SlideShare a Scribd company logo
1 of 21
Download to read offline
High Speed Differential Signaling 
        Interconnect Influence
                  ‐
        Advanced Phenomena

Liav Ben‐Artsi
Marvell Israel (MISL) Ltd.




                             May 2, 2012
                                May 2, 2012
                                  V3          1
Agenda
 High speed signaling basics and basic phenomena 
 The impact of differential inner pair skew
 Multiple reflections
 Passive interconnect as a DCD amplifier 




                                  May 2, 2012
                                     May 2, 2012
                                       V3            2
The Serial Link ‐ Background
           Tx                                Interconnect                     Receiver
         Driver




 Target: To transmit serial data over a given interconnect and receive it with a desired BER. 
 We will discuss the following serial link related issues:
   Serial link data frequency content 
   Serial link components and what influences them:
   – Tx driver
   – Interconnect 
   – Receiver




                                          May 2, 2012
                                             May 2, 2012
                                               V3                                                 3
Frequency Content of a Serial Signal – Square Wave

  An “ideal” square wave can be constructed of sinusoidal components of odd 
   multiplications of the signal’s “main” frequency.




 What is the frequency content of an 8‐10 encoded bit stream?
  Fastest symbol is 1010…
  Slowest symbol is constructed of 5 consecutive bits.  First Harmonic resides between Fb/10 
    Fb/2 (there may be even lower frequencies corresponding to repeating data strings.)


                                          May 2, 2012
                                             May 2, 2012
                                                  V3                                              4
Frequency Content of a Serial Signal
             An “Ideal” Interconnect
What interconnect will not change the signal shape except for the amplitude? 
 We said that:
    The serial data consists of different length of consecutive bits wide symbol 
    frequency range
    Each symbol incorporates a set of sinusoidal frequencies 




 What would be the “ideal” interconnect description in the frequency domain?
    A flat insertion loss response over frequency with a constant group delay over 
    frequency (linear phase)
    This interconnect is not practical 




                                    May 2, 2012
                                       May 2, 2012
                                           V3                                         5
The Interconnect
        A Well‐designed Physical Interconnect 
• Due to physical characteristics of the material 
  a “well designed” printed circuit board trace 
  frequency response shows linear loss (in db
  scale) and linear phase behavior.

• Frequency content of the first harmonic is 
  from FB/(2*longest bit stream) to Fb/2 
  (Fb/10 to Fb/2 in 8‐10 encoding)  ISI


• Other interconnect characteristics / 
  phenomena will be discussed later in this 
  presentation




                                    May 2, 2012
                                       May 2, 2012
                                          V3         6
Introduction to Channel Theory (cont’d)
 Assuming a rectangular input pulse with a width of 200psec.
 Zoom in on the pulses at the end of a line with 5db, 16db and 26db @ 2.5GHz loss.
 Several phenomena can be observed: 
      Rise time degradation  ‐ Why?
      The decay phenomenon time increases
      Maximum amplitude varies according to the interconnect loss. 




                                               May 2, 2012
                                                  May 2, 2012
                                                         V3                           7
Interconnect Characteristics ‐ ISI
We have seen the signal degradation due to steeper 
 channel loss.
                                     Eye Diagram view 5db loss (@2.5GHz ‐
                                     bit time 200p 5GBPS).




                                     Eye Diagram view 16db loss (@2.5GHz ‐
                                       bit time 200p 5GBPS).




                                     Eye Diagram view 26db loss (@2.5GHz ‐
                                       bit time 200p 5GBPS).




                           May 2, 2012
                              May 2, 2012
                               V3                                            8
Interconnect Characteristics:  ISI ‐ Remedies

 We need to compensate for the higher frequencies loss (or attenuate 
  the lower frequencies). This action is called Equalization.
 Several types of equalization techniques (Eq) are available: Tx Eq and Rx 
  Eq.
    PE – Pre‐emphasis 
    FFE – Feed Forward equalization
    CTLE – Continues Time Linear Equalizer 
    DFE – Decision feedback equalizer 




                                May 2, 2012
                                   May 2, 2012
                                      V3                                       9
The Serial Link – Advanced Phenomena

         Tx                          Interconnect                     Receiver
       Driver




 The impact of differential inner pair skew (the difference in delay between the 
  positive and negative interconnect paths).
 Multiple reflections – signal degradation due to the presence of multiple 
  discontinuities along an interconnect and the main difference between a single 
  reflection and multiple reflections.
 Passive interconnect as a DCD amplifier – what happens to a signal that has a 
  certain amount of duty cycle distortion when traveling through a high speed 
  interconnect. 



                                    May 2, 2012
                                       May 2, 2012
                                          V3                                         10
Differential inner pair skew
 If the interconnect has a 10psec skew between p and n trace, what will be the amount of 
  added jitter?
 Will there be any other effects to the inner pair skew?
 Phenomena such as susceptibility to Xtalk and EMI are not discussed in this presentation.
 The analysis assumes very loosely coupled traces.




                                       May 2, 2012
                                          May 2, 2012
                                             V3                                           11
Differential inner pair skew – Analysis
Looking at the impact of skew on differential harmonic signals one can observe 
that:
     The main impact of skew would be seen on the signal amplitude. The larger the 
      skew (in terms of UI) the larger the amplitude degradation.
     The harmonic signal width is not influenced, rather the ideal sampling point is 
      shifted.
     Since high frequency symbols (such as 1010…) have small UI width, inner pair skew 
      will degrade their amplitude by a larger amount compared to lower frequency 
      symbols (such as 111000…).  This will introduce ISI.
     In the case of short reach interconnects, the signal may still have a portion of 
      higher harmonies amplitudes  signals rise/fall will be highly impacted.    




                                    May 2, 2012
                                       May 2, 2012
                                           V3                                              12
Zero Skew Vs. 0.5UI Skew




  May 2, 2012
     May 2, 2012
        V3                 13
Reflection and multiple reflections
Reflections occur at every location of medium change along an interconnect. 


                                                                        ZL  Z   0
                                              reflected      : L   
                                                                        ZL  Z   0




                                                       ZL  Z   0        2ZL
           Transfered        :TL  1  L  1                      
                                                       ZL  Z   0       ZL  Z   0




                               May 2, 2012
                                  May 2, 2012
                                     V3                                              14
Reflections ‐ Observations
                            ZL  Z    0
 reflected       : L   
                            ZL  Z    0
                                       ZL  Z                0      2ZL
Transfered          :TL  1  L  1                            
                                       ZL  Z                0     ZL  Z     0

 The reflected portion can be positive or negative 
 The transferred portion can only have non‐negative magnitudes 
 The transferred portion will accumulate phase as it advances through the reflecting object 
  (such as a via, a trace with different impedance, etc.)
 A wave advancing through an interconnect accumulates phase (the interconnect has a 
  propagation delay). 
 An advancing wave may be attenuated with an amount related to the medium characteristics 
  (dielectric loss coefficient, mechanical dimensions that influence the skin effect, copper 
  surface roughness).
 Advancing and reflected waves may interact forming interference (‫ – )התאבכות‬This effect will 
  occur only in the presence of more than a single reflection  multiple reflections effect.


                                       May 2, 2012
                                          May 2, 2012
                                              V3                                                  15
Single reflections – simulated results
 Differential via (G‐S‐S‐G) with via stubs (capacitive).
 Traces de‐embedded.
 Reflected signal has a ~180° shift (+ delay)
 Transferred signal has a phase accumulation according to via delay.




                                           May 2, 2012
                                              May 2, 2012
                                                  V3                    16
Multiple reflections – simulated results
 Two Differential vias (G‐S‐S‐G) with via stubs structure.
 Traces (lossless) connecting the two structures.
 Reflected signal bounces back and forth to create interference.
 Loss will lower the interference amplitude.




                                          May 2, 2012
                                             May 2, 2012
                                                 V3                 17
Multiple reflections – simulated results
 Multiple reflections causes transfer to introduce ripple (usually referred to as insertion loss 
  deviation – ILD) – why?
 The reason for optimizing return loss




                                                                   Insertion loss




                                                                   Return loss




                                           May 2, 2012
                                              May 2, 2012
                                                  V3                                                 18
An Interconnect as a Duty Cycle Distortion Amplifier 

 Duty Cycle is the ratio of the positive pulse duration to the pulse period. 
 The Ideal duty cycle is 50%.
 Duty Cycle Distortion (DCD) is defined to be the deviation from the ideal 50%.
 The average voltage of a 0% DCD differential signal is zero. The average signal voltage 
  deviates from zero with the introduction of DCD  baseline wander.
 DCD increases with rise/fall time degradation.




                                      May 2, 2012
                                         May 2, 2012
                                             V3                                              19
Duty Cycle Distortion – Simulation results 
                                      Driver has a minimal 
                                       pulse width of 
                                       86.8psec ‐ 10psec 
                                       degradation due to 
                                       DCD.


                                      Signal at the 
                                       interconnect Far‐End 
                                       has a 16psec 
                                       degradation due to 
                                       DCD 
                                       
                                       DCD was increased as 
                                       a result of passing 
                                       through the 
                                       interconnect.




                May 2, 2012
                   May 2, 2012
                    V3                                         20
 May 2, 2012
    May 2, 2012
     V3           21

More Related Content

What's hot

Mw&oc manual
Mw&oc manualMw&oc manual
Mw&oc manual
vkop100
 
Artificial neural networks for ion beam analysis
Artificial neural networks for ion beam analysisArtificial neural networks for ion beam analysis
Artificial neural networks for ion beam analysis
Armando Vieira
 
Data communication
Data communicationData communication
Data communication
Anuja Lad
 

What's hot (10)

Project Report
Project Report Project Report
Project Report
 
Electrical Characteristics of LEDs: LED Fundamentals
Electrical Characteristics of LEDs: LED FundamentalsElectrical Characteristics of LEDs: LED Fundamentals
Electrical Characteristics of LEDs: LED Fundamentals
 
Mw&oc manual
Mw&oc manualMw&oc manual
Mw&oc manual
 
Led pin diode
Led pin diodeLed pin diode
Led pin diode
 
LCD
LCDLCD
LCD
 
Artificial neural networks for ion beam analysis
Artificial neural networks for ion beam analysisArtificial neural networks for ion beam analysis
Artificial neural networks for ion beam analysis
 
Led failure mechanisms
Led failure mechanismsLed failure mechanisms
Led failure mechanisms
 
Data communication
Data communicationData communication
Data communication
 
卒論
卒論卒論
卒論
 
Mesopic Vision - LED Fundamental Series by OSRAM Opto Semiconductors
Mesopic Vision - LED Fundamental Series by OSRAM Opto Semiconductors Mesopic Vision - LED Fundamental Series by OSRAM Opto Semiconductors
Mesopic Vision - LED Fundamental Series by OSRAM Opto Semiconductors
 

Similar to High speed differential signaling

Differential signals presantation
Differential signals presantationDifferential signals presantation
Differential signals presantation
Jonghyeon Kim
 
ch3specialpurposediode-150303092453-conversion-gate01.pdf
ch3specialpurposediode-150303092453-conversion-gate01.pdfch3specialpurposediode-150303092453-conversion-gate01.pdf
ch3specialpurposediode-150303092453-conversion-gate01.pdf
InsaneInsane4
 
Optical fibre transmission
Optical fibre transmissionOptical fibre transmission
Optical fibre transmission
Ankit Srivastava
 

Similar to High speed differential signaling (20)

Hw2514161420
Hw2514161420Hw2514161420
Hw2514161420
 
Hw2514161420
Hw2514161420Hw2514161420
Hw2514161420
 
Unit4 special semiconductor devices class4
Unit4 special semiconductor devices class4Unit4 special semiconductor devices class4
Unit4 special semiconductor devices class4
 
EC 8751 - Optical Sources & Detectors
EC 8751 - Optical Sources & DetectorsEC 8751 - Optical Sources & Detectors
EC 8751 - Optical Sources & Detectors
 
optical Fiber losses Link Budget network.pdf
optical Fiber losses Link Budget network.pdfoptical Fiber losses Link Budget network.pdf
optical Fiber losses Link Budget network.pdf
 
Optical Fiber losses and Link Budget.pdf
Optical Fiber losses and Link Budget.pdfOptical Fiber losses and Link Budget.pdf
Optical Fiber losses and Link Budget.pdf
 
Losses in optical fiber
Losses in optical fiberLosses in optical fiber
Losses in optical fiber
 
optical transmitter
optical transmitteroptical transmitter
optical transmitter
 
Diodes // LED // OLED
Diodes // LED // OLEDDiodes // LED // OLED
Diodes // LED // OLED
 
ELCTRONIC COMPONENR.pptx
ELCTRONIC COMPONENR.pptxELCTRONIC COMPONENR.pptx
ELCTRONIC COMPONENR.pptx
 
Introduction to active and passive components
Introduction to active and passive components Introduction to active and passive components
Introduction to active and passive components
 
Final od college
Final od collegeFinal od college
Final od college
 
MOSFET.docx power electronics
MOSFET.docx power electronics MOSFET.docx power electronics
MOSFET.docx power electronics
 
Differential signals presantation
Differential signals presantationDifferential signals presantation
Differential signals presantation
 
SPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODESPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODE
 
L-Z Source Based 11 Level Diode-Clamped Multi Level Inverter
L-Z Source Based 11 Level Diode-Clamped Multi Level InverterL-Z Source Based 11 Level Diode-Clamped Multi Level Inverter
L-Z Source Based 11 Level Diode-Clamped Multi Level Inverter
 
ch3specialpurposediode-150303092453-conversion-gate01.pdf
ch3specialpurposediode-150303092453-conversion-gate01.pdfch3specialpurposediode-150303092453-conversion-gate01.pdf
ch3specialpurposediode-150303092453-conversion-gate01.pdf
 
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...
 
Optical fibre transmission
Optical fibre transmissionOptical fibre transmission
Optical fibre transmission
 
09-Luna-Fiber-Optic-Test-Measurement-final.pptx
09-Luna-Fiber-Optic-Test-Measurement-final.pptx09-Luna-Fiber-Optic-Test-Measurement-final.pptx
09-Luna-Fiber-Optic-Test-Measurement-final.pptx
 

More from chiportal

Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
chiportal
 

More from chiportal (20)

Prof. Zhihua Wang, Tsinghua University, Beijing, China
Prof. Zhihua Wang, Tsinghua University, Beijing, China Prof. Zhihua Wang, Tsinghua University, Beijing, China
Prof. Zhihua Wang, Tsinghua University, Beijing, China
 
Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
 
Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
Prof. Steve Furber, University of Manchester, Principal Designer of the BBC M...
 
Prof. Uri Weiser,Technion
Prof. Uri Weiser,TechnionProf. Uri Weiser,Technion
Prof. Uri Weiser,Technion
 
Ken Liao, Senior Associate VP, Faraday
Ken Liao, Senior Associate VP, FaradayKen Liao, Senior Associate VP, Faraday
Ken Liao, Senior Associate VP, Faraday
 
Prof. Danny Raz, Director, Bell Labs Israel, Nokia
 Prof. Danny Raz, Director, Bell Labs Israel, Nokia  Prof. Danny Raz, Director, Bell Labs Israel, Nokia
Prof. Danny Raz, Director, Bell Labs Israel, Nokia
 
Marco Casale-Rossi, Product Mktg. Manager, Synopsys
Marco Casale-Rossi, Product Mktg. Manager, SynopsysMarco Casale-Rossi, Product Mktg. Manager, Synopsys
Marco Casale-Rossi, Product Mktg. Manager, Synopsys
 
Dr.Efraim Aharoni, ESD Leader, TowerJazz
Dr.Efraim Aharoni, ESD Leader, TowerJazzDr.Efraim Aharoni, ESD Leader, TowerJazz
Dr.Efraim Aharoni, ESD Leader, TowerJazz
 
Eddy Kvetny, System Engineering Group Leader, Intel
Eddy Kvetny, System Engineering Group Leader, IntelEddy Kvetny, System Engineering Group Leader, Intel
Eddy Kvetny, System Engineering Group Leader, Intel
 
Dr. John Bainbridge, Principal Application Architect, NetSpeed
 Dr. John Bainbridge, Principal Application Architect, NetSpeed  Dr. John Bainbridge, Principal Application Architect, NetSpeed
Dr. John Bainbridge, Principal Application Architect, NetSpeed
 
Xavier van Ruymbeke, App. Engineer, Arteris
Xavier van Ruymbeke, App. Engineer, ArterisXavier van Ruymbeke, App. Engineer, Arteris
Xavier van Ruymbeke, App. Engineer, Arteris
 
Asi Lifshitz, VP R&D, Vtool
Asi Lifshitz, VP R&D, VtoolAsi Lifshitz, VP R&D, Vtool
Asi Lifshitz, VP R&D, Vtool
 
Zvika Rozenshein,General Manager, EngineeringIQ
Zvika Rozenshein,General Manager, EngineeringIQZvika Rozenshein,General Manager, EngineeringIQ
Zvika Rozenshein,General Manager, EngineeringIQ
 
Lewis Chu,Marketing Director,GUC
Lewis Chu,Marketing Director,GUC Lewis Chu,Marketing Director,GUC
Lewis Chu,Marketing Director,GUC
 
Kunal Varshney, VLSI Engineer, Open-Silicon
Kunal Varshney, VLSI Engineer, Open-SiliconKunal Varshney, VLSI Engineer, Open-Silicon
Kunal Varshney, VLSI Engineer, Open-Silicon
 
Gert Goossens,Sen. Director, ASIP Tools, Synopsys
Gert Goossens,Sen. Director, ASIP Tools, SynopsysGert Goossens,Sen. Director, ASIP Tools, Synopsys
Gert Goossens,Sen. Director, ASIP Tools, Synopsys
 
Tuvia Liran, Director of VLSI, Nano Retina
Tuvia Liran, Director of VLSI, Nano RetinaTuvia Liran, Director of VLSI, Nano Retina
Tuvia Liran, Director of VLSI, Nano Retina
 
Sagar Kadam, Lead Software Engineer, Open-Silicon
Sagar Kadam, Lead Software Engineer, Open-SiliconSagar Kadam, Lead Software Engineer, Open-Silicon
Sagar Kadam, Lead Software Engineer, Open-Silicon
 
Ronen Shtayer,Director of ASG Operations & PMO, NXP Semiconductor
Ronen Shtayer,Director of ASG Operations & PMO, NXP SemiconductorRonen Shtayer,Director of ASG Operations & PMO, NXP Semiconductor
Ronen Shtayer,Director of ASG Operations & PMO, NXP Semiconductor
 
Prof. Emanuel Cohen, Technion
Prof. Emanuel Cohen, TechnionProf. Emanuel Cohen, Technion
Prof. Emanuel Cohen, Technion
 

Recently uploaded

Recently uploaded (20)

🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 

High speed differential signaling

  • 1. High Speed Differential Signaling  Interconnect Influence ‐ Advanced Phenomena Liav Ben‐Artsi Marvell Israel (MISL) Ltd. May 2, 2012 May 2, 2012 V3 1
  • 2. Agenda  High speed signaling basics and basic phenomena   The impact of differential inner pair skew  Multiple reflections  Passive interconnect as a DCD amplifier  May 2, 2012 May 2, 2012 V3 2
  • 3. The Serial Link ‐ Background Tx  Interconnect Receiver Driver  Target: To transmit serial data over a given interconnect and receive it with a desired BER.   We will discuss the following serial link related issues:  Serial link data frequency content   Serial link components and what influences them: – Tx driver – Interconnect  – Receiver May 2, 2012 May 2, 2012 V3 3
  • 4. Frequency Content of a Serial Signal – Square Wave  An “ideal” square wave can be constructed of sinusoidal components of odd  multiplications of the signal’s “main” frequency.  What is the frequency content of an 8‐10 encoded bit stream?  Fastest symbol is 1010…  Slowest symbol is constructed of 5 consecutive bits.  First Harmonic resides between Fb/10   Fb/2 (there may be even lower frequencies corresponding to repeating data strings.)  May 2, 2012 May 2, 2012 V3 4
  • 5. Frequency Content of a Serial Signal An “Ideal” Interconnect What interconnect will not change the signal shape except for the amplitude?   We said that: The serial data consists of different length of consecutive bits wide symbol  frequency range Each symbol incorporates a set of sinusoidal frequencies   What would be the “ideal” interconnect description in the frequency domain? A flat insertion loss response over frequency with a constant group delay over  frequency (linear phase) This interconnect is not practical   May 2, 2012 May 2, 2012 V3 5
  • 6. The Interconnect A Well‐designed Physical Interconnect  • Due to physical characteristics of the material  a “well designed” printed circuit board trace  frequency response shows linear loss (in db scale) and linear phase behavior. • Frequency content of the first harmonic is  from FB/(2*longest bit stream) to Fb/2  (Fb/10 to Fb/2 in 8‐10 encoding)  ISI • Other interconnect characteristics /  phenomena will be discussed later in this  presentation  May 2, 2012 May 2, 2012 V3 6
  • 7. Introduction to Channel Theory (cont’d)  Assuming a rectangular input pulse with a width of 200psec.  Zoom in on the pulses at the end of a line with 5db, 16db and 26db @ 2.5GHz loss.  Several phenomena can be observed:  Rise time degradation  ‐ Why? The decay phenomenon time increases Maximum amplitude varies according to the interconnect loss.   May 2, 2012 May 2, 2012 V3 7
  • 8. Interconnect Characteristics ‐ ISI We have seen the signal degradation due to steeper  channel loss. Eye Diagram view 5db loss (@2.5GHz ‐ bit time 200p 5GBPS). Eye Diagram view 16db loss (@2.5GHz ‐ bit time 200p 5GBPS). Eye Diagram view 26db loss (@2.5GHz ‐ bit time 200p 5GBPS).  May 2, 2012 May 2, 2012 V3 8
  • 9. Interconnect Characteristics:  ISI ‐ Remedies  We need to compensate for the higher frequencies loss (or attenuate  the lower frequencies). This action is called Equalization.  Several types of equalization techniques (Eq) are available: Tx Eq and Rx  Eq. PE – Pre‐emphasis  FFE – Feed Forward equalization CTLE – Continues Time Linear Equalizer  DFE – Decision feedback equalizer   May 2, 2012 May 2, 2012 V3 9
  • 10. The Serial Link – Advanced Phenomena Tx  Interconnect Receiver Driver  The impact of differential inner pair skew (the difference in delay between the  positive and negative interconnect paths).  Multiple reflections – signal degradation due to the presence of multiple  discontinuities along an interconnect and the main difference between a single  reflection and multiple reflections.  Passive interconnect as a DCD amplifier – what happens to a signal that has a  certain amount of duty cycle distortion when traveling through a high speed  interconnect.   May 2, 2012 May 2, 2012 V3 10
  • 11. Differential inner pair skew  If the interconnect has a 10psec skew between p and n trace, what will be the amount of  added jitter?  Will there be any other effects to the inner pair skew?  Phenomena such as susceptibility to Xtalk and EMI are not discussed in this presentation.  The analysis assumes very loosely coupled traces.  May 2, 2012 May 2, 2012 V3 11
  • 12. Differential inner pair skew – Analysis Looking at the impact of skew on differential harmonic signals one can observe  that:  The main impact of skew would be seen on the signal amplitude. The larger the  skew (in terms of UI) the larger the amplitude degradation.  The harmonic signal width is not influenced, rather the ideal sampling point is  shifted.  Since high frequency symbols (such as 1010…) have small UI width, inner pair skew  will degrade their amplitude by a larger amount compared to lower frequency  symbols (such as 111000…).  This will introduce ISI.  In the case of short reach interconnects, the signal may still have a portion of  higher harmonies amplitudes  signals rise/fall will be highly impacted.      May 2, 2012 May 2, 2012 V3 12
  • 14. Reflection and multiple reflections Reflections occur at every location of medium change along an interconnect.  ZL  Z 0 reflected : L  ZL  Z 0 ZL  Z 0 2ZL Transfered :TL  1  L  1   ZL  Z 0 ZL  Z 0  May 2, 2012 May 2, 2012 V3 14
  • 15. Reflections ‐ Observations ZL  Z 0 reflected : L  ZL  Z 0 ZL  Z 0 2ZL Transfered :TL  1  L  1   ZL  Z 0 ZL  Z 0  The reflected portion can be positive or negative   The transferred portion can only have non‐negative magnitudes   The transferred portion will accumulate phase as it advances through the reflecting object  (such as a via, a trace with different impedance, etc.)  A wave advancing through an interconnect accumulates phase (the interconnect has a  propagation delay).   An advancing wave may be attenuated with an amount related to the medium characteristics  (dielectric loss coefficient, mechanical dimensions that influence the skin effect, copper  surface roughness).  Advancing and reflected waves may interact forming interference (‫ – )התאבכות‬This effect will  occur only in the presence of more than a single reflection  multiple reflections effect.  May 2, 2012 May 2, 2012 V3 15
  • 16. Single reflections – simulated results  Differential via (G‐S‐S‐G) with via stubs (capacitive).  Traces de‐embedded.  Reflected signal has a ~180° shift (+ delay)  Transferred signal has a phase accumulation according to via delay.  May 2, 2012 May 2, 2012 V3 16
  • 17. Multiple reflections – simulated results  Two Differential vias (G‐S‐S‐G) with via stubs structure.  Traces (lossless) connecting the two structures.  Reflected signal bounces back and forth to create interference.  Loss will lower the interference amplitude.  May 2, 2012 May 2, 2012 V3 17
  • 18. Multiple reflections – simulated results  Multiple reflections causes transfer to introduce ripple (usually referred to as insertion loss  deviation – ILD) – why?  The reason for optimizing return loss Insertion loss Return loss  May 2, 2012 May 2, 2012 V3 18
  • 19. An Interconnect as a Duty Cycle Distortion Amplifier   Duty Cycle is the ratio of the positive pulse duration to the pulse period.   The Ideal duty cycle is 50%.  Duty Cycle Distortion (DCD) is defined to be the deviation from the ideal 50%.  The average voltage of a 0% DCD differential signal is zero. The average signal voltage  deviates from zero with the introduction of DCD  baseline wander.  DCD increases with rise/fall time degradation.  May 2, 2012 May 2, 2012 V3 19
  • 20. Duty Cycle Distortion – Simulation results   Driver has a minimal  pulse width of  86.8psec ‐ 10psec  degradation due to  DCD.  Signal at the  interconnect Far‐End  has a 16psec  degradation due to  DCD   DCD was increased as  a result of passing  through the  interconnect.  May 2, 2012 May 2, 2012 V3 20
  • 21.  May 2, 2012 May 2, 2012 V3 21