost)
customised by RABasic algorithm
struct CompSpillWeight {
bool operator()(LiveInterval *A, LiveInterval *B) const {
return A->weight < B->weight;
}
};
// Check for an available register in this class.
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
while (unsigned PhysReg = Order.next()) {
// Check for interference in PhysReg
switch (Matrix->checkInterference(VirtReg, PhysReg)) {
case LiveRegMatrix::IK_Free:
// PhysReg is available, allocate it.
return PhysReg;
case LiveRegMatrix::IK_VirtReg:
// Only virtual registers in the way, we may be able to spill them.
PhysRegSpillCands.push_back(PhysReg);
continue;
default:
// RegMask or RegUnit interference.
continue;
}
}
LiveInterval Weight
• Weight for one instruction with the register
• weight = (isDef + isUse) * (Block Frequency / Entry Frequency)
• loop induction variable: weight *= 3
• For all instructions with the register
• totalWeight += weight
• Hint: totalWeight *= 1.01
• Re-materializable: totalWeight *= 0.5
• LiveInterval.weight = totalWeight / size of LiveInterval
Matrix->checkInterference()
• How to represent live/dead points?
• SlotIndex
• How to represent a value?
• VNInfo
• How to represent a live interval?
• LiveInterval
• How to check interference between live intervals?
• LiveIntervalUnion & LiveRegMatrix
Liveness Slot
• There are four kind of slots to describe a position at which a register can become live, or cease to be
live.
• Block (B)
• entering or leaving a block
• PHI-def
• Early Clobber (e)
• kill slot for early-clobber def
• A = A op B ( )
• Register (r)
• normal register use/def slot
• Dead (d)
• dead def
********** INTERVALS **********
%vreg0 [208r,320r:0)[416B,432r:0) 0@208r
%vreg1 [16r,32r:0) 0@16r
%vreg2 [48r,480B:0) 0@48r
%vreg3 [96r,112r:0) 0@96r
%vreg4 [496r,512r:0) 0@496r
%vreg6 [224r,240r:0) 0@224r
%vreg7 [432r,448r:0) 0@432r
%vreg8 [304r,320r:0) 0@304r
%vreg9 [320r,336r:0) 0@320r
%vreg10 [352r,368r:0) 0@352r
%vreg11 [368r,384r:0) 0@368r
SlotIndex
((MachineInstr *, index), slot)
Slot_Block
Slot_EarlyClobber
Slot_Register
Slot_Dead
unsigned getIndex() const {
return listEntry()->getIndex() | getSlot();
}
listEntry()
Numbering of Machine
Instruction
0B BB#0: derived from LLVM BB %entry
16B %vreg1<def> = t2MOVi 0, pred:14, pred:%noreg, opt:%noreg; rGPR:%vreg1
32B t2STRi12 %vreg1, <fi#0>, 0, pred:14, pred:%noreg; mem:ST4[%retval] rGPR:%vreg1
48B %vreg2<def> = t2MOVi 1, pred:14, pred:%noreg, opt:%noreg; rGPR:%vreg2
64B t2STRi12 %vreg2, <fi#1>, 0, pred:14, pred:%noreg; mem:ST4[%i] rGPR:%vreg2
Successors according to CFG: BB#1
for (MachineBasicBlock::iterator miItr = mbb->begin(), miEnd = mbb->end();
miItr != miEnd; ++miItr) {
MachineInstr *mi = miItr;
if (mi->isDebugValue())
continue;
// Insert a store index for the instr.
indexList.push_back(createEntry(mi, index += SlotIndex::InstrDist));
// Save this base index in the maps.
mi2iMap.insert(std::make_pair(mi, SlotIndex(&indexList.back(),
SlotIndex::Slot_Block)));
}
VNInfo
• hold information about a machine level value
• (id, def)
• def: SlotIndex of the defining instruction
Live Interval
• Segment
• start, end, valno
• LiveRange
• an ordered list of Segment
• LiveInterval
• LiveRange with register and weight (spill cost)
********** INTERVALS **********
%vreg0 [208r,320r:0)[416B,432r:0) 0@208r
%vreg1 [16r,32r:0) 0@16r
%vreg2 [48r,480B:0) 0@48r
%vreg3 [96r,112r:0) 0@96r
%vreg4 [496r,512r:0) 0@496r
%vreg6 [224r,240r:0) 0@224r
%vreg7 [432r,448r:0) 0@432r
%vreg8 [304r,320r:0) 0@304r
%vreg9 [320r,336r:0) 0@320r
%vreg10 [352r,368r:0) 0@352r
%vreg11 [368r,384r:0) 0@368r
Segment
LiveRange
LiveInterval VNInfo
Example
192B BB#3: derived from LLVM BB %for.cond.1
208B %vreg0<def> = t2LDRi12 <fi#1>, 0
224B %vreg6<def> = t2LDRi12 <fi#2>, 0
240B t2CMPri %vreg6, 9
256B t2Bcc <BB#5>
272B t2B <BB#4>
416B BB#5: derived from LLVM BB %for.inc.4
432B %vreg7<def> = t2ADDri %vreg0, 1
448B t2STRi12 %vreg7, <fi#1>, 0
********** INTERVALS **********
%vreg0 [208r,320r:0)[416B,432r:0) 0@208r
%vreg1 [16r,32r:0) 0@16r
%vreg2 [48r,480B:0) 0@48r
%vreg3 [96r,112r:0) 0@96r
%vreg4 [496r,512r:0) 0@496r
%vreg6 [224r,240r:0) 0@224r
%vreg7 [432r,448r:0) 0@432r
%vreg8 [304r,320r:0) 0@304r
%vreg9 [320r,336r:0) 0@320r
%vreg10 [352r,368r:0) 0@352r
%vreg11 [368r,384r:0) 0@368r
288B BB#4: derived from LLVM BB %for.body.3
304B %vreg8<def> = t2LDRi12 <fi#2>, 0
320B %vreg9<def> = t2MUL %vreg0, %vreg8
336B t2STRi12 %vreg9, <fi#3>, 0
352B %vreg10<def> = t2LDRi12 <fi#2>, 0
368B %vreg11<def> = t2ADDri %vreg10, 1
384B t2STRi12 %vreg11, <fi#2>, 0
400B t2B <BB#3>
208r
320r
416B
432r
LiveRegMatrix
AH AL BH BL XMM31
V3
V3
V5
V0
V4
V1
V2
V6
RegUnit
LiveIntervalUnion
EAX => AH, AL
AX => AH, AL
AH => AH
AL => AL
Check Interference
unsigned LiveIntervalUnion::Query::
collectInterferingVRegs(unsigned MaxInterferingRegs) {
…
// Check for overlapping interference.
while (VirtRegI->start < LiveUnionI.stop() &&
VirtRegI->end > LiveUnionI.start()) {
// This is an overlap, record the interfering register.
LiveInterval *VReg = LiveUnionI.value();
if (VReg != RecentReg && !isSeenInterference(VReg)) {
RecentReg = VReg;
InterferingVRegs.push_back(VReg);
if (InterferingVRegs.size() >= MaxInterferingRegs)
return InterferingVRegs.size();
}
// This LiveUnion segment is no longer interesting.
if (!(++LiveUnionI).valid()) {
SeenAllInterferences = true;
return InterferingVRegs.size();
}
}
…
}
LiveIntervalUnion VirtReg
start()
stop()
start
end
start()
stop()
start
end
start()
stop()
start
end
start()
stop()
start
end
Check Interference
AH AL BH BL XMM31
V3
V3
V5
V0
V4
V1
V2
V6
V7
// Check the matrix for virtual register interference.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
if (query(VirtReg, *Units).checkInterference())
return IK_VirtReg;
Greedy Register
Allocation
Use Split to Improve RA
• Live Range Splitting
• Insert copy/re-materialize to split up live ranges
• hopefully reduces need for spilling
• Also control spill code placement
• Example
Q0
D0 D1
Q1
D2 D3
V1
V2
V3 V4
V5
Q0
D0 D1
Q1
D2 D3
V1
V2
V3 V4
V5
• No physical register for V1
Q0
D0 D1
Q1
D2 D3
V1
V2
V3 V4
V5
• Evict V2
Q0
D0 D1
Q1
D2 D3
V1
V2
V3V4
V5
stack
• Split V2
Q0
D0 D1
Q1
D2 D3
V1
V2b
V3V4
V5
V2a
V2c
• Split V2
Q0
D0 D1
Q1
D2 D3
V1
V2b
V3V4
V5
V2a
V2c
stack
Greedy RA Stages
• RS_New: created
• RS_Assign: enqueue
• RS_Split: need to split
• RS_Split2
• used for split products that may not be making progress
• RS_Spill: need to spill
• RS_Done: assigned a physical register or created by spill
RS_Split2
• The live intervals created by split will enqueue to
process again.
• There is a risk of creating infinite loops.
… = vreg1 …
… = vreg1 …
… = vreg1 …
vreg2 = COPY vreg1
… = vreg2 …
vreg3 = COPY vreg1
… = vreg3 …
… = vreg3 …
RS_New
RS_Split2
Greedy Register Allocation
try to assign physical register
(hint > zero cost reg > low cost reg)
try to evict to find better register
enter RS_Split
stage
try last chance
recoloring
split
spill
pick a physical register and evict all
interference
found
register
stage >= RS_Done stage < RS_Split
selectOrSplit(d+1)
enter RS_Done
stage
selectOrSplit(d)
Last Chance Recoloring
• Try to assign a color to VirtReg by recoloring its
interferences.
• The recoloring process may recursively use the
last chance recoloring. Therefore, when a virtual
register has been assigned a color by this
mechanism, it is marked as Fixed.
vA can use {R1, R2 }
vB can use { R2, R3}
vC can use {R1 }
vA => R1
vB => R2
vC => fails
vA => R2
vB => R3
vC => R1 (fixed)
How to Split?
is stage
beyond
RS_Spill?
is in one BB? tryLocalSplit
tryInstructionSplit
No
Yes
tryRegionSplit
is stage less
than RS_Split2?
No
spill
Yes
success?
No
success?
spill
No
tryBlockSplit
Yes
No
success?
No
success?
spill
No
done
Yes
Yes
done
Yes
Yes
BlockInfo
(LiveIn)
(LiveOut)
FirstInstr: First instruction accessing current reg.
LastInstr: Last instruction accessing current reg.
Live-through blocks without any uses don’t get BlockInfo entries.
tryLocalSplit
• Try to split virtual register interval into smaller
intervals inside its only basic block.
• calculate gap weights
• adjust the split region
Calculate Gap Weights
NumGaps = 4
Calculate Gap Weights
LI.weight
VirtReg LI
If there is a RegUnit occupied by VirtReg:0
0
Calculate Gap Weights
LI.weight
Fixed RegUnit
If there is a fixed RegUnit:0
0
huge_valf
Adjust Split Region
SplitAfter = 1
SplitBefore = 0
normalise
spill weight >
max gap
BestBefore = SplitBefore
BestAfter = SplitAfter
SplitAfter++
SplitBefore++
YesNo
normalise spill weight = spill cost / distance
= (#gap * block_freq) / distance(SplitBefore, SplitAfter)
Adjust Split Region
BestAfter
BestBefore
normalise
spill weight >
max gap
BestBefore = SplitBefore
BestAfter = SplitAfter
SplitAfter++
SplitBefore++
YesNo
normalise spill weight = spill cost / distance
= (#gap * block_freq) / distance(SplitBefore, SplitAfter)
RS_New
(or RS_Split2)
RS_New
Find the most critical range.
tryInstructionSplit
• Split a live range around individual instructions.
• Every “use” instruction has its own live interval.
tryBlockSplit
• Split a global live range around every block with
uses.
FirstInstr
LastInstr
tryRegionSplit
• For every physical register
• Prepare interference cache
• Construct Hopfield Network
• Construct block constraints
• Update Hopfield Network biases and values according to block
constraints
• Add links in Hopfield Network and iterate
• Get the best candidate (minimize split cost + spill cost)
• Do region split
Hopfield Network
• A form of recurrent artificial neural network popularised by John
Hopfield in 1982.
• Guaranteed to converge to a local minimum.
Hopfield Network
• Node: edge bundle
• Link: transparent basic blocks have the variable
live through.
• Energy function (the cost of spilling)
• Weight: block frequency
• Bias: according to block constraints
Block Constraints
No Interference
PrefReg
Intf.first()
MustSpill PrefSpill
FirstInstr
LastInstr
PrefReg
FirstInstr
LastInstr
FirstInstr
LastInstr
FirstInstr
LastInstr
PrefReg
MustSpill
FirstInstr
LastInstr
PrefReg
FirstInstr
LastInstr
FirstInstr
LastInstr
FirstInstr
LastInstr
PrefSpill
Last Split Point
Edge Bundle
BB #0
BB #1
BB #3
BB #2
BB #4 BB #5
BB #6
// Join the outgoing bundle with the ingoing bundles of all successors.
for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
SE = MBB.succ_end(); SI != SE; ++SI)
EC.join(OutE, 2 * (*SI)->getNumber());
EC:
(BB#0, in) Bundle #0: 0 0 0
(BB#0, out) Bundle #1: 1 1 1
(BB#1, in) Bundle #2: 2 1 1
(BB#1, out) Bundle #3: 3 3 2
(BB#2, in) Bundle #4: 4 3 2
(BB#2, out) Bundle #5: 5 5 3
(BB#3, in) Bundle #6: 6 5 3
(BB#3, out) Bundle #7: 7 7 4
(BB#4, in) Bundle #8: 8 7 4
(BB#4, out) Bundle #9: 9 5 3
(BB#5, in) Bundle #10: 10 7 4
(BB#5, out) Bundle #11: 11 1 1
(BB#6, in) Bundle #12: 12 3 2
(BB#6, out) Bundle #13: 13 13 5
void join(unsigned a, unsigned b) {
unsigned eca = EC[a];
unsigned ecb = EC[b];
while (eca != ecb)
if (eca < ecb)
EC[b] = eca, b = ecb, ecb = EC[b];
else
EC[a] = ecb, a = eca, eca = EC[a];
}
Edge Bundle
BB #0
BB #1
BB #3
BB #2
BB #4 BB #5
BB #6 Blocks:
Bundle #0: BB#0
Bundle #1: BB#0, BB#1, BB#5
Bundle #2: BB#1, BB#2, BB#6
Bundle #3: BB#2, BB#3, BB#4
Bundle #4: BB#3, BB#4, BB#5
Bundle #5: BB#6
Bundle #6:
Bundle #7:
Bundle #8:
Bundle #9:
Bundle #10:
Bundle #11:
Bundle #12:
Bundle #13:
EC:
(BB#0, in) Bundle #0: 0 0 0
(BB#0, out) Bundle #1: 1 1 1
(BB#1, in) Bundle #2: 2 1 1
(BB#1, out) Bundle #3: 3 3 2
(BB#2, in) Bundle #4: 4 3 2
(BB#2, out) Bundle #5: 5 5 3
(BB#3, in) Bundle #6: 6 5 3
(BB#3, out) Bundle #7: 7 7 4
(BB#4, in) Bundle #8: 8 7 4
(BB#4, out) Bundle #9: 9 5 3
(BB#5, in) Bundle #10: 10 7 4
(BB#5, out) Bundle #11: 11 1 1
(BB#6, in) Bundle #12: 12 3 2
(BB#6, out) Bundle #13: 13 13 5
Edge Bundle
BB #0
BB #1
BB #3
BB #2
BB #4 BB #5
BB #6 Blocks:
Bundle #0: BB#0
Bundle #1: BB#0, BB#1, BB#5
Bundle #2: BB#1, BB#2, BB#6
Bundle #3: BB#2, BB#3, BB#4
Bundle #4: BB#3, BB#4, BB#5
Bundle #5: BB#6
Bundle #6:
Bundle #7:
Bundle #8:
Bundle #9:
Bundle #10:
Bundle #11:
Bundle #12:
Bundle #13:
EC:
(BB#0, in) Bundle #0: 0 0 0
(BB#0, out) Bundle #1: 1 1 1
(BB#1, in) Bundle #2: 2 1 1
(BB#1, out) Bundle #3: 3 3 2
(BB#2, in) Bundle #4: 4 3 2
(BB#2, out) Bundle #5: 5 5 3
(BB#3, in) Bundle #6: 6 5 3
(BB#3, out) Bundle #7: 7 7 4
(BB#4, in) Bundle #8: 8 7 4
(BB#4, out) Bundle #9: 9 5 3
(BB#5, in) Bundle #10: 10 7 4
(BB#5, out) Bundle #11: 11 1 1
(BB#6, in) Bundle #12: 12 3 2
(BB#6, out) Bundle #13: 13 13 5
Edge Bundle
BB #0
BB #1
BB #3
BB #2
BB #4 BB #5
BB #6 Blocks:
Bundle #0: BB#0
Bundle #1: BB#0, BB#1, BB#5
Bundle #2: BB#1, BB#2, BB#6
Bundle #3: BB#2, BB#3, BB#4
Bundle #4: BB#3, BB#4, BB#5
Bundle #5: BB#6
Bundle #6:
Bundle #7:
Bundle #8:
Bundle #9:
Bundle #10:
Bundle #11:
Bundle #12:
Bundle #13:
EC:
(BB#0, in) Bundle #0: 0 0 0
(BB#0, out) Bundle #1: 1 1 1
(BB#1, in) Bundle #2: 2 1 1
(BB#1, out) Bundle #3: 3 3 2
(BB#2, in) Bundle #4: 4 3 2
(BB#2, out) Bundle #5: 5 5 3
(BB#3, in) Bundle #6: 6 5 3
(BB#3, out) Bundle #7: 7 7 4
(BB#4, in) Bundle #8: 8 7 4
(BB#4, out) Bundle #9: 9 5 3
(BB#5, in) Bundle #10: 10 7 4
(BB#5, out) Bundle #11: 11 1 1
(BB#6, in) Bundle #12: 12 3 2
(BB#6, out) Bundle #13: 13 13 5
Edge Bundle
BB #0
BB #1
BB #3
BB #2
BB #4 BB #5
BB #6 Blocks:
Bundle #0: BB#0
Bundle #1: BB#0, BB#1, BB#5
Bundle #2: BB#1, BB#2, BB#6
Bundle #3: BB#2, BB#3, BB#4
Bundle #4: BB#3, BB#4, BB#5
Bundle #5: BB#6
Bundle #6:
Bundle #7:
Bundle #8:
Bundle #9:
Bundle #10:
Bundle #11:
Bundle #12:
Bundle #13:
EC:
(BB#0, in) Bundle #0: 0 0 0
(BB#0, out) Bundle #1: 1 1 1
(BB#1, in) Bundle #2: 2 1 1
(BB#1, out) Bundle #3: 3 3 2
(BB#2, in) Bundle #4: 4 3 2
(BB#2, out) Bundle #5: 5 5 3
(BB#3, in) Bundle #6: 6 5 3
(BB#3, out) Bundle #7: 7 7 4
(BB#4, in) Bundle #8: 8 7 4
(BB#4, out) Bundle #9: 9 5 3
(BB#5, in) Bundle #10: 10 7 4
(BB#5, out) Bundle #11: 11 1 1
(BB#6, in) Bundle #12: 12 3 2
(BB#6, out) Bundle #13: 13 13 5
Edge Bundle
BB #0
BB #1
BB #3
BB #2
BB #4 BB #5
BB #6 Blocks:
Bundle #0: BB#0
Bundle #1: BB#0, BB#1, BB#5
Bundle #2: BB#1, BB#2, BB#6
Bundle #3: BB#2, BB#3, BB#4
Bundle #4: BB#3, BB#4, BB#5
Bundle #5: BB#6
Bundle #6:
Bundle #7:
Bundle #8:
Bundle #9:
Bundle #10:
Bundle #11:
Bundle #12:
Bundle #13:
EC:
(BB#0, in) Bundle #0: 0 0 0
(BB#0, out) Bundle #1: 1 1 1
(BB#1, in) Bundle #2: 2 1 1
(BB#1, out) Bundle #3: 3 3 2
(BB#2, in) Bundle #4: 4 3 2
(BB#2, out) Bundle #5: 5 5 3
(BB#3, in) Bundle #6: 6 5 3
(BB#3, out) Bundle #7: 7 7 4
(BB#4, in) Bundle #8: 8 7 4
(BB#4, out) Bundle #9: 9 5 3
(BB#5, in) Bundle #10: 10 7 4
(BB#5, out) Bundle #11: 11 1 1
(BB#6, in) Bundle #12: 12 3 2
(BB#6, out) Bundle #13: 13 13 5
Edge Bundle
BB #0
BB #1
BB #3
BB #2
BB #4 BB #5
BB #6 Blocks:
Bundle #0: BB#0
Bundle #1: BB#0, BB#1, BB#5
Bundle #2: BB#1, BB#2, BB#6
Bundle #3: BB#2, BB#3, BB#4
Bundle #4: BB#3, BB#4, BB#5
Bundle #5: BB#6
Bundle #6:
Bundle #7:
Bundle #8:
Bundle #9:
Bundle #10:
Bundle #11:
Bundle #12:
Bundle #13:
EC:
(BB#0, in) Bundle #0: 0 0 0
(BB#0, out) Bundle #1: 1 1 1
(BB#1, in) Bundle #2: 2 1 1
(BB#1, out) Bundle #3: 3 3 2
(BB#2, in) Bundle #4: 4 3 2
(BB#2, out) Bundle #5: 5 5 3
(BB#3, in) Bundle #6: 6 5 3
(BB#3, out) Bundle #7: 7 7 4
(BB#4, in) Bundle #8: 8 7 4
(BB#4, out) Bundle #9: 9 5 3
(BB#5, in) Bundle #10: 10 7 4
(BB#5, out) Bundle #11: 11 1 1
(BB#6, in) Bundle #12: 12 3 2
(BB#6, out) Bundle #13: 13 13 5
Edge Bundle
BB #0
BB #1
BB #3
BB #2
BB #4 BB #5
BB #6 Blocks:
Bundle #0: BB#0
Bundle #1: BB#0, BB#1, BB#5
Bundle #2: BB#1, BB#2, BB#6
Bundle #3: BB#2, BB#3, BB#4
Bundle #4: BB#3, BB#4, BB#5
Bundle #5: BB#6
Bundle #6:
Bundle #7:
Bundle #8:
Bundle #9:
Bundle #10:
Bundle #11:
Bundle #12:
Bundle #13:
EC:
(BB#0, in) Bundle #0: 0 0 0
(BB#0, out) Bundle #1: 1 1 1
(BB#1, in) Bundle #2: 2 1 1
(BB#1, out) Bundle #3: 3 3 2
(BB#2, in) Bundle #4: 4 3 2
(BB#2, out) Bundle #5: 5 5 3
(BB#3, in) Bundle #6: 6 5 3
(BB#3, out) Bundle #7: 7 7 4
(BB#4, in) Bundle #8: 8 7 4
(BB#4, out) Bundle #9: 9 5 3
(BB#5, in) Bundle #10: 10 7 4
(BB#5, out) Bundle #11: 11 1 1
(BB#6, in) Bundle #12: 12 3 2
(BB#6, out) Bundle #13: 13 13 5
SpillPlacement::addConstraints
• update BiasN, BiasP according to BorderConstraint
BB #n (freq)
… = Y op …
PrefReg
PrefSpill
Bundle ib
BiasP += freq
Bundle ob
BiasN += freq
void addBias(BlockFrequency freq, BorderConstraint direction) {
switch (direction) {
default:
break;
case PrefReg:
BiasP += freq;
break;
case PrefSpill:
BiasN += freq;
break;
case MustSpill:
BiasN = BlockFrequency::getMaxFrequency(); // (uint64_t)-1ULL
break;
}
}
Hopfield Network Node
• Node.update(nodes, Threshold)
Bundle X
BiasN
BiasP
Value
Bundle A
Value = -1
Bundle B
Value = 1
Bundle C
Value = 1
Bundle D
Value = 1
Links
SumN = BiasN + freqA
SunP = BiasP + freqB + freqC + freqD
(freqA, A) (freqB, B) (freqC, C) (freqD, D)
if (SumN >= SumP + Threshold)
Value = -1;
else if (SumP >= SumN + Threshold)
Value = 1;
else
Value = 0;
Grow Region
• Live through blocks in positive bundles.
No Interference
Intf.first()
MustSpill PrefSpill
Used as links
between bundles
SpillPlacement::addConstraints
Intf.last()
MustSpill PrefSpill
SpillPlacement::addLinks
BB #n (freq)
Bundle ib
Bundle ob
Bundle ib
Bundle ob
(freq, ob)
(freq, ib)
SpillPlacement::iterate
for (unsigned iteration = 0; iteration != 10; ++iteration) {
bool Changed = false;
for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
E = Linked.rend(); I != E; ++I) {
unsigned n = *I;
if (nodes[n].update(nodes, Threshold)) {
Changed = true;
if (nodes[n].preferReg())
RecentPositive.push_back(n);
}
}
if (!Changed || !RecentPositive.empty())
return;
Changed = false;
for (SmallVectorImpl<unsigned>::const_iterator I =
std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
unsigned n = *I;
if (nodes[n].update(nodes, Threshold)) {
Changed = true;
if (nodes[n].preferReg())
RecentPositive.push_back(n);
}
}
if (!Changed || !RecentPositive.empty())
return;
}
Spill Cost
No Interference
PrefReg
Intf.first()
MustSpill PrefSpill
FirstInstr
LastInstr
PrefReg
FirstInstr
LastInstr
FirstInstr
LastInstr
FirstInstr
LastInstr
PrefReg
MustSpill
FirstInstr
LastInstr
PrefReg
FirstInstr
LastInstr
FirstInstr
LastInstr
FirstInstr
LastInstr
PrefSpill
Last Split Point
++Ins ++Ins ++Ins
++Ins ++Ins ++Ins
Cost = Block_Frequency * Ins
Split Cost
BB #n (freq)
… = Y op …
Bundle ib
Value
Bundle ob
Value
Use Block
RegIn
RegOut
BC.Entry
BC.Exit
if (BI.LiveIn)
Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
if (BI.LiveOut)
Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
while (Ins--)
GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
Live Through
BB #n (freq)
Bundle ib
Value
Bundle ob
Value
RegIn
RegOut
RegIn RegOut Cost
0 0 0
0 1 freq
1 0 freq
1 1 2 x freq
(interfer)
The Best Candidate
• For all physical registers, calculate region split
cost.
• Cost = block constraints cost (spill cost) + global
split cost
• The best candidate has the lowest cost.
Split
• splitLiveThroughBlock
• splitRegInBlock
• splitRegOutBlock
splitLiveThroughBlock
Bundle ib
Value == 1
Bundle ob
Value != 1
Live Through
LiveOut on Stack
first non-PHI
Start
New Int
Bundle ib
Value != 1
Bundle ob
Value == 1
Live Through
LiveIn on Stack
last split point
End
New Int
Live Through
No Interference
Bundle ib
Value == 1
Bundle ob
Value == 1
End
New Int
Start
splitLiveThroughBlock
Bundle ib
Value == 1
Bundle ob
Value == 1
LiveThrough
Non-overlapping interference
New Int
Interference.fist()
Interference.last()
New Int
Bundle ib
Value == 1
Bundle ob
Value == 1
LiveThrough
Overlapping interference
New Int
Interference.fist()
Interference.last()
New Int
splitRegInBlock
Bundle ib
Value == 1
No LiveOut
Interference after kill
Start
New Int
Bundle ib
Value == 1
Bundle ob
Value != 1
LiveOut on Stack
Interference after last use
LiveOut on Stack
Interference after last use
Interference.fist()
LastInstr
LastInstr
last split point
New Int
Start
Bundle ib
Value == 1
Bundle ob
Value != 1
LastInstr
last split point
New Int
Start
Interference.fist()
Interference.fist()
splitRegInBlock
Bundle ib
Value == 1
LiveOut on Stack
Interference overlapping uses
Start
New Int
Bundle ib
Value == 1
Interference.fist()
LastInstr
last split point
New Int
Start
New Int
Interference.fist()
LastInstr
last split point
New Int
Bundle ob
Value != 1
Bundle ob
Value != 1
LiveOut on Stack
Interference overlapping uses
splitRegOutBlock
No LiveIn
Interference before def
End
New Int
Bundle ib
Value != 1
Bundle ob
Value == 1
Live Through
Interference before def
Live Through
Interference overlapping uses
Interference.last()
FirstInstr
Bundle ib
Value != 1
Bundle ob
Value == 1
Bundle ob
Value == 1
End
New Int
Interference.last()
FirstInstr
last split point
End
New Int
Interference.last()
FirstInstr
New Int

Contenu connexe

Tendances

LLVMで遊ぶ(整数圧縮とか、x86向けの自動ベクトル化とか)
LLVMで遊ぶ(整数圧縮とか、x86向けの自動ベクトル化とか)LLVMで遊ぶ(整数圧縮とか、x86向けの自動ベクトル化とか)
LLVMで遊ぶ(整数圧縮とか、x86向けの自動ベクトル化とか)Takeshi Yamamuro
 
LLVM Backend の紹介
LLVM Backend の紹介LLVM Backend の紹介
LLVM Backend の紹介Akira Maruoka
 
SystemC Tutorial
SystemC TutorialSystemC Tutorial
SystemC Tutorialkocha2012
 
constexpr関数はコンパイル時処理。これはいい。実行時が霞んで見える。cpuの嬌声が聞こえてきそうだ
constexpr関数はコンパイル時処理。これはいい。実行時が霞んで見える。cpuの嬌声が聞こえてきそうだconstexpr関数はコンパイル時処理。これはいい。実行時が霞んで見える。cpuの嬌声が聞こえてきそうだ
constexpr関数はコンパイル時処理。これはいい。実行時が霞んで見える。cpuの嬌声が聞こえてきそうだGenya Murakami
 
新しい並列for構文のご提案
新しい並列for構文のご提案新しい並列for構文のご提案
新しい並列for構文のご提案yohhoy
 
ROP 輕鬆談
ROP 輕鬆談ROP 輕鬆談
ROP 輕鬆談hackstuff
 
BUD17-302: LLVM Internals #2
BUD17-302: LLVM Internals #2 BUD17-302: LLVM Internals #2
BUD17-302: LLVM Internals #2 Linaro
 
Fun with Network Interfaces
Fun with Network InterfacesFun with Network Interfaces
Fun with Network InterfacesKernel TLV
 
0章 Linuxカーネルを読む前に最低限知っておくべきこと
0章 Linuxカーネルを読む前に最低限知っておくべきこと0章 Linuxカーネルを読む前に最低限知っておくべきこと
0章 Linuxカーネルを読む前に最低限知っておくべきことmao999
 
高速な倍精度指数関数expの実装
高速な倍精度指数関数expの実装高速な倍精度指数関数expの実装
高速な倍精度指数関数expの実装MITSUNARI Shigeo
 
DWARF Data Representation
DWARF Data RepresentationDWARF Data Representation
DWARF Data RepresentationWang Hsiangkai
 
Linux Networking Explained
Linux Networking ExplainedLinux Networking Explained
Linux Networking ExplainedThomas Graf
 
冬のLock free祭り safe
冬のLock free祭り safe冬のLock free祭り safe
冬のLock free祭り safeKumazaki Hiroki
 
Binary exploitation - AIS3
Binary exploitation - AIS3Binary exploitation - AIS3
Binary exploitation - AIS3Angel Boy
 
LinuxCon 2015 Linux Kernel Networking Walkthrough
LinuxCon 2015 Linux Kernel Networking WalkthroughLinuxCon 2015 Linux Kernel Networking Walkthrough
LinuxCon 2015 Linux Kernel Networking WalkthroughThomas Graf
 
How to write a TableGen backend
How to write a TableGen backendHow to write a TableGen backend
How to write a TableGen backendMin-Yih Hsu
 

Tendances (20)

LLVMで遊ぶ(整数圧縮とか、x86向けの自動ベクトル化とか)
LLVMで遊ぶ(整数圧縮とか、x86向けの自動ベクトル化とか)LLVMで遊ぶ(整数圧縮とか、x86向けの自動ベクトル化とか)
LLVMで遊ぶ(整数圧縮とか、x86向けの自動ベクトル化とか)
 
LLVM Backend の紹介
LLVM Backend の紹介LLVM Backend の紹介
LLVM Backend の紹介
 
Linux Network Stack
Linux Network StackLinux Network Stack
Linux Network Stack
 
SystemC Tutorial
SystemC TutorialSystemC Tutorial
SystemC Tutorial
 
constexpr関数はコンパイル時処理。これはいい。実行時が霞んで見える。cpuの嬌声が聞こえてきそうだ
constexpr関数はコンパイル時処理。これはいい。実行時が霞んで見える。cpuの嬌声が聞こえてきそうだconstexpr関数はコンパイル時処理。これはいい。実行時が霞んで見える。cpuの嬌声が聞こえてきそうだ
constexpr関数はコンパイル時処理。これはいい。実行時が霞んで見える。cpuの嬌声が聞こえてきそうだ
 
C++ マルチスレッド 入門
C++ マルチスレッド 入門C++ マルチスレッド 入門
C++ マルチスレッド 入門
 
新しい並列for構文のご提案
新しい並列for構文のご提案新しい並列for構文のご提案
新しい並列for構文のご提案
 
ROP 輕鬆談
ROP 輕鬆談ROP 輕鬆談
ROP 輕鬆談
 
BUD17-302: LLVM Internals #2
BUD17-302: LLVM Internals #2 BUD17-302: LLVM Internals #2
BUD17-302: LLVM Internals #2
 
たのしい関数型
たのしい関数型たのしい関数型
たのしい関数型
 
Fun with Network Interfaces
Fun with Network InterfacesFun with Network Interfaces
Fun with Network Interfaces
 
0章 Linuxカーネルを読む前に最低限知っておくべきこと
0章 Linuxカーネルを読む前に最低限知っておくべきこと0章 Linuxカーネルを読む前に最低限知っておくべきこと
0章 Linuxカーネルを読む前に最低限知っておくべきこと
 
高速な倍精度指数関数expの実装
高速な倍精度指数関数expの実装高速な倍精度指数関数expの実装
高速な倍精度指数関数expの実装
 
DWARF Data Representation
DWARF Data RepresentationDWARF Data Representation
DWARF Data Representation
 
Linux Networking Explained
Linux Networking ExplainedLinux Networking Explained
Linux Networking Explained
 
冬のLock free祭り safe
冬のLock free祭り safe冬のLock free祭り safe
冬のLock free祭り safe
 
Binary exploitation - AIS3
Binary exploitation - AIS3Binary exploitation - AIS3
Binary exploitation - AIS3
 
LinuxCon 2015 Linux Kernel Networking Walkthrough
LinuxCon 2015 Linux Kernel Networking WalkthroughLinuxCon 2015 Linux Kernel Networking Walkthrough
LinuxCon 2015 Linux Kernel Networking Walkthrough
 
Qemu JIT Code Generator and System Emulation
Qemu JIT Code Generator and System EmulationQemu JIT Code Generator and System Emulation
Qemu JIT Code Generator and System Emulation
 
How to write a TableGen backend
How to write a TableGen backendHow to write a TableGen backend
How to write a TableGen backend
 

Similaire à LLVM Register Allocation

Adam Sitnik "State of the .NET Performance"
Adam Sitnik "State of the .NET Performance"Adam Sitnik "State of the .NET Performance"
Adam Sitnik "State of the .NET Performance"Yulia Tsisyk
 
State of the .Net Performance
State of the .Net PerformanceState of the .Net Performance
State of the .Net PerformanceCUSTIS
 
Where the wild things are - Benchmarking and Micro-Optimisations
Where the wild things are - Benchmarking and Micro-OptimisationsWhere the wild things are - Benchmarking and Micro-Optimisations
Where the wild things are - Benchmarking and Micro-OptimisationsMatt Warren
 
Happy To Use SIMD
Happy To Use SIMDHappy To Use SIMD
Happy To Use SIMDWei-Ta Wang
 
How Triton can help to reverse virtual machine based software protections
How Triton can help to reverse virtual machine based software protectionsHow Triton can help to reverse virtual machine based software protections
How Triton can help to reverse virtual machine based software protectionsJonathan Salwan
 
Demystify eBPF JIT Compiler
Demystify eBPF JIT CompilerDemystify eBPF JIT Compiler
Demystify eBPF JIT CompilerNetronome
 
Reverse Engineering Dojo: Enhancing Assembly Reading Skills
Reverse Engineering Dojo: Enhancing Assembly Reading SkillsReverse Engineering Dojo: Enhancing Assembly Reading Skills
Reverse Engineering Dojo: Enhancing Assembly Reading SkillsAsuka Nakajima
 
Devirtualizing FinSpy
Devirtualizing FinSpyDevirtualizing FinSpy
Devirtualizing FinSpyjduart
 
Ice mini guide
Ice mini guideIce mini guide
Ice mini guideAdy Liu
 
Clojure concurrency
Clojure concurrencyClojure concurrency
Clojure concurrencyAlex Navis
 
LSFMM 2019 BPF Observability
LSFMM 2019 BPF ObservabilityLSFMM 2019 BPF Observability
LSFMM 2019 BPF ObservabilityBrendan Gregg
 
Day2 Verilog HDL Basic
Day2 Verilog HDL BasicDay2 Verilog HDL Basic
Day2 Verilog HDL BasicRon Liu
 
07 140430-ipp-languages used in llvm during compilation
07 140430-ipp-languages used in llvm during compilation07 140430-ipp-languages used in llvm during compilation
07 140430-ipp-languages used in llvm during compilationAdam Husár
 
Cvim half precision floating point
Cvim half precision floating pointCvim half precision floating point
Cvim half precision floating pointtomoaki0705
 
Using Smalltalk for controlling robotics systems
Using Smalltalk for controlling robotics systemsUsing Smalltalk for controlling robotics systems
Using Smalltalk for controlling robotics systemsSerge Stinckwich
 

Similaire à LLVM Register Allocation (20)

Adam Sitnik "State of the .NET Performance"
Adam Sitnik "State of the .NET Performance"Adam Sitnik "State of the .NET Performance"
Adam Sitnik "State of the .NET Performance"
 
State of the .Net Performance
State of the .Net PerformanceState of the .Net Performance
State of the .Net Performance
 
Where the wild things are - Benchmarking and Micro-Optimisations
Where the wild things are - Benchmarking and Micro-OptimisationsWhere the wild things are - Benchmarking and Micro-Optimisations
Where the wild things are - Benchmarking and Micro-Optimisations
 
Happy To Use SIMD
Happy To Use SIMDHappy To Use SIMD
Happy To Use SIMD
 
How Triton can help to reverse virtual machine based software protections
How Triton can help to reverse virtual machine based software protectionsHow Triton can help to reverse virtual machine based software protections
How Triton can help to reverse virtual machine based software protections
 
Demystify eBPF JIT Compiler
Demystify eBPF JIT CompilerDemystify eBPF JIT Compiler
Demystify eBPF JIT Compiler
 
Reverse Engineering Dojo: Enhancing Assembly Reading Skills
Reverse Engineering Dojo: Enhancing Assembly Reading SkillsReverse Engineering Dojo: Enhancing Assembly Reading Skills
Reverse Engineering Dojo: Enhancing Assembly Reading Skills
 
embedded C.pptx
embedded C.pptxembedded C.pptx
embedded C.pptx
 
Devirtualizing FinSpy
Devirtualizing FinSpyDevirtualizing FinSpy
Devirtualizing FinSpy
 
Ice mini guide
Ice mini guideIce mini guide
Ice mini guide
 
Vectorization in ATLAS
Vectorization in ATLASVectorization in ATLAS
Vectorization in ATLAS
 
Clojure concurrency
Clojure concurrencyClojure concurrency
Clojure concurrency
 
Forgive me for i have allocated
Forgive me for i have allocatedForgive me for i have allocated
Forgive me for i have allocated
 
LSFMM 2019 BPF Observability
LSFMM 2019 BPF ObservabilityLSFMM 2019 BPF Observability
LSFMM 2019 BPF Observability
 
Day2 Verilog HDL Basic
Day2 Verilog HDL BasicDay2 Verilog HDL Basic
Day2 Verilog HDL Basic
 
Interpreter, Compiler, JIT from scratch
Interpreter, Compiler, JIT from scratchInterpreter, Compiler, JIT from scratch
Interpreter, Compiler, JIT from scratch
 
07 140430-ipp-languages used in llvm during compilation
07 140430-ipp-languages used in llvm during compilation07 140430-ipp-languages used in llvm during compilation
07 140430-ipp-languages used in llvm during compilation
 
Cvim half precision floating point
Cvim half precision floating pointCvim half precision floating point
Cvim half precision floating point
 
Solr @ Etsy - Apache Lucene Eurocon
Solr @ Etsy - Apache Lucene EuroconSolr @ Etsy - Apache Lucene Eurocon
Solr @ Etsy - Apache Lucene Eurocon
 
Using Smalltalk for controlling robotics systems
Using Smalltalk for controlling robotics systemsUsing Smalltalk for controlling robotics systems
Using Smalltalk for controlling robotics systems
 

Plus de Wang Hsiangkai

Plus de Wang Hsiangkai (10)

Debug Line Issues After Relaxation.
Debug Line Issues After Relaxation.Debug Line Issues After Relaxation.
Debug Line Issues After Relaxation.
 
Machine Trace Metrics
Machine Trace MetricsMachine Trace Metrics
Machine Trace Metrics
 
GCC LTO
GCC LTOGCC LTO
GCC LTO
 
LTO plugin
LTO pluginLTO plugin
LTO plugin
 
Something About Dynamic Linking
Something About Dynamic LinkingSomething About Dynamic Linking
Something About Dynamic Linking
 
Effective Modern C++
Effective Modern C++Effective Modern C++
Effective Modern C++
 
GCC GENERIC
GCC GENERICGCC GENERIC
GCC GENERIC
 
Perf File Format
Perf File FormatPerf File Format
Perf File Format
 
Introduction to Perf
Introduction to PerfIntroduction to Perf
Introduction to Perf
 
SSA - PHI-functions Placements
SSA - PHI-functions PlacementsSSA - PHI-functions Placements
SSA - PHI-functions Placements
 

Dernier

Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Andreas Granig
 
Xen Safety Embedded OSS Summit April 2024 v4.pdf
Xen Safety Embedded OSS Summit April 2024 v4.pdfXen Safety Embedded OSS Summit April 2024 v4.pdf
Xen Safety Embedded OSS Summit April 2024 v4.pdfStefano Stabellini
 
Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Hr365.us smith
 
How To Manage Restaurant Staff -BTRESTRO
How To Manage Restaurant Staff -BTRESTROHow To Manage Restaurant Staff -BTRESTRO
How To Manage Restaurant Staff -BTRESTROmotivationalword821
 
Innovate and Collaborate- Harnessing the Power of Open Source Software.pdf
Innovate and Collaborate- Harnessing the Power of Open Source Software.pdfInnovate and Collaborate- Harnessing the Power of Open Source Software.pdf
Innovate and Collaborate- Harnessing the Power of Open Source Software.pdfYashikaSharma391629
 
Cloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEECloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEEVICTOR MAESTRE RAMIREZ
 
Salesforce Implementation Services PPT By ABSYZ
Salesforce Implementation Services PPT By ABSYZSalesforce Implementation Services PPT By ABSYZ
Salesforce Implementation Services PPT By ABSYZABSYZ Inc
 
How to submit a standout Adobe Champion Application
How to submit a standout Adobe Champion ApplicationHow to submit a standout Adobe Champion Application
How to submit a standout Adobe Champion ApplicationBradBedford3
 
PREDICTING RIVER WATER QUALITY ppt presentation
PREDICTING  RIVER  WATER QUALITY  ppt presentationPREDICTING  RIVER  WATER QUALITY  ppt presentation
PREDICTING RIVER WATER QUALITY ppt presentationvaddepallysandeep122
 
React Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaReact Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaHanief Utama
 
Powering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsPowering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsSafe Software
 
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfGOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfAlina Yurenko
 
MYjobs Presentation Django-based project
MYjobs Presentation Django-based projectMYjobs Presentation Django-based project
MYjobs Presentation Django-based projectAnoyGreter
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...confluent
 
Balasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
Balasore Best It Company|| Top 10 IT Company || Balasore Software company OdishaBalasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
Balasore Best It Company|| Top 10 IT Company || Balasore Software company Odishasmiwainfosol
 
Unveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsUnveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsAhmed Mohamed
 
Cyber security and its impact on E commerce
Cyber security and its impact on E commerceCyber security and its impact on E commerce
Cyber security and its impact on E commercemanigoyal112
 
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Matt Ray
 
VK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web DevelopmentVK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web Developmentvyaparkranti
 

Dernier (20)

Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024
 
Xen Safety Embedded OSS Summit April 2024 v4.pdf
Xen Safety Embedded OSS Summit April 2024 v4.pdfXen Safety Embedded OSS Summit April 2024 v4.pdf
Xen Safety Embedded OSS Summit April 2024 v4.pdf
 
Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)
 
How To Manage Restaurant Staff -BTRESTRO
How To Manage Restaurant Staff -BTRESTROHow To Manage Restaurant Staff -BTRESTRO
How To Manage Restaurant Staff -BTRESTRO
 
Innovate and Collaborate- Harnessing the Power of Open Source Software.pdf
Innovate and Collaborate- Harnessing the Power of Open Source Software.pdfInnovate and Collaborate- Harnessing the Power of Open Source Software.pdf
Innovate and Collaborate- Harnessing the Power of Open Source Software.pdf
 
Cloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEECloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEE
 
Salesforce Implementation Services PPT By ABSYZ
Salesforce Implementation Services PPT By ABSYZSalesforce Implementation Services PPT By ABSYZ
Salesforce Implementation Services PPT By ABSYZ
 
Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort ServiceHot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
 
How to submit a standout Adobe Champion Application
How to submit a standout Adobe Champion ApplicationHow to submit a standout Adobe Champion Application
How to submit a standout Adobe Champion Application
 
PREDICTING RIVER WATER QUALITY ppt presentation
PREDICTING  RIVER  WATER QUALITY  ppt presentationPREDICTING  RIVER  WATER QUALITY  ppt presentation
PREDICTING RIVER WATER QUALITY ppt presentation
 
React Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaReact Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief Utama
 
Powering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsPowering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data Streams
 
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfGOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
 
MYjobs Presentation Django-based project
MYjobs Presentation Django-based projectMYjobs Presentation Django-based project
MYjobs Presentation Django-based project
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
 
Balasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
Balasore Best It Company|| Top 10 IT Company || Balasore Software company OdishaBalasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
Balasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
 
Unveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsUnveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML Diagrams
 
Cyber security and its impact on E commerce
Cyber security and its impact on E commerceCyber security and its impact on E commerce
Cyber security and its impact on E commerce
 
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
 
VK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web DevelopmentVK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web Development
 

LLVM Register Allocation

  • 2. Outline • Introduction to Register Allocation Problem • LLVM Base Register Allocation Interface • LLVM Basic Register Allocation • LLVM Greedy Register Allocation
  • 3. Introduction to Register Allocation • Definition • Register allocation is the problem of mapping program variables to either machine registers or memory addresses. • Best solution • minimise the number of loads/stores from/to memory • NP-complete
  • 4. int main() { int i, j; int answer; for (i = 1; i < 10; i++) for (j = 1; j < 10; j++) { answer = i * j; } return 0; } _main: @ BB#0: sub sp, #16 movs r0, #0 str r0, [sp, #12] movs r0, #1 str r0, [sp, #8] b LBB0_2 LBB0_1: adds r1, #1 str r1, [sp, #8] LBB0_2: ldr r1, [sp, #8] cmp r1, #9 bgt LBB0_6 @ BB#3: str r0, [sp, #4] b LBB0_5 LBB0_4: ldr r2, [sp, #4] muls r1, r2, r1 str r1, [sp] ldr r1, [sp, #4] adds r1, #1
  • 5. Graph Coloring • For an arbitrary graph G; a coloring of G assigns a color to each node in G so that no pair of adjacent nodes have the same color. 2-colorable 3-colorable
  • 6. Graph Coloring for RA • Node: Live interval • Edge: Two live intervals have interference • Color: Physical register • Find a feasible colouring for the graph
  • 7. … a0 = … b0 = … … = b0 d0 = … c0 = … … d1 = c0 … = a0 … = d1 B0 B1 B2 B3 … LIa = … LIb = … … = LIb LIc = … … LId = LIc … = LIa … = LId B0 B1 B2 B3
  • 8. LRa LRb LRc LRd … LIa = … LIb = … … = LIb LIc = … … LId = LIc … = LIa … = LId B0 B1 B2 B3 An Example from “Engineering A Compiler”
  • 9. Why Not Graph Coloring • Interference graph is expensive to build • Spill code placement is more important than colouring • Need to model aliases and overlapping register classes • Flexibility is more important than the coloring algorithm (Adopted from “Register Allocation in LLVM 3.0”)
  • 10. Excerpt from tricore_llvm.pdf SSA Properties * Each definition in the procedure creates a unique name. * Each use refers to a single definition.
  • 11. LLVM Register Allocation • Basic • Provide a minimal implementation of the basic register allocator • Greedy • Global live range splitting. • Fast • This register allocator allocates registers to a basic block at a time. • PBQP • Partitioned Boolean Quadratic Programming (PBQP) based register allocator for LLVM
  • 12. LLVM Base Register Allocation Interface Calculate LiveInterval Weight Enqueue All LiveInterval selectOrSplit for One LiveInterval Assign the Physical Register Enqueue Split LiveInterval dequeue physical register is available split live interval update LiveInterval.weight (spill cost) allocatePhysRegs enqueue seedLiveRegs Q customised by new RA algorithm for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; enqueue(&LIS->getInterval(Reg)); }
  • 13. LLVM Basic Register Allocation Calculate LiveInterval Weight Enqueue All LiveInterval RABasic::selectOrSplit Assign the Physical Register Enqueue Split LiveInterval dequeue physical register is available split live interval update LiveInterval.weight (spill cost) allocatePhysRegs enqueue seedLiveRegs priority Q (spill cost) customised by RABasic algorithm struct CompSpillWeight { bool operator()(LiveInterval *A, LiveInterval *B) const { return A->weight < B->weight; } }; // Check for an available register in this class. AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); while (unsigned PhysReg = Order.next()) { // Check for interference in PhysReg switch (Matrix->checkInterference(VirtReg, PhysReg)) { case LiveRegMatrix::IK_Free: // PhysReg is available, allocate it. return PhysReg; case LiveRegMatrix::IK_VirtReg: // Only virtual registers in the way, we may be able to spill them. PhysRegSpillCands.push_back(PhysReg); continue; default: // RegMask or RegUnit interference. continue; } }
  • 14. LiveInterval Weight • Weight for one instruction with the register • weight = (isDef + isUse) * (Block Frequency / Entry Frequency) • loop induction variable: weight *= 3 • For all instructions with the register • totalWeight += weight • Hint: totalWeight *= 1.01 • Re-materializable: totalWeight *= 0.5 • LiveInterval.weight = totalWeight / size of LiveInterval
  • 15. Matrix->checkInterference() • How to represent live/dead points? • SlotIndex • How to represent a value? • VNInfo • How to represent a live interval? • LiveInterval • How to check interference between live intervals? • LiveIntervalUnion & LiveRegMatrix
  • 16. Liveness Slot • There are four kind of slots to describe a position at which a register can become live, or cease to be live. • Block (B) • entering or leaving a block • PHI-def • Early Clobber (e) • kill slot for early-clobber def • A = A op B ( ) • Register (r) • normal register use/def slot • Dead (d) • dead def ********** INTERVALS ********** %vreg0 [208r,320r:0)[416B,432r:0) 0@208r %vreg1 [16r,32r:0) 0@16r %vreg2 [48r,480B:0) 0@48r %vreg3 [96r,112r:0) 0@96r %vreg4 [496r,512r:0) 0@496r %vreg6 [224r,240r:0) 0@224r %vreg7 [432r,448r:0) 0@432r %vreg8 [304r,320r:0) 0@304r %vreg9 [320r,336r:0) 0@320r %vreg10 [352r,368r:0) 0@352r %vreg11 [368r,384r:0) 0@368r
  • 17. SlotIndex ((MachineInstr *, index), slot) Slot_Block Slot_EarlyClobber Slot_Register Slot_Dead unsigned getIndex() const { return listEntry()->getIndex() | getSlot(); } listEntry()
  • 18. Numbering of Machine Instruction 0B BB#0: derived from LLVM BB %entry 16B %vreg1<def> = t2MOVi 0, pred:14, pred:%noreg, opt:%noreg; rGPR:%vreg1 32B t2STRi12 %vreg1, <fi#0>, 0, pred:14, pred:%noreg; mem:ST4[%retval] rGPR:%vreg1 48B %vreg2<def> = t2MOVi 1, pred:14, pred:%noreg, opt:%noreg; rGPR:%vreg2 64B t2STRi12 %vreg2, <fi#1>, 0, pred:14, pred:%noreg; mem:ST4[%i] rGPR:%vreg2 Successors according to CFG: BB#1 for (MachineBasicBlock::iterator miItr = mbb->begin(), miEnd = mbb->end(); miItr != miEnd; ++miItr) { MachineInstr *mi = miItr; if (mi->isDebugValue()) continue; // Insert a store index for the instr. indexList.push_back(createEntry(mi, index += SlotIndex::InstrDist)); // Save this base index in the maps. mi2iMap.insert(std::make_pair(mi, SlotIndex(&indexList.back(), SlotIndex::Slot_Block))); }
  • 19. VNInfo • hold information about a machine level value • (id, def) • def: SlotIndex of the defining instruction
  • 20. Live Interval • Segment • start, end, valno • LiveRange • an ordered list of Segment • LiveInterval • LiveRange with register and weight (spill cost) ********** INTERVALS ********** %vreg0 [208r,320r:0)[416B,432r:0) 0@208r %vreg1 [16r,32r:0) 0@16r %vreg2 [48r,480B:0) 0@48r %vreg3 [96r,112r:0) 0@96r %vreg4 [496r,512r:0) 0@496r %vreg6 [224r,240r:0) 0@224r %vreg7 [432r,448r:0) 0@432r %vreg8 [304r,320r:0) 0@304r %vreg9 [320r,336r:0) 0@320r %vreg10 [352r,368r:0) 0@352r %vreg11 [368r,384r:0) 0@368r Segment LiveRange LiveInterval VNInfo
  • 21. Example 192B BB#3: derived from LLVM BB %for.cond.1 208B %vreg0<def> = t2LDRi12 <fi#1>, 0 224B %vreg6<def> = t2LDRi12 <fi#2>, 0 240B t2CMPri %vreg6, 9 256B t2Bcc <BB#5> 272B t2B <BB#4> 416B BB#5: derived from LLVM BB %for.inc.4 432B %vreg7<def> = t2ADDri %vreg0, 1 448B t2STRi12 %vreg7, <fi#1>, 0 ********** INTERVALS ********** %vreg0 [208r,320r:0)[416B,432r:0) 0@208r %vreg1 [16r,32r:0) 0@16r %vreg2 [48r,480B:0) 0@48r %vreg3 [96r,112r:0) 0@96r %vreg4 [496r,512r:0) 0@496r %vreg6 [224r,240r:0) 0@224r %vreg7 [432r,448r:0) 0@432r %vreg8 [304r,320r:0) 0@304r %vreg9 [320r,336r:0) 0@320r %vreg10 [352r,368r:0) 0@352r %vreg11 [368r,384r:0) 0@368r 288B BB#4: derived from LLVM BB %for.body.3 304B %vreg8<def> = t2LDRi12 <fi#2>, 0 320B %vreg9<def> = t2MUL %vreg0, %vreg8 336B t2STRi12 %vreg9, <fi#3>, 0 352B %vreg10<def> = t2LDRi12 <fi#2>, 0 368B %vreg11<def> = t2ADDri %vreg10, 1 384B t2STRi12 %vreg11, <fi#2>, 0 400B t2B <BB#3> 208r 320r 416B 432r
  • 22. LiveRegMatrix AH AL BH BL XMM31 V3 V3 V5 V0 V4 V1 V2 V6 RegUnit LiveIntervalUnion EAX => AH, AL AX => AH, AL AH => AH AL => AL
  • 23. Check Interference unsigned LiveIntervalUnion::Query:: collectInterferingVRegs(unsigned MaxInterferingRegs) { … // Check for overlapping interference. while (VirtRegI->start < LiveUnionI.stop() && VirtRegI->end > LiveUnionI.start()) { // This is an overlap, record the interfering register. LiveInterval *VReg = LiveUnionI.value(); if (VReg != RecentReg && !isSeenInterference(VReg)) { RecentReg = VReg; InterferingVRegs.push_back(VReg); if (InterferingVRegs.size() >= MaxInterferingRegs) return InterferingVRegs.size(); } // This LiveUnion segment is no longer interesting. if (!(++LiveUnionI).valid()) { SeenAllInterferences = true; return InterferingVRegs.size(); } } … } LiveIntervalUnion VirtReg start() stop() start end start() stop() start end start() stop() start end start() stop() start end
  • 24. Check Interference AH AL BH BL XMM31 V3 V3 V5 V0 V4 V1 V2 V6 V7 // Check the matrix for virtual register interference. for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) if (query(VirtReg, *Units).checkInterference()) return IK_VirtReg;
  • 26. Use Split to Improve RA • Live Range Splitting • Insert copy/re-materialize to split up live ranges • hopefully reduces need for spilling • Also control spill code placement
  • 27. • Example Q0 D0 D1 Q1 D2 D3 V1 V2 V3 V4 V5
  • 29. • No physical register for V1 Q0 D0 D1 Q1 D2 D3 V1 V2 V3 V4 V5
  • 30. • Evict V2 Q0 D0 D1 Q1 D2 D3 V1 V2 V3V4 V5 stack
  • 31. • Split V2 Q0 D0 D1 Q1 D2 D3 V1 V2b V3V4 V5 V2a V2c
  • 32. • Split V2 Q0 D0 D1 Q1 D2 D3 V1 V2b V3V4 V5 V2a V2c stack
  • 33. Greedy RA Stages • RS_New: created • RS_Assign: enqueue • RS_Split: need to split • RS_Split2 • used for split products that may not be making progress • RS_Spill: need to spill • RS_Done: assigned a physical register or created by spill
  • 34. RS_Split2 • The live intervals created by split will enqueue to process again. • There is a risk of creating infinite loops. … = vreg1 … … = vreg1 … … = vreg1 … vreg2 = COPY vreg1 … = vreg2 … vreg3 = COPY vreg1 … = vreg3 … … = vreg3 … RS_New RS_Split2
  • 35. Greedy Register Allocation try to assign physical register (hint > zero cost reg > low cost reg) try to evict to find better register enter RS_Split stage try last chance recoloring split spill pick a physical register and evict all interference found register stage >= RS_Done stage < RS_Split selectOrSplit(d+1) enter RS_Done stage selectOrSplit(d)
  • 36. Last Chance Recoloring • Try to assign a color to VirtReg by recoloring its interferences. • The recoloring process may recursively use the last chance recoloring. Therefore, when a virtual register has been assigned a color by this mechanism, it is marked as Fixed. vA can use {R1, R2 } vB can use { R2, R3} vC can use {R1 } vA => R1 vB => R2 vC => fails vA => R2 vB => R3 vC => R1 (fixed)
  • 37. How to Split? is stage beyond RS_Spill? is in one BB? tryLocalSplit tryInstructionSplit No Yes tryRegionSplit is stage less than RS_Split2? No spill Yes success? No success? spill No tryBlockSplit Yes No success? No success? spill No done Yes Yes done Yes Yes
  • 38. BlockInfo (LiveIn) (LiveOut) FirstInstr: First instruction accessing current reg. LastInstr: Last instruction accessing current reg. Live-through blocks without any uses don’t get BlockInfo entries.
  • 39. tryLocalSplit • Try to split virtual register interval into smaller intervals inside its only basic block. • calculate gap weights • adjust the split region
  • 41. Calculate Gap Weights LI.weight VirtReg LI If there is a RegUnit occupied by VirtReg:0 0
  • 42. Calculate Gap Weights LI.weight Fixed RegUnit If there is a fixed RegUnit:0 0 huge_valf
  • 43. Adjust Split Region SplitAfter = 1 SplitBefore = 0 normalise spill weight > max gap BestBefore = SplitBefore BestAfter = SplitAfter SplitAfter++ SplitBefore++ YesNo normalise spill weight = spill cost / distance = (#gap * block_freq) / distance(SplitBefore, SplitAfter)
  • 44. Adjust Split Region BestAfter BestBefore normalise spill weight > max gap BestBefore = SplitBefore BestAfter = SplitAfter SplitAfter++ SplitBefore++ YesNo normalise spill weight = spill cost / distance = (#gap * block_freq) / distance(SplitBefore, SplitAfter) RS_New (or RS_Split2) RS_New Find the most critical range.
  • 45. tryInstructionSplit • Split a live range around individual instructions. • Every “use” instruction has its own live interval.
  • 46. tryBlockSplit • Split a global live range around every block with uses. FirstInstr LastInstr
  • 47. tryRegionSplit • For every physical register • Prepare interference cache • Construct Hopfield Network • Construct block constraints • Update Hopfield Network biases and values according to block constraints • Add links in Hopfield Network and iterate • Get the best candidate (minimize split cost + spill cost) • Do region split
  • 48. Hopfield Network • A form of recurrent artificial neural network popularised by John Hopfield in 1982. • Guaranteed to converge to a local minimum.
  • 49. Hopfield Network • Node: edge bundle • Link: transparent basic blocks have the variable live through. • Energy function (the cost of spilling) • Weight: block frequency • Bias: according to block constraints
  • 50. Block Constraints No Interference PrefReg Intf.first() MustSpill PrefSpill FirstInstr LastInstr PrefReg FirstInstr LastInstr FirstInstr LastInstr FirstInstr LastInstr PrefReg MustSpill FirstInstr LastInstr PrefReg FirstInstr LastInstr FirstInstr LastInstr FirstInstr LastInstr PrefSpill Last Split Point
  • 51. Edge Bundle BB #0 BB #1 BB #3 BB #2 BB #4 BB #5 BB #6 // Join the outgoing bundle with the ingoing bundles of all successors. for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) EC.join(OutE, 2 * (*SI)->getNumber()); EC: (BB#0, in) Bundle #0: 0 0 0 (BB#0, out) Bundle #1: 1 1 1 (BB#1, in) Bundle #2: 2 1 1 (BB#1, out) Bundle #3: 3 3 2 (BB#2, in) Bundle #4: 4 3 2 (BB#2, out) Bundle #5: 5 5 3 (BB#3, in) Bundle #6: 6 5 3 (BB#3, out) Bundle #7: 7 7 4 (BB#4, in) Bundle #8: 8 7 4 (BB#4, out) Bundle #9: 9 5 3 (BB#5, in) Bundle #10: 10 7 4 (BB#5, out) Bundle #11: 11 1 1 (BB#6, in) Bundle #12: 12 3 2 (BB#6, out) Bundle #13: 13 13 5 void join(unsigned a, unsigned b) { unsigned eca = EC[a]; unsigned ecb = EC[b]; while (eca != ecb) if (eca < ecb) EC[b] = eca, b = ecb, ecb = EC[b]; else EC[a] = ecb, a = eca, eca = EC[a]; }
  • 52. Edge Bundle BB #0 BB #1 BB #3 BB #2 BB #4 BB #5 BB #6 Blocks: Bundle #0: BB#0 Bundle #1: BB#0, BB#1, BB#5 Bundle #2: BB#1, BB#2, BB#6 Bundle #3: BB#2, BB#3, BB#4 Bundle #4: BB#3, BB#4, BB#5 Bundle #5: BB#6 Bundle #6: Bundle #7: Bundle #8: Bundle #9: Bundle #10: Bundle #11: Bundle #12: Bundle #13: EC: (BB#0, in) Bundle #0: 0 0 0 (BB#0, out) Bundle #1: 1 1 1 (BB#1, in) Bundle #2: 2 1 1 (BB#1, out) Bundle #3: 3 3 2 (BB#2, in) Bundle #4: 4 3 2 (BB#2, out) Bundle #5: 5 5 3 (BB#3, in) Bundle #6: 6 5 3 (BB#3, out) Bundle #7: 7 7 4 (BB#4, in) Bundle #8: 8 7 4 (BB#4, out) Bundle #9: 9 5 3 (BB#5, in) Bundle #10: 10 7 4 (BB#5, out) Bundle #11: 11 1 1 (BB#6, in) Bundle #12: 12 3 2 (BB#6, out) Bundle #13: 13 13 5
  • 53. Edge Bundle BB #0 BB #1 BB #3 BB #2 BB #4 BB #5 BB #6 Blocks: Bundle #0: BB#0 Bundle #1: BB#0, BB#1, BB#5 Bundle #2: BB#1, BB#2, BB#6 Bundle #3: BB#2, BB#3, BB#4 Bundle #4: BB#3, BB#4, BB#5 Bundle #5: BB#6 Bundle #6: Bundle #7: Bundle #8: Bundle #9: Bundle #10: Bundle #11: Bundle #12: Bundle #13: EC: (BB#0, in) Bundle #0: 0 0 0 (BB#0, out) Bundle #1: 1 1 1 (BB#1, in) Bundle #2: 2 1 1 (BB#1, out) Bundle #3: 3 3 2 (BB#2, in) Bundle #4: 4 3 2 (BB#2, out) Bundle #5: 5 5 3 (BB#3, in) Bundle #6: 6 5 3 (BB#3, out) Bundle #7: 7 7 4 (BB#4, in) Bundle #8: 8 7 4 (BB#4, out) Bundle #9: 9 5 3 (BB#5, in) Bundle #10: 10 7 4 (BB#5, out) Bundle #11: 11 1 1 (BB#6, in) Bundle #12: 12 3 2 (BB#6, out) Bundle #13: 13 13 5
  • 54. Edge Bundle BB #0 BB #1 BB #3 BB #2 BB #4 BB #5 BB #6 Blocks: Bundle #0: BB#0 Bundle #1: BB#0, BB#1, BB#5 Bundle #2: BB#1, BB#2, BB#6 Bundle #3: BB#2, BB#3, BB#4 Bundle #4: BB#3, BB#4, BB#5 Bundle #5: BB#6 Bundle #6: Bundle #7: Bundle #8: Bundle #9: Bundle #10: Bundle #11: Bundle #12: Bundle #13: EC: (BB#0, in) Bundle #0: 0 0 0 (BB#0, out) Bundle #1: 1 1 1 (BB#1, in) Bundle #2: 2 1 1 (BB#1, out) Bundle #3: 3 3 2 (BB#2, in) Bundle #4: 4 3 2 (BB#2, out) Bundle #5: 5 5 3 (BB#3, in) Bundle #6: 6 5 3 (BB#3, out) Bundle #7: 7 7 4 (BB#4, in) Bundle #8: 8 7 4 (BB#4, out) Bundle #9: 9 5 3 (BB#5, in) Bundle #10: 10 7 4 (BB#5, out) Bundle #11: 11 1 1 (BB#6, in) Bundle #12: 12 3 2 (BB#6, out) Bundle #13: 13 13 5
  • 55. Edge Bundle BB #0 BB #1 BB #3 BB #2 BB #4 BB #5 BB #6 Blocks: Bundle #0: BB#0 Bundle #1: BB#0, BB#1, BB#5 Bundle #2: BB#1, BB#2, BB#6 Bundle #3: BB#2, BB#3, BB#4 Bundle #4: BB#3, BB#4, BB#5 Bundle #5: BB#6 Bundle #6: Bundle #7: Bundle #8: Bundle #9: Bundle #10: Bundle #11: Bundle #12: Bundle #13: EC: (BB#0, in) Bundle #0: 0 0 0 (BB#0, out) Bundle #1: 1 1 1 (BB#1, in) Bundle #2: 2 1 1 (BB#1, out) Bundle #3: 3 3 2 (BB#2, in) Bundle #4: 4 3 2 (BB#2, out) Bundle #5: 5 5 3 (BB#3, in) Bundle #6: 6 5 3 (BB#3, out) Bundle #7: 7 7 4 (BB#4, in) Bundle #8: 8 7 4 (BB#4, out) Bundle #9: 9 5 3 (BB#5, in) Bundle #10: 10 7 4 (BB#5, out) Bundle #11: 11 1 1 (BB#6, in) Bundle #12: 12 3 2 (BB#6, out) Bundle #13: 13 13 5
  • 56. Edge Bundle BB #0 BB #1 BB #3 BB #2 BB #4 BB #5 BB #6 Blocks: Bundle #0: BB#0 Bundle #1: BB#0, BB#1, BB#5 Bundle #2: BB#1, BB#2, BB#6 Bundle #3: BB#2, BB#3, BB#4 Bundle #4: BB#3, BB#4, BB#5 Bundle #5: BB#6 Bundle #6: Bundle #7: Bundle #8: Bundle #9: Bundle #10: Bundle #11: Bundle #12: Bundle #13: EC: (BB#0, in) Bundle #0: 0 0 0 (BB#0, out) Bundle #1: 1 1 1 (BB#1, in) Bundle #2: 2 1 1 (BB#1, out) Bundle #3: 3 3 2 (BB#2, in) Bundle #4: 4 3 2 (BB#2, out) Bundle #5: 5 5 3 (BB#3, in) Bundle #6: 6 5 3 (BB#3, out) Bundle #7: 7 7 4 (BB#4, in) Bundle #8: 8 7 4 (BB#4, out) Bundle #9: 9 5 3 (BB#5, in) Bundle #10: 10 7 4 (BB#5, out) Bundle #11: 11 1 1 (BB#6, in) Bundle #12: 12 3 2 (BB#6, out) Bundle #13: 13 13 5
  • 57. Edge Bundle BB #0 BB #1 BB #3 BB #2 BB #4 BB #5 BB #6 Blocks: Bundle #0: BB#0 Bundle #1: BB#0, BB#1, BB#5 Bundle #2: BB#1, BB#2, BB#6 Bundle #3: BB#2, BB#3, BB#4 Bundle #4: BB#3, BB#4, BB#5 Bundle #5: BB#6 Bundle #6: Bundle #7: Bundle #8: Bundle #9: Bundle #10: Bundle #11: Bundle #12: Bundle #13: EC: (BB#0, in) Bundle #0: 0 0 0 (BB#0, out) Bundle #1: 1 1 1 (BB#1, in) Bundle #2: 2 1 1 (BB#1, out) Bundle #3: 3 3 2 (BB#2, in) Bundle #4: 4 3 2 (BB#2, out) Bundle #5: 5 5 3 (BB#3, in) Bundle #6: 6 5 3 (BB#3, out) Bundle #7: 7 7 4 (BB#4, in) Bundle #8: 8 7 4 (BB#4, out) Bundle #9: 9 5 3 (BB#5, in) Bundle #10: 10 7 4 (BB#5, out) Bundle #11: 11 1 1 (BB#6, in) Bundle #12: 12 3 2 (BB#6, out) Bundle #13: 13 13 5
  • 58. Edge Bundle BB #0 BB #1 BB #3 BB #2 BB #4 BB #5 BB #6 Blocks: Bundle #0: BB#0 Bundle #1: BB#0, BB#1, BB#5 Bundle #2: BB#1, BB#2, BB#6 Bundle #3: BB#2, BB#3, BB#4 Bundle #4: BB#3, BB#4, BB#5 Bundle #5: BB#6 Bundle #6: Bundle #7: Bundle #8: Bundle #9: Bundle #10: Bundle #11: Bundle #12: Bundle #13: EC: (BB#0, in) Bundle #0: 0 0 0 (BB#0, out) Bundle #1: 1 1 1 (BB#1, in) Bundle #2: 2 1 1 (BB#1, out) Bundle #3: 3 3 2 (BB#2, in) Bundle #4: 4 3 2 (BB#2, out) Bundle #5: 5 5 3 (BB#3, in) Bundle #6: 6 5 3 (BB#3, out) Bundle #7: 7 7 4 (BB#4, in) Bundle #8: 8 7 4 (BB#4, out) Bundle #9: 9 5 3 (BB#5, in) Bundle #10: 10 7 4 (BB#5, out) Bundle #11: 11 1 1 (BB#6, in) Bundle #12: 12 3 2 (BB#6, out) Bundle #13: 13 13 5
  • 59. SpillPlacement::addConstraints • update BiasN, BiasP according to BorderConstraint BB #n (freq) … = Y op … PrefReg PrefSpill Bundle ib BiasP += freq Bundle ob BiasN += freq void addBias(BlockFrequency freq, BorderConstraint direction) { switch (direction) { default: break; case PrefReg: BiasP += freq; break; case PrefSpill: BiasN += freq; break; case MustSpill: BiasN = BlockFrequency::getMaxFrequency(); // (uint64_t)-1ULL break; } }
  • 60. Hopfield Network Node • Node.update(nodes, Threshold) Bundle X BiasN BiasP Value Bundle A Value = -1 Bundle B Value = 1 Bundle C Value = 1 Bundle D Value = 1 Links SumN = BiasN + freqA SunP = BiasP + freqB + freqC + freqD (freqA, A) (freqB, B) (freqC, C) (freqD, D) if (SumN >= SumP + Threshold) Value = -1; else if (SumP >= SumN + Threshold) Value = 1; else Value = 0;
  • 61. Grow Region • Live through blocks in positive bundles. No Interference Intf.first() MustSpill PrefSpill Used as links between bundles SpillPlacement::addConstraints Intf.last() MustSpill PrefSpill
  • 62. SpillPlacement::addLinks BB #n (freq) Bundle ib Bundle ob Bundle ib Bundle ob (freq, ob) (freq, ib)
  • 63. SpillPlacement::iterate for (unsigned iteration = 0; iteration != 10; ++iteration) { bool Changed = false; for (SmallVectorImpl<unsigned>::const_reverse_iterator I = iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) { unsigned n = *I; if (nodes[n].update(nodes, Threshold)) { Changed = true; if (nodes[n].preferReg()) RecentPositive.push_back(n); } } if (!Changed || !RecentPositive.empty()) return; Changed = false; for (SmallVectorImpl<unsigned>::const_iterator I = std::next(Linked.begin()), E = Linked.end(); I != E; ++I) { unsigned n = *I; if (nodes[n].update(nodes, Threshold)) { Changed = true; if (nodes[n].preferReg()) RecentPositive.push_back(n); } } if (!Changed || !RecentPositive.empty()) return; }
  • 64. Spill Cost No Interference PrefReg Intf.first() MustSpill PrefSpill FirstInstr LastInstr PrefReg FirstInstr LastInstr FirstInstr LastInstr FirstInstr LastInstr PrefReg MustSpill FirstInstr LastInstr PrefReg FirstInstr LastInstr FirstInstr LastInstr FirstInstr LastInstr PrefSpill Last Split Point ++Ins ++Ins ++Ins ++Ins ++Ins ++Ins Cost = Block_Frequency * Ins
  • 65. Split Cost BB #n (freq) … = Y op … Bundle ib Value Bundle ob Value Use Block RegIn RegOut BC.Entry BC.Exit if (BI.LiveIn) Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); if (BI.LiveOut) Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); while (Ins--) GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); Live Through BB #n (freq) Bundle ib Value Bundle ob Value RegIn RegOut RegIn RegOut Cost 0 0 0 0 1 freq 1 0 freq 1 1 2 x freq (interfer)
  • 66. The Best Candidate • For all physical registers, calculate region split cost. • Cost = block constraints cost (spill cost) + global split cost • The best candidate has the lowest cost.
  • 68. splitLiveThroughBlock Bundle ib Value == 1 Bundle ob Value != 1 Live Through LiveOut on Stack first non-PHI Start New Int Bundle ib Value != 1 Bundle ob Value == 1 Live Through LiveIn on Stack last split point End New Int Live Through No Interference Bundle ib Value == 1 Bundle ob Value == 1 End New Int Start
  • 69. splitLiveThroughBlock Bundle ib Value == 1 Bundle ob Value == 1 LiveThrough Non-overlapping interference New Int Interference.fist() Interference.last() New Int Bundle ib Value == 1 Bundle ob Value == 1 LiveThrough Overlapping interference New Int Interference.fist() Interference.last() New Int
  • 70. splitRegInBlock Bundle ib Value == 1 No LiveOut Interference after kill Start New Int Bundle ib Value == 1 Bundle ob Value != 1 LiveOut on Stack Interference after last use LiveOut on Stack Interference after last use Interference.fist() LastInstr LastInstr last split point New Int Start Bundle ib Value == 1 Bundle ob Value != 1 LastInstr last split point New Int Start Interference.fist() Interference.fist()
  • 71. splitRegInBlock Bundle ib Value == 1 LiveOut on Stack Interference overlapping uses Start New Int Bundle ib Value == 1 Interference.fist() LastInstr last split point New Int Start New Int Interference.fist() LastInstr last split point New Int Bundle ob Value != 1 Bundle ob Value != 1 LiveOut on Stack Interference overlapping uses
  • 72. splitRegOutBlock No LiveIn Interference before def End New Int Bundle ib Value != 1 Bundle ob Value == 1 Live Through Interference before def Live Through Interference overlapping uses Interference.last() FirstInstr Bundle ib Value != 1 Bundle ob Value == 1 Bundle ob Value == 1 End New Int Interference.last() FirstInstr last split point End New Int Interference.last() FirstInstr New Int