SlideShare a Scribd company logo
1 of 22
Download to read offline
Hypervelocity Nuclear Interceptor System for Optimal Fragmentation and Dispersion of Near-Earth Objects 
Bong Wie (PI), Alan Pitz, and Brian Kaplinger 
Asteroid Deflection Research Center 
Dept. of Aerospace Engineering 
Iowa State University, Ames, IA 
David Dearborn (Co-I) 
Lawrence Livermore National Laboratory 
NIAC Phase 1 Spring Symposium 
March 27-29, 2012 
1 
10 – 30 km/s
Introduction 
•The most probable impact threat of near-Earth Objects (100 m – 1 km) with a short warning time (e.g., < 10 years) 
• Warning (or mission lead) time: detection launch NEO intercept Earth flyby 
•Nuclear explosion options: 
 standoff (near-surface) blast 
 surface contact burst 
 buried or penetrated subsurface explosion 
• Key references for NEO impact threat mitigation: 
 2007 NASA NEO Report 
 2010 NRC NEO Report 
 2004, 2007, 2009, 2011 Planetary Defense Conferences 
2
NASA Space Technology Grand Challenges (2011) 
3
NASA Space Technology Grand Challenges (2011) 
But, no funding yet for NEO mitigation technology study ! 
4
Interplanetary Ballistic Missile (IPBM) System Architecture Concept for NEO Deflection 
Wagner, Pitz, Zimmerman, and Wie (IAC-09.D1.1.1, 60th IAC, 2009) 
• 
Delta IV Heavy 
– 
1500 kg Nuclear Payload (≈2 Mt yield) for 1 km NEO 
• 
Delta IV M+ 
– 
1000 kg Nuclear Payload (≈1 Mt yield) for 500 m NEO 
• 
Delta II or Taurus II 
– 
300 kg Nuclear Payload (≈300 kt yield) for 200 m NEO 
5
Launch Vehicle Options 
• 
Launch vehicles 
 
Delta II class: $60M-100M 
 
Delta IV class: $170M-324M 
 
Atlas V class: $177M-246M 
• 
Available launch vehicles 
 
Delta II 732X, 742X, 792X, 792XH 
 
Delta IV M, M+(4,2), M+(5,4) 
 
Delta IV Heavy 
 
Atlas V 401, 431, 551 
6
Nuclear Options & Issues 
• 
Rendezvous vs. intercept 
 
Standoff (flyby) near-surface blast 
 
Surface contact burst 
 
Penetrated subsurface explosion 
• 
Late intercept missions (with a short warning time) will result in hypervelocity impact velocity of 10 – 30 km/s. 
7
Nuclear Options & Issues 
• 
Rendezvous vs. intercept 
 
Standoff (flyby) near-surface blast 
 
Surface contact burst 
 
Penetrated subsurface explosion 
• 
Late intercept missions (with a short warning time) will result in hypervelocity impact velocity of 10 – 30 km/s. 
8 
• Impact velocity of Nuclear Earth-Penetrator Weapons (NEPWs) < 300 m/s (or < 1.5 km/s)
2005 NRC Report on NEPW 
9 
300-kt EPW at 3-m DOB is equivalent to a 6-Mt surface contact burst
Hypervelocity Nuclear Interceptor Concept for Penetrated Subsurface Explosion @ 10 - 30 km/s Presented at 2011 Planetary Defense Conference, Bucharest, Romania, May 2011 
10 
10 – 30 km/s
Phase 1: Conceptual Design Presented at AAS Space Flight Mechanics Meeting, January 2012 AAS 2012-225 by Pitz, Kaplinger, Wie, and Dearborn 
• 
Mission cost: 
 
$500M mission with 300-kg NED 
 
$1B mission with 1000-kg NED 
 
$1.5B mission with 1500-kg NED 
• 
Two-body configuration: leader (impactor) and follower S/C 
Mission Class 
Total Mass of HNIS (kg) 
300-kg NED (300-kt yield) 
1843 
1000-kg NED (1-Mt yield) 
4251 
1500-kg NED (2 Mt yield) 
5720 
11
Phase 1: Conceptual Design Presented at AAS Space Flight Mechanics Meeting, January 2012 AAS 2012-225 by Pitz, Kaplinger, Wie, and Dearborn) 
Leader Spacecraft 
Follower Spacecraft 
Divert & Attitude Control System 
Instruments and Optical Cameras 
NED 
Thermal Shield 
12
WFOV identifies target NEO 
WFOV ’ NFOV and attitude maneuvers 
Leader separates and NED fuzing mechanisms begin 
Leader S/C impacts and creates a shallow crater 
Follower S/C with NED enters crater and detonates 
Hypervelocity Nuclear Interceptor System Terminal Phase Operations 
NED Payloads 
• 
300-kg NED (H 300 kt) 
• 
1,000-kg NED (H 1 Mt) 
• 
1,500-kg NED (H 2 Mt) 
13
$500M Demo Mission to 1998 SB15 Presented at AAS Space Flight Mechanics Meeting, January 2012 AAS/AIAA Paper 2012-128 by Vardaxis, Pitz, and Wie 
Launch Vehicle 
Delta II 7920H 
S/C Mass 
1843 kg 
Payload 
300 kg 
Total Launch 
Mass 
5800 kg 
Departure ”V 
3.35 km/s 
C3 
2.37 (km2/s2) 
Target Diameter 
330 m 
Departure Date 
05/05/2017 
Transfer Time 
159 days 
Arrival Date 
10/11/2017 
14
Nuclear Subsurface Explosions (1/2) 
15
Nuclear Subsurface Explosions (2/2) 
16 
Intercept-to-Flyby Days
Hypervelocity Impact and Nuclear Explosion 
17
Hypervelocity Impact and Nuclear Explosion 
18
• 
An innovative, but yet practical & cost effective, solution to NASA’s NEO Threat Mitigation Grand Challenge 
• 
Baseline spacecraft system/mission architecture concept design (Task 1) 
• 
Physical modeling and high-performance computational simulation tools (Task 2) 
• 
Planetary Defense Technology (PDT) flight demonstration mission concept ESA’s Don Quijote mission (cancelled) Lewis & Clark (?) mission 
NIAC Phase 1 Outcomes 
19
Phase 1 Publications 
• 
Pitz, A., Kaplinger, B., Wie, B., and Dearborn, D., “Conceptual Design of a Hypervelocity Nuclear Interceptor System,” AAS/AIAA Space Flight Mechanics Meeting, January 2012. 
• 
Kaplinger, B., Wie, B., and Dearborn, D., “Earth-Impact Modeling and Analysis of a Near-Earth Object Fragmented and Dispersed by Nuclear Subsurface Explosions,” to appear in Journal of Astronautical Science. 
• 
Wie, B., “Hypervelocity Nuclear Interceptor System Concept,” to appear in Acta Astronautica. 
• 
Kaplinger, B., Wie, B., Dearborn, D., “Nuclear Fragmentation/Dispersion Modeling and Simulation of Hazardous Near-Earth Objects,” to appear in Acta Astronautica. 
20
• 
NIAC Phase 2 ($500K) ? 
• 
NASA Iowa EPSCoR ($750K) ? 
• 
Game-Changing Technology Program of the NASA OCT ($3M) ?? 
• 
Development of Planetary Defense Technology (PDT) R&D Program ($10M - $100M) ???? 
• 
Lewis & Clark PDT Flight Demo Mission (> $500M) ?????? 
PDT R&D Milestones 
21
Concluding Remarks 
• For the most probable impact threat with a short warning time, nuclear fragmentation & dispersion is the only practically viable, but yet cost effective, solution. 
• However, the hypervelocity nuclear interceptor technology needs to be flight validated in space (but, without nuclear payload !). 
22 
10 - 30 km/s

More Related Content

What's hot

FDL 2017 Solar Terrestrial Interactions
FDL 2017 Solar Terrestrial InteractionsFDL 2017 Solar Terrestrial Interactions
FDL 2017 Solar Terrestrial InteractionsLeonard Silverberg
 
Can Humans Survive 1000 Days in Space?
Can Humans Survive 1000 Days in Space? Can Humans Survive 1000 Days in Space?
Can Humans Survive 1000 Days in Space? mtnadmin
 
HAARP/Chemtrails WMD: Exposing a Spiritual, Mass Mind-control, and Planetary ...
HAARP/Chemtrails WMD: Exposing a Spiritual, Mass Mind-control, and Planetary ...HAARP/Chemtrails WMD: Exposing a Spiritual, Mass Mind-control, and Planetary ...
HAARP/Chemtrails WMD: Exposing a Spiritual, Mass Mind-control, and Planetary ...exouniversity
 
SPACE DEBRIS PALAT PARLAM no authors
SPACE DEBRIS PALAT PARLAM no authorsSPACE DEBRIS PALAT PARLAM no authors
SPACE DEBRIS PALAT PARLAM no authorsMARIUS EUGEN OPRAN
 
Merged document 14
Merged document 14Merged document 14
Merged document 14V!vEk@nAnD S
 
Teledyne Brown Engineering Slides
Teledyne Brown Engineering Slides Teledyne Brown Engineering Slides
Teledyne Brown Engineering Slides CASIS
 
Canberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesCanberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesJohn Hines
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORgrssieee
 
New Space Environment Utilization with Kibo Unique Exposed Facility
New Space Environment Utilization with Kibo Unique Exposed FacilityNew Space Environment Utilization with Kibo Unique Exposed Facility
New Space Environment Utilization with Kibo Unique Exposed FacilityISSRDC
 
Lunar-Underground-Mining-and-Construction-A-Terrestrial-Vision-Enabling-Space...
Lunar-Underground-Mining-and-Construction-A-Terrestrial-Vision-Enabling-Space...Lunar-Underground-Mining-and-Construction-A-Terrestrial-Vision-Enabling-Space...
Lunar-Underground-Mining-and-Construction-A-Terrestrial-Vision-Enabling-Space...Louis Grenier
 

What's hot (13)

FDL 2017 Solar Terrestrial Interactions
FDL 2017 Solar Terrestrial InteractionsFDL 2017 Solar Terrestrial Interactions
FDL 2017 Solar Terrestrial Interactions
 
Fdl 2016 overview
Fdl 2016 overviewFdl 2016 overview
Fdl 2016 overview
 
Can Humans Survive 1000 Days in Space?
Can Humans Survive 1000 Days in Space? Can Humans Survive 1000 Days in Space?
Can Humans Survive 1000 Days in Space?
 
HAARP/Chemtrails WMD: Exposing a Spiritual, Mass Mind-control, and Planetary ...
HAARP/Chemtrails WMD: Exposing a Spiritual, Mass Mind-control, and Planetary ...HAARP/Chemtrails WMD: Exposing a Spiritual, Mass Mind-control, and Planetary ...
HAARP/Chemtrails WMD: Exposing a Spiritual, Mass Mind-control, and Planetary ...
 
SPACE DEBRIS PALAT PARLAM no authors
SPACE DEBRIS PALAT PARLAM no authorsSPACE DEBRIS PALAT PARLAM no authors
SPACE DEBRIS PALAT PARLAM no authors
 
Activities at Wallops Flight Facility
Activities at Wallops Flight FacilityActivities at Wallops Flight Facility
Activities at Wallops Flight Facility
 
Bitten
BittenBitten
Bitten
 
Merged document 14
Merged document 14Merged document 14
Merged document 14
 
Teledyne Brown Engineering Slides
Teledyne Brown Engineering Slides Teledyne Brown Engineering Slides
Teledyne Brown Engineering Slides
 
Canberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesCanberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hines
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
 
New Space Environment Utilization with Kibo Unique Exposed Facility
New Space Environment Utilization with Kibo Unique Exposed FacilityNew Space Environment Utilization with Kibo Unique Exposed Facility
New Space Environment Utilization with Kibo Unique Exposed Facility
 
Lunar-Underground-Mining-and-Construction-A-Terrestrial-Vision-Enabling-Space...
Lunar-Underground-Mining-and-Construction-A-Terrestrial-Vision-Enabling-Space...Lunar-Underground-Mining-and-Construction-A-Terrestrial-Vision-Enabling-Space...
Lunar-Underground-Mining-and-Construction-A-Terrestrial-Vision-Enabling-Space...
 

Similar to 637138main wie presentation

Interstellar explorermay02
Interstellar explorermay02Interstellar explorermay02
Interstellar explorermay02Clifford Stone
 
Realistic interstellarexplorer
Realistic interstellarexplorerRealistic interstellarexplorer
Realistic interstellarexplorerClifford Stone
 
745592main 2013 falker_presentation_chicago
745592main 2013 falker_presentation_chicago745592main 2013 falker_presentation_chicago
745592main 2013 falker_presentation_chicagoClifford Stone
 
Embry Riddle Final
Embry Riddle FinalEmbry Riddle Final
Embry Riddle Finaljschrell
 
Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.Sung (Stephen) Kim
 
Starfish prime and EMP Attack collateral damages
Starfish prime and EMP Attack collateral damagesStarfish prime and EMP Attack collateral damages
Starfish prime and EMP Attack collateral damagesLaLibre
 
Suborbital Opportunities for Students
Suborbital Opportunities for StudentsSuborbital Opportunities for Students
Suborbital Opportunities for StudentsKimberly Ennico Smith
 
Dare for planetaryexploration
Dare for planetaryexplorationDare for planetaryexploration
Dare for planetaryexplorationClifford Stone
 
3 IGARSSWkshp_July2011_Csiszar_Fire_V1.pptx
3 IGARSSWkshp_July2011_Csiszar_Fire_V1.pptx3 IGARSSWkshp_July2011_Csiszar_Fire_V1.pptx
3 IGARSSWkshp_July2011_Csiszar_Fire_V1.pptxgrssieee
 
Toward a Global Interactive Earth Observing Cyberinfrastructure
Toward a Global Interactive Earth Observing CyberinfrastructureToward a Global Interactive Earth Observing Cyberinfrastructure
Toward a Global Interactive Earth Observing CyberinfrastructureLarry Smarr
 
KGrothe-AIAA-ASAT-SpaceDebris
KGrothe-AIAA-ASAT-SpaceDebrisKGrothe-AIAA-ASAT-SpaceDebris
KGrothe-AIAA-ASAT-SpaceDebrisKaren Grothe
 
Introduction to TLS Applications Presentation
Introduction to TLS Applications PresentationIntroduction to TLS Applications Presentation
Introduction to TLS Applications PresentationSERC at Carleton College
 
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesThe Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesLarry Smarr
 
Airships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason RhodesAirships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason RhodesAdvanced-Concepts-Team
 

Similar to 637138main wie presentation (20)

Interstellar explorermay02
Interstellar explorermay02Interstellar explorermay02
Interstellar explorermay02
 
PellegrinoHonorsThesis
PellegrinoHonorsThesisPellegrinoHonorsThesis
PellegrinoHonorsThesis
 
Realistic interstellarexplorer
Realistic interstellarexplorerRealistic interstellarexplorer
Realistic interstellarexplorer
 
745592main 2013 falker_presentation_chicago
745592main 2013 falker_presentation_chicago745592main 2013 falker_presentation_chicago
745592main 2013 falker_presentation_chicago
 
Embry Riddle Final
Embry Riddle FinalEmbry Riddle Final
Embry Riddle Final
 
Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.
 
Starfish prime and EMP Attack collateral damages
Starfish prime and EMP Attack collateral damagesStarfish prime and EMP Attack collateral damages
Starfish prime and EMP Attack collateral damages
 
ACCESS Mars project final presentation
ACCESS Mars project final presentationACCESS Mars project final presentation
ACCESS Mars project final presentation
 
Laforge nov99
Laforge nov99Laforge nov99
Laforge nov99
 
Suborbital Opportunities for Students
Suborbital Opportunities for StudentsSuborbital Opportunities for Students
Suborbital Opportunities for Students
 
Astronauts and Robots 2015: Gary Blackwood, JPL
Astronauts and Robots 2015: Gary Blackwood, JPLAstronauts and Robots 2015: Gary Blackwood, JPL
Astronauts and Robots 2015: Gary Blackwood, JPL
 
Dare for planetaryexploration
Dare for planetaryexplorationDare for planetaryexploration
Dare for planetaryexploration
 
3 IGARSSWkshp_July2011_Csiszar_Fire_V1.pptx
3 IGARSSWkshp_July2011_Csiszar_Fire_V1.pptx3 IGARSSWkshp_July2011_Csiszar_Fire_V1.pptx
3 IGARSSWkshp_July2011_Csiszar_Fire_V1.pptx
 
2583
25832583
2583
 
Toward a Global Interactive Earth Observing Cyberinfrastructure
Toward a Global Interactive Earth Observing CyberinfrastructureToward a Global Interactive Earth Observing Cyberinfrastructure
Toward a Global Interactive Earth Observing Cyberinfrastructure
 
KGrothe-AIAA-ASAT-SpaceDebris
KGrothe-AIAA-ASAT-SpaceDebrisKGrothe-AIAA-ASAT-SpaceDebris
KGrothe-AIAA-ASAT-SpaceDebris
 
Introduction to TLS Applications Presentation
Introduction to TLS Applications PresentationIntroduction to TLS Applications Presentation
Introduction to TLS Applications Presentation
 
Welcome oct02
Welcome oct02Welcome oct02
Welcome oct02
 
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesThe Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
 
Airships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason RhodesAirships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason Rhodes
 

More from Clifford Stone (20)

Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
Xray telescopeconcept
Xray telescopeconceptXray telescopeconcept
Xray telescopeconcept
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Wpafb blue bookdocuments
Wpafb blue bookdocumentsWpafb blue bookdocuments
Wpafb blue bookdocuments
 
What gov knows_about_ufos
What gov knows_about_ufosWhat gov knows_about_ufos
What gov knows_about_ufos
 
Weather jun02
Weather jun02Weather jun02
Weather jun02
 
Wassersug richard[1]
Wassersug richard[1]Wassersug richard[1]
Wassersug richard[1]
 
Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952
 
Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952
 
Vol4ch03
Vol4ch03Vol4ch03
Vol4ch03
 
Vol4ch02
Vol4ch02Vol4ch02
Vol4ch02
 
Vol4ch01
Vol4ch01Vol4ch01
Vol4ch01
 
Vol3ch16
Vol3ch16Vol3ch16
Vol3ch16
 
Vol3ch14
Vol3ch14Vol3ch14
Vol3ch14
 
Vol3ch13
Vol3ch13Vol3ch13
Vol3ch13
 
Vol3ch12
Vol3ch12Vol3ch12
Vol3ch12
 
Vol3ch11
Vol3ch11Vol3ch11
Vol3ch11
 
Vol3ch10
Vol3ch10Vol3ch10
Vol3ch10
 
Vol3ch09
Vol3ch09Vol3ch09
Vol3ch09
 
Vol3ch08
Vol3ch08Vol3ch08
Vol3ch08
 

637138main wie presentation

  • 1. Hypervelocity Nuclear Interceptor System for Optimal Fragmentation and Dispersion of Near-Earth Objects Bong Wie (PI), Alan Pitz, and Brian Kaplinger Asteroid Deflection Research Center Dept. of Aerospace Engineering Iowa State University, Ames, IA David Dearborn (Co-I) Lawrence Livermore National Laboratory NIAC Phase 1 Spring Symposium March 27-29, 2012 1 10 – 30 km/s
  • 2. Introduction •The most probable impact threat of near-Earth Objects (100 m – 1 km) with a short warning time (e.g., < 10 years) • Warning (or mission lead) time: detection launch NEO intercept Earth flyby •Nuclear explosion options:  standoff (near-surface) blast  surface contact burst  buried or penetrated subsurface explosion • Key references for NEO impact threat mitigation:  2007 NASA NEO Report  2010 NRC NEO Report  2004, 2007, 2009, 2011 Planetary Defense Conferences 2
  • 3. NASA Space Technology Grand Challenges (2011) 3
  • 4. NASA Space Technology Grand Challenges (2011) But, no funding yet for NEO mitigation technology study ! 4
  • 5. Interplanetary Ballistic Missile (IPBM) System Architecture Concept for NEO Deflection Wagner, Pitz, Zimmerman, and Wie (IAC-09.D1.1.1, 60th IAC, 2009) • Delta IV Heavy – 1500 kg Nuclear Payload (≈2 Mt yield) for 1 km NEO • Delta IV M+ – 1000 kg Nuclear Payload (≈1 Mt yield) for 500 m NEO • Delta II or Taurus II – 300 kg Nuclear Payload (≈300 kt yield) for 200 m NEO 5
  • 6. Launch Vehicle Options • Launch vehicles  Delta II class: $60M-100M  Delta IV class: $170M-324M  Atlas V class: $177M-246M • Available launch vehicles  Delta II 732X, 742X, 792X, 792XH  Delta IV M, M+(4,2), M+(5,4)  Delta IV Heavy  Atlas V 401, 431, 551 6
  • 7. Nuclear Options & Issues • Rendezvous vs. intercept  Standoff (flyby) near-surface blast  Surface contact burst  Penetrated subsurface explosion • Late intercept missions (with a short warning time) will result in hypervelocity impact velocity of 10 – 30 km/s. 7
  • 8. Nuclear Options & Issues • Rendezvous vs. intercept  Standoff (flyby) near-surface blast  Surface contact burst  Penetrated subsurface explosion • Late intercept missions (with a short warning time) will result in hypervelocity impact velocity of 10 – 30 km/s. 8 • Impact velocity of Nuclear Earth-Penetrator Weapons (NEPWs) < 300 m/s (or < 1.5 km/s)
  • 9. 2005 NRC Report on NEPW 9 300-kt EPW at 3-m DOB is equivalent to a 6-Mt surface contact burst
  • 10. Hypervelocity Nuclear Interceptor Concept for Penetrated Subsurface Explosion @ 10 - 30 km/s Presented at 2011 Planetary Defense Conference, Bucharest, Romania, May 2011 10 10 – 30 km/s
  • 11. Phase 1: Conceptual Design Presented at AAS Space Flight Mechanics Meeting, January 2012 AAS 2012-225 by Pitz, Kaplinger, Wie, and Dearborn • Mission cost:  $500M mission with 300-kg NED  $1B mission with 1000-kg NED  $1.5B mission with 1500-kg NED • Two-body configuration: leader (impactor) and follower S/C Mission Class Total Mass of HNIS (kg) 300-kg NED (300-kt yield) 1843 1000-kg NED (1-Mt yield) 4251 1500-kg NED (2 Mt yield) 5720 11
  • 12. Phase 1: Conceptual Design Presented at AAS Space Flight Mechanics Meeting, January 2012 AAS 2012-225 by Pitz, Kaplinger, Wie, and Dearborn) Leader Spacecraft Follower Spacecraft Divert & Attitude Control System Instruments and Optical Cameras NED Thermal Shield 12
  • 13. WFOV identifies target NEO WFOV ’ NFOV and attitude maneuvers Leader separates and NED fuzing mechanisms begin Leader S/C impacts and creates a shallow crater Follower S/C with NED enters crater and detonates Hypervelocity Nuclear Interceptor System Terminal Phase Operations NED Payloads • 300-kg NED (H 300 kt) • 1,000-kg NED (H 1 Mt) • 1,500-kg NED (H 2 Mt) 13
  • 14. $500M Demo Mission to 1998 SB15 Presented at AAS Space Flight Mechanics Meeting, January 2012 AAS/AIAA Paper 2012-128 by Vardaxis, Pitz, and Wie Launch Vehicle Delta II 7920H S/C Mass 1843 kg Payload 300 kg Total Launch Mass 5800 kg Departure ”V 3.35 km/s C3 2.37 (km2/s2) Target Diameter 330 m Departure Date 05/05/2017 Transfer Time 159 days Arrival Date 10/11/2017 14
  • 16. Nuclear Subsurface Explosions (2/2) 16 Intercept-to-Flyby Days
  • 17. Hypervelocity Impact and Nuclear Explosion 17
  • 18. Hypervelocity Impact and Nuclear Explosion 18
  • 19. • An innovative, but yet practical & cost effective, solution to NASA’s NEO Threat Mitigation Grand Challenge • Baseline spacecraft system/mission architecture concept design (Task 1) • Physical modeling and high-performance computational simulation tools (Task 2) • Planetary Defense Technology (PDT) flight demonstration mission concept ESA’s Don Quijote mission (cancelled) Lewis & Clark (?) mission NIAC Phase 1 Outcomes 19
  • 20. Phase 1 Publications • Pitz, A., Kaplinger, B., Wie, B., and Dearborn, D., “Conceptual Design of a Hypervelocity Nuclear Interceptor System,” AAS/AIAA Space Flight Mechanics Meeting, January 2012. • Kaplinger, B., Wie, B., and Dearborn, D., “Earth-Impact Modeling and Analysis of a Near-Earth Object Fragmented and Dispersed by Nuclear Subsurface Explosions,” to appear in Journal of Astronautical Science. • Wie, B., “Hypervelocity Nuclear Interceptor System Concept,” to appear in Acta Astronautica. • Kaplinger, B., Wie, B., Dearborn, D., “Nuclear Fragmentation/Dispersion Modeling and Simulation of Hazardous Near-Earth Objects,” to appear in Acta Astronautica. 20
  • 21. • NIAC Phase 2 ($500K) ? • NASA Iowa EPSCoR ($750K) ? • Game-Changing Technology Program of the NASA OCT ($3M) ?? • Development of Planetary Defense Technology (PDT) R&D Program ($10M - $100M) ???? • Lewis & Clark PDT Flight Demo Mission (> $500M) ?????? PDT R&D Milestones 21
  • 22. Concluding Remarks • For the most probable impact threat with a short warning time, nuclear fragmentation & dispersion is the only practically viable, but yet cost effective, solution. • However, the hypervelocity nuclear interceptor technology needs to be flight validated in space (but, without nuclear payload !). 22 10 - 30 km/s