SlideShare une entreprise Scribd logo
1  sur  14
Télécharger pour lire hors ligne
Plasma-Pulsed Power Generation 
UAH The University of Alabama in Huntsville 
(P3G) 
Clark W. Hawk 
University of Alabama in Huntsville 
March 25, 1999
UAH The University of Alabama in Huntsville 
Introduction 
• Background 
• Conceptual Design 
– Power Potential 
– Propulsion Potential 
• Program Progress 
– Analysis 
– Experiments 
• Summary
UAH The University of Alabama in Huntsville 
Mission Drivers 
• Low Cost, Convenient Access to Space 
• Rapid, Affordable Space Travel 
– Power --- “…a critical technology…space 
activities.” (“Space Technology for the New 
Century”, National Research Council) 
– Interstellar Transport
radial flux compression generator 
superconducting 
shell 
UAH The University of Alabama in Huntsville 
The P3G Concept 
B 
Induction Coils 
Excitation Coils 
Superconducting Shell 
Detonation Chamber 
B 
Induction Coils 
Excitation Coils 
Superconducting Shell 
Detonation Chamber 
Expanding 
Plasma 
(Chemical or Micro-Fusion Detonation) 
(Meissner Surface) 
Compressed 
Magnetic Field 
r ua 
detonation 
driven plasma 
armature 
magnet 
coil 
generator 
coil 
Hz
UAH The University of Alabama in Huntsville 
P3G Power Potential 
2 .0 
1 .5 
1 .0 
0 .5 
0 .0 
50% coupling efficiency 
100 Hz pulse rate 
10 GW 
5 GW 
D-He3 
0 .00 0.0 5 0 .10 0 .15 0 .2 0 0 .25 0.30 
fuel consumption rate (gram/sec) 
burnup fraction, fb
UAH The University of Alabama in Huntsville 
Mission Drivers 
• Interstellar Transport 
– Propulsion - 
• Pulsed Fusion Thruster
Propulsion System Comparison 
α ≡ Powerplant Specific 
Mass (kg/kW) 
launch 
UAH The University of Alabama in Huntsville 
SOLAR 
SAIL 
CONTINUOUS 
FUSION 
ROCKETS 
10-4 
107 
106 
105 
104 
103 
102 
NC RBCC 
CHEM RBCC 
space 
Vehicle Acceleration or T/W Ratio (g’s) 
Specific Impulse (secs) 
CHEMICAL ROCKETS 
ELECTRO 
MAGNETIC 
ROCKETS 
SOLAR OR 
NUCLEAR 
ELECTRIC 
ROCKETS 
PROPULSION PULSED FUSION 
102 
ANTIMATTER POWERED 
10 
α = 10-4 
1 
10-1 
10-2 
10-3 
ROCKETS 
LASER/SOLAR 
THERMAL ROCKETS 
PULSED FISSION 
(ORION) 
THERMAL FISSION 
10-5 10-3 10-2 10-1 1 10 102
P3G Propulsion Potential 
UAH The University of Alabama in Huntsville 
Winterberg / Daedalus 
Magnetic Compression Reaction Chamber 
superconductor 
compression wall 
detonation 
target 
exhaust 
induction 
generator 
coil 
magnetic 
field 
excitation 
field coils 
structural 
shell 
electrical 
power
P3G Propulsion Potential 
UAH The University of Alabama in Huntsville 
1 .50 
1 .25 
1 .00 
0 .75 
0 .50 
0 .25 
0 .00 
0 .00 0 .05 0 .10 0 .15 0 .20 0 .25 0 .30 
specific impulse, Isp = veff / g0 (106 s) 
burnup fraction, fb 
D-He3 
D-T 
D-D 
charged particles only
UAH The University of Alabama in Huntsville 
Research Drivers 
• Plasma Containment 
• Efficient Compression of Magnetic Field 
– Minimize Magnetic Diffusion Loss to Plasma 
or Wall 
– Type II Superconductor
P3G Progress (Analytical) 
UAH The University of Alabama in Huntsville 
1 02 
1 01 
1 00 
1 0-1 
1 0-2 
1 0-3 
1 0-4 
1 0-5 
1 0-6 
1 0-7 
(3 s) 
co p p e r 
b rass 
10 -7 1 0 -6 10 -5 10 -4 1 0-3 10 -2 1 0-1 
m ag n et ic d iffu s iv ity (m 2 /s ) 
m a g n e t i c d i f f u s i o n t i m e c o n s t a n t ( s ) 
stainless s teel 
flux 
creep 
range for typical 
type-II superconductor 
flux 
flow 
anticipated 
range 
(50 ms) 
Superconductor Tube 
di = 1.6 cm 
d0 = 3.0 cm
P3G Progress (Experimental) 
UAH The University of Alabama in Huntsville 
Test Cylinders: 
superconductor 
stainless steel 
aluminum 
copper
UAH The University of Alabama in Huntsville 
Summary 
• P3G Addresses NASA Mission Interests 
• P3G has: 
– High Power Potential 
– Possible Propulsion Applications 
• P3G Analysis Shows: 
– Power Promise 
• P3G Experiments Continuing
UAH The University of Alabama in Huntsville 
Acknowledgements 
• Colleagues 
– Mr. Tony Robertson 
– Dr. Ron Litchford 
• Students 
– Ms. Syri Koelfgen 
– Mr. Matthew Turner

Contenu connexe

Similaire à Plasma pulsedpowergeneration

637127main tarditi presentation
637127main tarditi presentation637127main tarditi presentation
637127main tarditi presentation
Clifford Stone
 
Blacklight rocketengine
Blacklight rocketengineBlacklight rocketengine
Blacklight rocketengine
Clifford Stone
 
Interstellar explorerjun01
Interstellar explorerjun01Interstellar explorerjun01
Interstellar explorerjun01
Clifford Stone
 
2016.12.22 Thermal and Electromagnetic Propulsion
2016.12.22 Thermal and Electromagnetic Propulsion2016.12.22 Thermal and Electromagnetic Propulsion
2016.12.22 Thermal and Electromagnetic Propulsion
Barry Stoute, PhD, P. Eng.
 

Similaire à Plasma pulsedpowergeneration (20)

Luginsland - Plasma and Electro-energetic Physics - Spring Review 2013
Luginsland - Plasma and Electro-energetic Physics - Spring Review 2013Luginsland - Plasma and Electro-energetic Physics - Spring Review 2013
Luginsland - Plasma and Electro-energetic Physics - Spring Review 2013
 
637127main tarditi presentation
637127main tarditi presentation637127main tarditi presentation
637127main tarditi presentation
 
Blacklight rocketengine
Blacklight rocketengineBlacklight rocketengine
Blacklight rocketengine
 
912 komerath[1]
912 komerath[1]912 komerath[1]
912 komerath[1]
 
Tailored forcefields
Tailored forcefieldsTailored forcefields
Tailored forcefields
 
Q surface method
Q surface methodQ surface method
Q surface method
 
The plasmamagnet
The plasmamagnetThe plasmamagnet
The plasmamagnet
 
J-PARC
J-PARCJ-PARC
J-PARC
 
Wireless power transmission technologies for solar power satellite
Wireless power transmission technologies for solar power satelliteWireless power transmission technologies for solar power satellite
Wireless power transmission technologies for solar power satellite
 
Interstellar explorerjun01
Interstellar explorerjun01Interstellar explorerjun01
Interstellar explorerjun01
 
Pelletron accelarator
Pelletron accelaratorPelletron accelarator
Pelletron accelarator
 
EMVT 12 september - Henk Polinder - TU Delft
EMVT 12 september - Henk Polinder - TU DelftEMVT 12 september - Henk Polinder - TU Delft
EMVT 12 september - Henk Polinder - TU Delft
 
Birkan - Space Propulsion and Power - Spring Review 2013
Birkan - Space Propulsion and Power - Spring Review 2013Birkan - Space Propulsion and Power - Spring Review 2013
Birkan - Space Propulsion and Power - Spring Review 2013
 
Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
1159 voronka[1]
1159 voronka[1]1159 voronka[1]
1159 voronka[1]
 
Serena barbanotti INFN milano
Serena barbanotti INFN milanoSerena barbanotti INFN milano
Serena barbanotti INFN milano
 
2GB19ME404[1].ppt
2GB19ME404[1].ppt2GB19ME404[1].ppt
2GB19ME404[1].ppt
 
Plasma propulsionm2p2
Plasma propulsionm2p2Plasma propulsionm2p2
Plasma propulsionm2p2
 
Ion propulsion 1.ppt
Ion propulsion 1.pptIon propulsion 1.ppt
Ion propulsion 1.ppt
 
2016.12.22 Thermal and Electromagnetic Propulsion
2016.12.22 Thermal and Electromagnetic Propulsion2016.12.22 Thermal and Electromagnetic Propulsion
2016.12.22 Thermal and Electromagnetic Propulsion
 

Plus de Clifford Stone (20)

Xray telescopeconcept
Xray telescopeconceptXray telescopeconcept
Xray telescopeconcept
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Wpafb blue bookdocuments
Wpafb blue bookdocumentsWpafb blue bookdocuments
Wpafb blue bookdocuments
 
What gov knows_about_ufos
What gov knows_about_ufosWhat gov knows_about_ufos
What gov knows_about_ufos
 
Welcome oct02
Welcome oct02Welcome oct02
Welcome oct02
 
Weather jun02
Weather jun02Weather jun02
Weather jun02
 
Wassersug richard[1]
Wassersug richard[1]Wassersug richard[1]
Wassersug richard[1]
 
Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952
 
Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952
 
Vol4ch03
Vol4ch03Vol4ch03
Vol4ch03
 
Vol4ch02
Vol4ch02Vol4ch02
Vol4ch02
 
Vol4ch01
Vol4ch01Vol4ch01
Vol4ch01
 
Vol3ch16
Vol3ch16Vol3ch16
Vol3ch16
 
Vol3ch14
Vol3ch14Vol3ch14
Vol3ch14
 
Vol3ch13
Vol3ch13Vol3ch13
Vol3ch13
 
Vol3ch12
Vol3ch12Vol3ch12
Vol3ch12
 
Vol3ch11
Vol3ch11Vol3ch11
Vol3ch11
 
Vol3ch10
Vol3ch10Vol3ch10
Vol3ch10
 
Vol3ch09
Vol3ch09Vol3ch09
Vol3ch09
 
Vol3ch08
Vol3ch08Vol3ch08
Vol3ch08
 

Plasma pulsedpowergeneration

  • 1. Plasma-Pulsed Power Generation UAH The University of Alabama in Huntsville (P3G) Clark W. Hawk University of Alabama in Huntsville March 25, 1999
  • 2. UAH The University of Alabama in Huntsville Introduction • Background • Conceptual Design – Power Potential – Propulsion Potential • Program Progress – Analysis – Experiments • Summary
  • 3. UAH The University of Alabama in Huntsville Mission Drivers • Low Cost, Convenient Access to Space • Rapid, Affordable Space Travel – Power --- “…a critical technology…space activities.” (“Space Technology for the New Century”, National Research Council) – Interstellar Transport
  • 4. radial flux compression generator superconducting shell UAH The University of Alabama in Huntsville The P3G Concept B Induction Coils Excitation Coils Superconducting Shell Detonation Chamber B Induction Coils Excitation Coils Superconducting Shell Detonation Chamber Expanding Plasma (Chemical or Micro-Fusion Detonation) (Meissner Surface) Compressed Magnetic Field r ua detonation driven plasma armature magnet coil generator coil Hz
  • 5. UAH The University of Alabama in Huntsville P3G Power Potential 2 .0 1 .5 1 .0 0 .5 0 .0 50% coupling efficiency 100 Hz pulse rate 10 GW 5 GW D-He3 0 .00 0.0 5 0 .10 0 .15 0 .2 0 0 .25 0.30 fuel consumption rate (gram/sec) burnup fraction, fb
  • 6. UAH The University of Alabama in Huntsville Mission Drivers • Interstellar Transport – Propulsion - • Pulsed Fusion Thruster
  • 7. Propulsion System Comparison α ≡ Powerplant Specific Mass (kg/kW) launch UAH The University of Alabama in Huntsville SOLAR SAIL CONTINUOUS FUSION ROCKETS 10-4 107 106 105 104 103 102 NC RBCC CHEM RBCC space Vehicle Acceleration or T/W Ratio (g’s) Specific Impulse (secs) CHEMICAL ROCKETS ELECTRO MAGNETIC ROCKETS SOLAR OR NUCLEAR ELECTRIC ROCKETS PROPULSION PULSED FUSION 102 ANTIMATTER POWERED 10 α = 10-4 1 10-1 10-2 10-3 ROCKETS LASER/SOLAR THERMAL ROCKETS PULSED FISSION (ORION) THERMAL FISSION 10-5 10-3 10-2 10-1 1 10 102
  • 8. P3G Propulsion Potential UAH The University of Alabama in Huntsville Winterberg / Daedalus Magnetic Compression Reaction Chamber superconductor compression wall detonation target exhaust induction generator coil magnetic field excitation field coils structural shell electrical power
  • 9. P3G Propulsion Potential UAH The University of Alabama in Huntsville 1 .50 1 .25 1 .00 0 .75 0 .50 0 .25 0 .00 0 .00 0 .05 0 .10 0 .15 0 .20 0 .25 0 .30 specific impulse, Isp = veff / g0 (106 s) burnup fraction, fb D-He3 D-T D-D charged particles only
  • 10. UAH The University of Alabama in Huntsville Research Drivers • Plasma Containment • Efficient Compression of Magnetic Field – Minimize Magnetic Diffusion Loss to Plasma or Wall – Type II Superconductor
  • 11. P3G Progress (Analytical) UAH The University of Alabama in Huntsville 1 02 1 01 1 00 1 0-1 1 0-2 1 0-3 1 0-4 1 0-5 1 0-6 1 0-7 (3 s) co p p e r b rass 10 -7 1 0 -6 10 -5 10 -4 1 0-3 10 -2 1 0-1 m ag n et ic d iffu s iv ity (m 2 /s ) m a g n e t i c d i f f u s i o n t i m e c o n s t a n t ( s ) stainless s teel flux creep range for typical type-II superconductor flux flow anticipated range (50 ms) Superconductor Tube di = 1.6 cm d0 = 3.0 cm
  • 12. P3G Progress (Experimental) UAH The University of Alabama in Huntsville Test Cylinders: superconductor stainless steel aluminum copper
  • 13. UAH The University of Alabama in Huntsville Summary • P3G Addresses NASA Mission Interests • P3G has: – High Power Potential – Possible Propulsion Applications • P3G Analysis Shows: – Power Promise • P3G Experiments Continuing
  • 14. UAH The University of Alabama in Huntsville Acknowledgements • Colleagues – Mr. Tony Robertson – Dr. Ron Litchford • Students – Ms. Syri Koelfgen – Mr. Matthew Turner