SlideShare une entreprise Scribd logo
1  sur  7
Télécharger pour lire hors ligne
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: RC Slab Analysis & Design, In accordance with
EN1992-1-1:2004 incorporating corrigendum January 2008
and the recommended values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
13/05/2014
Chk'd by
Date App'd by Date
1
RC SLAB DESIGN
In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008
and the recommended values
Slab definition
Slab definition
Type of slab; Two way spanning with restrained edges
Overall slab depth; h = 225 mm
Shorter effective span of panel; lx = 8000 mm
Longer effective span of panel; ly = 9200 mm
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: RC Slab Analysis & Design, In accordance with
EN1992-1-1:2004 incorporating corrigendum January 2008
and the recommended values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
13/05/2014
Chk'd by
Date App'd by Date
2
Support conditions; Two adjacent edges discontinuous
Top outer layer of reinforcement; Short span direction
Bottom outer layer of reinforcement; Short span direction
Loading
Characteristic permanent action; Gk = 6.0 kN/m
2
Characteristic variable action; Qk = 5.0 kN/m
2
Partial factor for permanent action; γG = 1.35
Partial factor for variable action; γQ = 1.50
Quasi-permanent value of variable action; ψ2 = 0.30
Design ultimate load; q = γG × Gk + γQ × Qk = 15.6 kN/m
2
Quasi-permanent load; qSLS = 1.0 × Gk + ψ2 × Qk = 7.5 kN/m
2
Concrete properties
Concrete strength class; C25/30
Characteristic cylinder strength; fck = 25 N/mm
2
Partial factor (Table 2.1N); γC = 1.50
Compressive strength factor (cl. 3.1.6); αcc = 1.00
Design compressive strength (cl. 3.1.6); fcd = 16.7 N/mm
2
Mean axial tensile strength (Table 3.1); fctm = 0.30 N/mm
2
× (fck / 1 N/mm
2
)
2/3
= 2.6 N/mm
2
Maximum aggregate size; dg = 20 mm
Reinforcement properties
Characteristic yield strength; fyk = 500 N/mm
2
Partial factor (Table 2.1N); γS = 1.15
Design yield strength (fig. 3.8); fyd = fyk / γS = 434.8 N/mm
2
Concrete cover to reinforcement
Nominal cover to outer top reinforcement; cnom_t = 30 mm
Nominal cover to outer bottom reinforcement; cnom_b = 30 mm
Fire resistance period to top of slab; Rtop = 60 min
Fire resistance period to bottom of slab; Rbtm = 60 min
Axia distance to top reinft (Table 5.8); afi_t = 10 mm
Axia distance to bottom reinft (Table 5.8); afi_b = 10 mm
Min. top cover requirement with regard to bond; cmin,b_t = 16 mm
Min. btm cover requirement with regard to bond; cmin,b_b = 16 mm
Reinforcement fabrication; Not subject to QA system
Cover allowance for deviation; ∆cdev = 10 mm
Min. required nominal cover to top reinft; cnom_t_min = 26.0 mm
Min. required nominal cover to bottom reinft; cnom_b_min = 26.0 mm
PASS - There is sufficient cover to the top reinforcement
PASS - There is sufficient cover to the bottom reinforcement
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: RC Slab Analysis & Design, In accordance with
EN1992-1-1:2004 incorporating corrigendum January 2008
and the recommended values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
13/05/2014
Chk'd by
Date App'd by Date
3
Reinforcement design at midspan in short span direction (cl.6.1)
Bending moment coefficient; βsx_p = 0.0445
Design bending moment; Mx_p = βsx_p × q × lx
2
= 44.4 kNm/m
Reinforcement provided; 16 mm dia. bars at 200 mm centres
Area provided; Asx_p = 1005 mm
2
/m
Effective depth to tension reinforcement; dx_p = h - cnom_b - φx_p / 2 = 187.0 mm
K factor; K = Mx_p / (b × dx_p
2
× fck) = 0.051
Redistribution ratio; δ = 1.0
K’ factor; K’ = 0.598 × δ - 0.18 × δ
2
- 0.21 = 0.208
K < K' - Compression reinforcement is not required
Lever arm; z = min(0.95 × dx_p, dx_p/2 × (1 + (1 - 3.53×K)
0.5
)) =
177.7 mm
Area of reinforcement required for bending; Asx_p_m = Mx_p / (fyd × z) = 575 mm
2
/m
Minimum area of reinforcement required; Asx_p_min = max(0.26 × (fctm/fyk) × b × dx_p,
0.0013×b×dx_p) = 249 mm
2
/m
Area of reinforcement required; Asx_p_req = max(Asx_p_m, Asx_p_min) = 575 mm
2
/m
PASS - Area of reinforcement provided exceeds area required
Check reinforcement spacing
Reinforcement service stress; σsx_p = (fyk / γS) × min((Asx_p_m/Asx_p), 1.0) × qSLS / q
= 119.6 N/mm
2
Maximum allowable spacing (Table 7.3N); smax_x_p = 300 mm
Actual bar spacing; sx_p = 200 mm
PASS - The reinforcement spacing is acceptable
Reinforcement design at midspan in long span direction (cl.6.1)
Bending moment coefficient; βsy_p = 0.0340
Design bending moment; My_p = βsy_p × q × lx
2
= 33.9 kNm/m
Reinforcement provided; 16 mm dia. bars at 250 mm centres
Area provided; Asy_p = 804 mm
2
/m
Effective depth to tension reinforcement; dy_p = h - cnom_b - φx_p - φy_p / 2 = 171.0 mm
K factor; K = My_p / (b × dy_p
2
× fck) = 0.046
Redistribution ratio; δ = 1.0
K’ factor; K’ = 0.598 × δ - 0.18 × δ
2
- 0.21 = 0.208
K < K' - Compression reinforcement is not required
Lever arm; z = min(0.95 × dy_p, dy_p/2 × (1 + (1 - 3.53×K)
0.5
)) =
162.5 mm
Area of reinforcement required for bending; Asy_p_m = My_p / (fyd × z) = 481 mm
2
/m
Minimum area of reinforcement required; Asy_p_min = max(0.26 × (fctm/fyk) × b × dy_p,
0.0013×b×dy_p) = 228 mm
2
/m
Area of reinforcement required; Asy_p_req = max(Asy_p_m, Asy_p_min) = 481 mm
2
/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: RC Slab Analysis & Design, In accordance with
EN1992-1-1:2004 incorporating corrigendum January 2008
and the recommended values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
13/05/2014
Chk'd by
Date App'd by Date
4
PASS - Area of reinforcement provided exceeds area required
Check reinforcement spacing
Reinforcement service stress; σsy_p = (fyk / γS) × min((Asy_p_m/Asy_p), 1.0) × qSLS / q
= 124.9 N/mm
2
Maximum allowable spacing (Table 7.3N); smax_y_p = 300 mm
Actual bar spacing; sy_p = 250 mm
PASS - The reinforcement spacing is acceptable
Reinforcement design at continuous support in short span direction (cl.6.1)
Bending moment coefficient; βsx_n = 0.0595
Design bending moment; Mx_n = βsx_n × q × lx
2
= 59.4 kNm/m
Reinforcement provided; 16 mm dia. bars at 200 mm centres
Area provided; Asx_n = 1005 mm
2
/m
Effective depth to tension reinforcement; dx_n = h - cnom_t - φx_n / 2 = 187.0 mm
K factor; K = Mx_n / (b × dx_n
2
× fck) = 0.068
Redistribution ratio; δ = 1.0
K’ factor; K’ = 0.598 × δ - 0.18 × δ
2
- 0.21 = 0.208
K < K' - Compression reinforcement is not required
Lever arm; z = min(0.95 × dx_n, dx_n/2 × (1 + (1 - 3.53×K)
0.5
)) =
175.0 mm
Area of reinforcement required for bending; Asx_n_m = Mx_n / (fyd × z) = 781 mm
2
/m
Minimum area of reinforcement required; Asx_n_min = max(0.26 × (fctm/fyk) × b × dx_n,
0.0013×b×dx_n) = 249 mm
2
/m
Area of reinforcement required; Asx_n_req = max(Asx_n_m, Asx_n_min) = 781 mm
2
/m
PASS - Area of reinforcement provided exceeds area required
Check reinforcement spacing
Reinforcement service stress; σsx_n = (fyk / γS) × min((Asx_n_m/Asx_n), 1.0) × qSLS / q
= 162.3 N/mm
2
Maximum allowable spacing (Table 7.3N); smax_x_n = 297 mm
Actual bar spacing; sx_n = 200 mm
PASS - The reinforcement spacing is acceptable
Reinforcement design at continuous support in long span direction (cl.6.1)
Bending moment coefficient; βsy_n = 0.0450
Design bending moment; My_n = βsy_n × q × lx
2
= 44.9 kNm/m
Reinforcement provided; 16 mm dia. bars at 200 mm centres
Area provided; Asy_n = 1005 mm
2
/m
Effective depth to tension reinforcement; dy_n = h - cnom_t - φx_n - φy_n / 2 = 171.0 mm
K factor; K = My_n / (b × dy_n
2
× fck) = 0.061
Redistribution ratio; δ = 1.0
K’ factor; K’ = 0.598 × δ - 0.18 × δ
2
- 0.21 = 0.208
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: RC Slab Analysis & Design, In accordance with
EN1992-1-1:2004 incorporating corrigendum January 2008
and the recommended values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
13/05/2014
Chk'd by
Date App'd by Date
5
K < K' - Compression reinforcement is not required
Lever arm; z = min(0.95 × dy_n, dy_n/2 × (1 + (1 - 3.53×K)
0.5
)) =
161.2 mm
Area of reinforcement required for bending; Asy_n_m = My_n / (fyd × z) = 641 mm
2
/m
Minimum area of reinforcement required; Asy_n_min = max(0.26 × (fctm/fyk) × b × dy_n,
0.0013×b×dy_n) = 228 mm
2
/m
Area of reinforcement required; Asy_n_req = max(Asy_n_m, Asy_n_min) = 641 mm
2
/m
PASS - Area of reinforcement provided exceeds area required
Check reinforcement spacing
Reinforcement service stress; σsy_n = (fyk / γS) × min((Asy_n_m/Asy_n), 1.0) × qSLS / q
= 133.3 N/mm
2
Maximum allowable spacing (Table 7.3N); smax_y_n = 300 mm
Actual bar spacing; sy_n = 200 mm
PASS - The reinforcement spacing is acceptable
Shear capacity check at short span continuous support
Shear force; Vx_n = q × lx / 2 + Mx_n / lx = 69.8 kN/m
Effective depth factor (cl. 6.2.2); k = min(2.0, 1 + (200 mm / dx_n)
0.5
) = 2.000
Reinforcement ratio; ρl = min(0.02, Asx_n / (b × dx_n)) = 0.0054
Minimum shear resistance (Exp. 6.3N); VRd,c_min = 0.035 N/mm
2
× k
1.5
× (fck / 1 N/mm
2
)
0.5
×
b × dx_n
VRd,c_min = 92.6 kN/m
Shear resistance (Exp. 6.2a); VRd,c_x_n = max(VRd,c_min, (0.18 N/mm
2
/ γC) × k × (100 × ρl × (fck / 1
N/mm
2
))
0.333
× b × dx_n)
VRd,c_x_n = 106.6 kN/m
PASS - Shear capacity is adequate
Shear capacity check at long span continuous support
Shear force; Vy_n = q × lx / 2 + My_n / ly = 67.3 kN/m
Effective depth factor (cl. 6.2.2); k = min(2.0, 1 + (200 mm / dy_n)
0.5
) = 2.000
Reinforcement ratio; ρl = min(0.02, Asy_n / (b × dy_n)) = 0.0059
Minimum shear resistance (Exp. 6.3N); VRd,c_min = 0.035 N/mm
2
× k
1.5
× (fck / 1 N/mm
2
)
0.5
×
b × dy_n
VRd,c_min = 84.6 kN/m
Shear resistance (Exp. 6.2a); VRd,c_y_n = max(VRd,c_min, (0.18 N/mm
2
/ γC) × k × (100 × ρl × (fck / 1
N/mm
2
))
0.333
× b × dy_n)
VRd,c_y_n = 100.4 kN/m
PASS - Shear capacity is adequate
Shear capacity check at short span discontinuous support
Shear force; Vx_d = q × lx / 2 = ;62.4; kN/m;
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: RC Slab Analysis & Design, In accordance with
EN1992-1-1:2004 incorporating corrigendum January 2008
and the recommended values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
13/05/2014
Chk'd by
Date App'd by Date
6
Reinforcement provided; 8 mm dia. bars at 200 mm centres
Area provided; Asx_d = 251 mm
2
/m
Effective depth; dx_d = h - cnom_b - φx_d / 2 = ;191.0; mm
Effective depth factor; k = min(2.0, 1 + (200 mm / dx_d)
0.5
) = 2.000
Reinforcement ratio; ρl = min(0.02, Asx_d / (b × dx_d)) = 0.0013
Minimum shear resistance; VRd,c_min = 0.035 N/mm
2
× k
1.5
× (fck / 1 N/mm
2
)
0.5
×
b × dx_d
VRd,c_min = 94.5 kN/m
Shear resistance; VRd,c_x_d = max(VRd,c_min, 0.18 N/mm
2
/ γC × k × (100 × ρl × (fck/1
N/mm
2
))
0.333
× b × dx_d)
VRd,c_x_d = 94.5 kN/m
PASS - Shear capacity is adequate (0.660)
Shear capacity check at long span discontinuous support
Shear force; Vy_d = q × lx / 2 = ;62.4; kN/m;
Reinforcement provided; 8 mm dia. bars at 250 mm centres
Area provided; Asy_d = 201 mm
2
/m
Effective depth; dy_d = h - cnom_b - φx_p - φy_d / 2 = ;175.0; mm
Effective depth factor; k = min(2.0, 1 + (200 mm / dy_d)
0.5
) = 2.000
Reinforcement ratio; ρl = min(0.02, Asy_d / (b × dy_d)) = 0.0011
Minimum shear resistance; VRd,c_min = 0.035 N/mm
2
× k
1.5
× (fck / 1 N/mm
2
)
0.5
×
b × dy_d
VRd,c_min = 86.6 kN/m
Shear resistance; VRd,c_y_d = max(VRd,c_min, 0.18 N/mm
2
/ γC × k × (100 × ρl × (fck/1
N/mm
2
))
0.333
× b × dy_d)
VRd,c_y_d = 86.6 kN/m
PASS - Shear capacity is adequate (0.720)
Basic span-to-depth deflection ratio check (cl. 7.4.2)
Reference reinforcement ratio; ρ0 = (fck / 1 N/mm
2
)
0.5
/ 1000 = 0.0050
Required tension reinforcement ratio; ρ = max(0.0035, Asx_p_req / (b × dx_p)) = 0.0035
Required compression reinforcement ratio; ρ’ = Ascx_p_req / (b × dx_p) = 0.0000
Stuctural system factor (Table 7.4N); Kδ = 1.3
Basic limit span-to-depth ratio; ratiolim_x_bas = Kδ × [11 +1.5×(fck/1 N/mm
2
)
0.5
×ρ0/ρ + 3.2×(fck/1
N/mm
2
)
0.5
×(ρ0/ρ -1)
1.5
]
(Exp. 7.16); ratiolim_x_bas = 34.06
Mod span-to-depth ratio limit; ratiolim_x = min(40 × Kδ, min(1.5, (500 N/mm
2
/fyk)×( Asx_p/Asx_p_m)) ×
ratiolim_x_bas) = 51.10
Actual span-to-eff. depth ratio; ratioact_x = lx / dx_p = 42.78
PASS - Actual span-to-effective depth ratio is acceptable
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: RC Slab Analysis & Design, In accordance with
EN1992-1-1:2004 incorporating corrigendum January 2008
and the recommended values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
13/05/2014
Chk'd by
Date App'd by Date
7
Reinforcement summary
Midspan in short span direction; 16 mm dia. bars at 200 mm centres B1
Midspan in long span direction; 16 mm dia. bars at 250 mm centres B2
Continuous support in short span direction; 16 mm dia. bars at 200 mm centres T1
Continuous support in long span direction; 16 mm dia. bars at 200 mm centres T2
Discontinuous support in short span direction; 8 mm dia. bars at 200 mm centres B1
Discontinuous support in long span direction; 8 mm dia. bars at 250 mm centres B2
Reinforcement sketch
The following sketch is indicative only. Note that additional reinforcement may be required in
accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

Contenu connexe

Tendances

Tendances (20)

Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall example
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
 
Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazis
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
 
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation exampleSachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 

En vedette

RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
Kingsley Aboagye
 
04. joist (kuliah iv)
04. joist (kuliah iv)04. joist (kuliah iv)
04. joist (kuliah iv)
yadipermadi
 
Flow Chart - One Way Joist Construction
Flow Chart - One Way Joist ConstructionFlow Chart - One Way Joist Construction
Flow Chart - One Way Joist Construction
Qamar Uz Zaman
 
Moment Co-efficient Method
Moment Co-efficient MethodMoment Co-efficient Method
Moment Co-efficient Method
Yousuf Bin Aziz
 
Hollow block and ribbed slabs
Hollow block and ribbed slabsHollow block and ribbed slabs
Hollow block and ribbed slabs
Mohamed Mohsen
 

En vedette (20)

RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
 
CVDEC14
CVDEC14CVDEC14
CVDEC14
 
Ce1302 design of rc elements
Ce1302 design of rc elementsCe1302 design of rc elements
Ce1302 design of rc elements
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
 
Mathcad 17-slab design
Mathcad   17-slab designMathcad   17-slab design
Mathcad 17-slab design
 
04. joist (kuliah iv)
04. joist (kuliah iv)04. joist (kuliah iv)
04. joist (kuliah iv)
 
Flow Chart - One Way Joist Construction
Flow Chart - One Way Joist ConstructionFlow Chart - One Way Joist Construction
Flow Chart - One Way Joist Construction
 
Design and Detailing of RC structures
Design and Detailing of RC structuresDesign and Detailing of RC structures
Design and Detailing of RC structures
 
Construction Insitu Rc Suspended Floors Using Bm Bending Moment Formula Maths
Construction  Insitu Rc Suspended Floors Using Bm Bending Moment Formula MathsConstruction  Insitu Rc Suspended Floors Using Bm Bending Moment Formula Maths
Construction Insitu Rc Suspended Floors Using Bm Bending Moment Formula Maths
 
Lec.9 strength design method doubly reinforced beams
Lec.9   strength design method doubly reinforced beamsLec.9   strength design method doubly reinforced beams
Lec.9 strength design method doubly reinforced beams
 
Lec.1 introduction
Lec.1   introductionLec.1   introduction
Lec.1 introduction
 
Lec.2 statically determinate structures &amp; statically indeterminate struct...
Lec.2 statically determinate structures &amp; statically indeterminate struct...Lec.2 statically determinate structures &amp; statically indeterminate struct...
Lec.2 statically determinate structures &amp; statically indeterminate struct...
 
Moment Co-efficient Method
Moment Co-efficient MethodMoment Co-efficient Method
Moment Co-efficient Method
 
Hollow Block
Hollow Block Hollow Block
Hollow Block
 
One way slab design 10.01.03.162
One way slab design 10.01.03.162One way slab design 10.01.03.162
One way slab design 10.01.03.162
 
BT 1: Concrete Hollow Blocks
BT 1: Concrete Hollow BlocksBT 1: Concrete Hollow Blocks
BT 1: Concrete Hollow Blocks
 
Hollow block and ribbed slabs
Hollow block and ribbed slabsHollow block and ribbed slabs
Hollow block and ribbed slabs
 
Design of reinforced concrete structures(one way slab)+with calculation.
Design of reinforced concrete structures(one way slab)+with calculation.Design of reinforced concrete structures(one way slab)+with calculation.
Design of reinforced concrete structures(one way slab)+with calculation.
 
Design of One-Way Slab
Design of One-Way SlabDesign of One-Way Slab
Design of One-Way Slab
 
ONE WAY SLAB DESIGN
ONE WAY SLAB DESIGNONE WAY SLAB DESIGN
ONE WAY SLAB DESIGN
 

Similaire à Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two-Way Slab

Similaire à Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two-Way Slab (17)

Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
 
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
 
Structural Design
Structural DesignStructural Design
Structural Design
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptx
 
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
 
Sd i-module3- rajesh sir
Sd i-module3- rajesh sirSd i-module3- rajesh sir
Sd i-module3- rajesh sir
 
Free pier uls section check
Free pier uls section checkFree pier uls section check
Free pier uls section check
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing example
 
RCC BMD
RCC BMDRCC BMD
RCC BMD
 

Plus de Dr.Costas Sachpazis

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
Dr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Dr.Costas Sachpazis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Dr.Costas Sachpazis
 

Plus de Dr.Costas Sachpazis (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
 

Dernier

Brookefield Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Brookefield Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Brookefield Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Brookefield Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
amitlee9823
 
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
amitlee9823
 
Editorial design Magazine design project.pdf
Editorial design Magazine design project.pdfEditorial design Magazine design project.pdf
Editorial design Magazine design project.pdf
tbatkhuu1
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 

Dernier (20)

Brookefield Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Brookefield Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Brookefield Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Brookefield Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
 
Q4-W4-SCIENCE-5 power point presentation
Q4-W4-SCIENCE-5 power point presentationQ4-W4-SCIENCE-5 power point presentation
Q4-W4-SCIENCE-5 power point presentation
 
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
 
Sweety Planet Packaging Design Process Book.pptx
Sweety Planet Packaging Design Process Book.pptxSweety Planet Packaging Design Process Book.pptx
Sweety Planet Packaging Design Process Book.pptx
 
8377087607, Door Step Call Girls In Kalkaji (Locanto) 24/7 Available
8377087607, Door Step Call Girls In Kalkaji (Locanto) 24/7 Available8377087607, Door Step Call Girls In Kalkaji (Locanto) 24/7 Available
8377087607, Door Step Call Girls In Kalkaji (Locanto) 24/7 Available
 
Booking open Available Pune Call Girls Kirkatwadi 6297143586 Call Hot Indian...
Booking open Available Pune Call Girls Kirkatwadi  6297143586 Call Hot Indian...Booking open Available Pune Call Girls Kirkatwadi  6297143586 Call Hot Indian...
Booking open Available Pune Call Girls Kirkatwadi 6297143586 Call Hot Indian...
 
Hire 💕 8617697112 Meerut Call Girls Service Call Girls Agency
Hire 💕 8617697112 Meerut Call Girls Service Call Girls AgencyHire 💕 8617697112 Meerut Call Girls Service Call Girls Agency
Hire 💕 8617697112 Meerut Call Girls Service Call Girls Agency
 
call girls in Kaushambi (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
call girls in Kaushambi (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...call girls in Kaushambi (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
call girls in Kaushambi (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
 
Jordan_Amanda_DMBS202404_PB1_2024-04.pdf
Jordan_Amanda_DMBS202404_PB1_2024-04.pdfJordan_Amanda_DMBS202404_PB1_2024-04.pdf
Jordan_Amanda_DMBS202404_PB1_2024-04.pdf
 
Editorial design Magazine design project.pdf
Editorial design Magazine design project.pdfEditorial design Magazine design project.pdf
Editorial design Magazine design project.pdf
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Th...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Th...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Th...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Th...
 
HiFi Call Girl Service Delhi Phone ☞ 9899900591 ☜ Escorts Service at along wi...
HiFi Call Girl Service Delhi Phone ☞ 9899900591 ☜ Escorts Service at along wi...HiFi Call Girl Service Delhi Phone ☞ 9899900591 ☜ Escorts Service at along wi...
HiFi Call Girl Service Delhi Phone ☞ 9899900591 ☜ Escorts Service at along wi...
 
Sector 104, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 104, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 104, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 104, Noida Call girls :8448380779 Model Escorts | 100% verified
 
Chapter 19_DDA_TOD Policy_First Draft 2012.pdf
Chapter 19_DDA_TOD Policy_First Draft 2012.pdfChapter 19_DDA_TOD Policy_First Draft 2012.pdf
Chapter 19_DDA_TOD Policy_First Draft 2012.pdf
 
Top Rated Pune Call Girls Koregaon Park ⟟ 6297143586 ⟟ Call Me For Genuine S...
Top Rated  Pune Call Girls Koregaon Park ⟟ 6297143586 ⟟ Call Me For Genuine S...Top Rated  Pune Call Girls Koregaon Park ⟟ 6297143586 ⟟ Call Me For Genuine S...
Top Rated Pune Call Girls Koregaon Park ⟟ 6297143586 ⟟ Call Me For Genuine S...
 
SD_The MATATAG Curriculum Training Design.pptx
SD_The MATATAG Curriculum Training Design.pptxSD_The MATATAG Curriculum Training Design.pptx
SD_The MATATAG Curriculum Training Design.pptx
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
 
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...
 

Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two-Way Slab

  • 1. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: RC Slab Analysis & Design, In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 13/05/2014 Chk'd by Date App'd by Date 1 RC SLAB DESIGN In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values Slab definition Slab definition Type of slab; Two way spanning with restrained edges Overall slab depth; h = 225 mm Shorter effective span of panel; lx = 8000 mm Longer effective span of panel; ly = 9200 mm
  • 2. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: RC Slab Analysis & Design, In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 13/05/2014 Chk'd by Date App'd by Date 2 Support conditions; Two adjacent edges discontinuous Top outer layer of reinforcement; Short span direction Bottom outer layer of reinforcement; Short span direction Loading Characteristic permanent action; Gk = 6.0 kN/m 2 Characteristic variable action; Qk = 5.0 kN/m 2 Partial factor for permanent action; γG = 1.35 Partial factor for variable action; γQ = 1.50 Quasi-permanent value of variable action; ψ2 = 0.30 Design ultimate load; q = γG × Gk + γQ × Qk = 15.6 kN/m 2 Quasi-permanent load; qSLS = 1.0 × Gk + ψ2 × Qk = 7.5 kN/m 2 Concrete properties Concrete strength class; C25/30 Characteristic cylinder strength; fck = 25 N/mm 2 Partial factor (Table 2.1N); γC = 1.50 Compressive strength factor (cl. 3.1.6); αcc = 1.00 Design compressive strength (cl. 3.1.6); fcd = 16.7 N/mm 2 Mean axial tensile strength (Table 3.1); fctm = 0.30 N/mm 2 × (fck / 1 N/mm 2 ) 2/3 = 2.6 N/mm 2 Maximum aggregate size; dg = 20 mm Reinforcement properties Characteristic yield strength; fyk = 500 N/mm 2 Partial factor (Table 2.1N); γS = 1.15 Design yield strength (fig. 3.8); fyd = fyk / γS = 434.8 N/mm 2 Concrete cover to reinforcement Nominal cover to outer top reinforcement; cnom_t = 30 mm Nominal cover to outer bottom reinforcement; cnom_b = 30 mm Fire resistance period to top of slab; Rtop = 60 min Fire resistance period to bottom of slab; Rbtm = 60 min Axia distance to top reinft (Table 5.8); afi_t = 10 mm Axia distance to bottom reinft (Table 5.8); afi_b = 10 mm Min. top cover requirement with regard to bond; cmin,b_t = 16 mm Min. btm cover requirement with regard to bond; cmin,b_b = 16 mm Reinforcement fabrication; Not subject to QA system Cover allowance for deviation; ∆cdev = 10 mm Min. required nominal cover to top reinft; cnom_t_min = 26.0 mm Min. required nominal cover to bottom reinft; cnom_b_min = 26.0 mm PASS - There is sufficient cover to the top reinforcement PASS - There is sufficient cover to the bottom reinforcement
  • 3. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: RC Slab Analysis & Design, In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 13/05/2014 Chk'd by Date App'd by Date 3 Reinforcement design at midspan in short span direction (cl.6.1) Bending moment coefficient; βsx_p = 0.0445 Design bending moment; Mx_p = βsx_p × q × lx 2 = 44.4 kNm/m Reinforcement provided; 16 mm dia. bars at 200 mm centres Area provided; Asx_p = 1005 mm 2 /m Effective depth to tension reinforcement; dx_p = h - cnom_b - φx_p / 2 = 187.0 mm K factor; K = Mx_p / (b × dx_p 2 × fck) = 0.051 Redistribution ratio; δ = 1.0 K’ factor; K’ = 0.598 × δ - 0.18 × δ 2 - 0.21 = 0.208 K < K' - Compression reinforcement is not required Lever arm; z = min(0.95 × dx_p, dx_p/2 × (1 + (1 - 3.53×K) 0.5 )) = 177.7 mm Area of reinforcement required for bending; Asx_p_m = Mx_p / (fyd × z) = 575 mm 2 /m Minimum area of reinforcement required; Asx_p_min = max(0.26 × (fctm/fyk) × b × dx_p, 0.0013×b×dx_p) = 249 mm 2 /m Area of reinforcement required; Asx_p_req = max(Asx_p_m, Asx_p_min) = 575 mm 2 /m PASS - Area of reinforcement provided exceeds area required Check reinforcement spacing Reinforcement service stress; σsx_p = (fyk / γS) × min((Asx_p_m/Asx_p), 1.0) × qSLS / q = 119.6 N/mm 2 Maximum allowable spacing (Table 7.3N); smax_x_p = 300 mm Actual bar spacing; sx_p = 200 mm PASS - The reinforcement spacing is acceptable Reinforcement design at midspan in long span direction (cl.6.1) Bending moment coefficient; βsy_p = 0.0340 Design bending moment; My_p = βsy_p × q × lx 2 = 33.9 kNm/m Reinforcement provided; 16 mm dia. bars at 250 mm centres Area provided; Asy_p = 804 mm 2 /m Effective depth to tension reinforcement; dy_p = h - cnom_b - φx_p - φy_p / 2 = 171.0 mm K factor; K = My_p / (b × dy_p 2 × fck) = 0.046 Redistribution ratio; δ = 1.0 K’ factor; K’ = 0.598 × δ - 0.18 × δ 2 - 0.21 = 0.208 K < K' - Compression reinforcement is not required Lever arm; z = min(0.95 × dy_p, dy_p/2 × (1 + (1 - 3.53×K) 0.5 )) = 162.5 mm Area of reinforcement required for bending; Asy_p_m = My_p / (fyd × z) = 481 mm 2 /m Minimum area of reinforcement required; Asy_p_min = max(0.26 × (fctm/fyk) × b × dy_p, 0.0013×b×dy_p) = 228 mm 2 /m Area of reinforcement required; Asy_p_req = max(Asy_p_m, Asy_p_min) = 481 mm 2 /m
  • 4. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: RC Slab Analysis & Design, In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 13/05/2014 Chk'd by Date App'd by Date 4 PASS - Area of reinforcement provided exceeds area required Check reinforcement spacing Reinforcement service stress; σsy_p = (fyk / γS) × min((Asy_p_m/Asy_p), 1.0) × qSLS / q = 124.9 N/mm 2 Maximum allowable spacing (Table 7.3N); smax_y_p = 300 mm Actual bar spacing; sy_p = 250 mm PASS - The reinforcement spacing is acceptable Reinforcement design at continuous support in short span direction (cl.6.1) Bending moment coefficient; βsx_n = 0.0595 Design bending moment; Mx_n = βsx_n × q × lx 2 = 59.4 kNm/m Reinforcement provided; 16 mm dia. bars at 200 mm centres Area provided; Asx_n = 1005 mm 2 /m Effective depth to tension reinforcement; dx_n = h - cnom_t - φx_n / 2 = 187.0 mm K factor; K = Mx_n / (b × dx_n 2 × fck) = 0.068 Redistribution ratio; δ = 1.0 K’ factor; K’ = 0.598 × δ - 0.18 × δ 2 - 0.21 = 0.208 K < K' - Compression reinforcement is not required Lever arm; z = min(0.95 × dx_n, dx_n/2 × (1 + (1 - 3.53×K) 0.5 )) = 175.0 mm Area of reinforcement required for bending; Asx_n_m = Mx_n / (fyd × z) = 781 mm 2 /m Minimum area of reinforcement required; Asx_n_min = max(0.26 × (fctm/fyk) × b × dx_n, 0.0013×b×dx_n) = 249 mm 2 /m Area of reinforcement required; Asx_n_req = max(Asx_n_m, Asx_n_min) = 781 mm 2 /m PASS - Area of reinforcement provided exceeds area required Check reinforcement spacing Reinforcement service stress; σsx_n = (fyk / γS) × min((Asx_n_m/Asx_n), 1.0) × qSLS / q = 162.3 N/mm 2 Maximum allowable spacing (Table 7.3N); smax_x_n = 297 mm Actual bar spacing; sx_n = 200 mm PASS - The reinforcement spacing is acceptable Reinforcement design at continuous support in long span direction (cl.6.1) Bending moment coefficient; βsy_n = 0.0450 Design bending moment; My_n = βsy_n × q × lx 2 = 44.9 kNm/m Reinforcement provided; 16 mm dia. bars at 200 mm centres Area provided; Asy_n = 1005 mm 2 /m Effective depth to tension reinforcement; dy_n = h - cnom_t - φx_n - φy_n / 2 = 171.0 mm K factor; K = My_n / (b × dy_n 2 × fck) = 0.061 Redistribution ratio; δ = 1.0 K’ factor; K’ = 0.598 × δ - 0.18 × δ 2 - 0.21 = 0.208
  • 5. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: RC Slab Analysis & Design, In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 13/05/2014 Chk'd by Date App'd by Date 5 K < K' - Compression reinforcement is not required Lever arm; z = min(0.95 × dy_n, dy_n/2 × (1 + (1 - 3.53×K) 0.5 )) = 161.2 mm Area of reinforcement required for bending; Asy_n_m = My_n / (fyd × z) = 641 mm 2 /m Minimum area of reinforcement required; Asy_n_min = max(0.26 × (fctm/fyk) × b × dy_n, 0.0013×b×dy_n) = 228 mm 2 /m Area of reinforcement required; Asy_n_req = max(Asy_n_m, Asy_n_min) = 641 mm 2 /m PASS - Area of reinforcement provided exceeds area required Check reinforcement spacing Reinforcement service stress; σsy_n = (fyk / γS) × min((Asy_n_m/Asy_n), 1.0) × qSLS / q = 133.3 N/mm 2 Maximum allowable spacing (Table 7.3N); smax_y_n = 300 mm Actual bar spacing; sy_n = 200 mm PASS - The reinforcement spacing is acceptable Shear capacity check at short span continuous support Shear force; Vx_n = q × lx / 2 + Mx_n / lx = 69.8 kN/m Effective depth factor (cl. 6.2.2); k = min(2.0, 1 + (200 mm / dx_n) 0.5 ) = 2.000 Reinforcement ratio; ρl = min(0.02, Asx_n / (b × dx_n)) = 0.0054 Minimum shear resistance (Exp. 6.3N); VRd,c_min = 0.035 N/mm 2 × k 1.5 × (fck / 1 N/mm 2 ) 0.5 × b × dx_n VRd,c_min = 92.6 kN/m Shear resistance (Exp. 6.2a); VRd,c_x_n = max(VRd,c_min, (0.18 N/mm 2 / γC) × k × (100 × ρl × (fck / 1 N/mm 2 )) 0.333 × b × dx_n) VRd,c_x_n = 106.6 kN/m PASS - Shear capacity is adequate Shear capacity check at long span continuous support Shear force; Vy_n = q × lx / 2 + My_n / ly = 67.3 kN/m Effective depth factor (cl. 6.2.2); k = min(2.0, 1 + (200 mm / dy_n) 0.5 ) = 2.000 Reinforcement ratio; ρl = min(0.02, Asy_n / (b × dy_n)) = 0.0059 Minimum shear resistance (Exp. 6.3N); VRd,c_min = 0.035 N/mm 2 × k 1.5 × (fck / 1 N/mm 2 ) 0.5 × b × dy_n VRd,c_min = 84.6 kN/m Shear resistance (Exp. 6.2a); VRd,c_y_n = max(VRd,c_min, (0.18 N/mm 2 / γC) × k × (100 × ρl × (fck / 1 N/mm 2 )) 0.333 × b × dy_n) VRd,c_y_n = 100.4 kN/m PASS - Shear capacity is adequate Shear capacity check at short span discontinuous support Shear force; Vx_d = q × lx / 2 = ;62.4; kN/m;
  • 6. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: RC Slab Analysis & Design, In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 13/05/2014 Chk'd by Date App'd by Date 6 Reinforcement provided; 8 mm dia. bars at 200 mm centres Area provided; Asx_d = 251 mm 2 /m Effective depth; dx_d = h - cnom_b - φx_d / 2 = ;191.0; mm Effective depth factor; k = min(2.0, 1 + (200 mm / dx_d) 0.5 ) = 2.000 Reinforcement ratio; ρl = min(0.02, Asx_d / (b × dx_d)) = 0.0013 Minimum shear resistance; VRd,c_min = 0.035 N/mm 2 × k 1.5 × (fck / 1 N/mm 2 ) 0.5 × b × dx_d VRd,c_min = 94.5 kN/m Shear resistance; VRd,c_x_d = max(VRd,c_min, 0.18 N/mm 2 / γC × k × (100 × ρl × (fck/1 N/mm 2 )) 0.333 × b × dx_d) VRd,c_x_d = 94.5 kN/m PASS - Shear capacity is adequate (0.660) Shear capacity check at long span discontinuous support Shear force; Vy_d = q × lx / 2 = ;62.4; kN/m; Reinforcement provided; 8 mm dia. bars at 250 mm centres Area provided; Asy_d = 201 mm 2 /m Effective depth; dy_d = h - cnom_b - φx_p - φy_d / 2 = ;175.0; mm Effective depth factor; k = min(2.0, 1 + (200 mm / dy_d) 0.5 ) = 2.000 Reinforcement ratio; ρl = min(0.02, Asy_d / (b × dy_d)) = 0.0011 Minimum shear resistance; VRd,c_min = 0.035 N/mm 2 × k 1.5 × (fck / 1 N/mm 2 ) 0.5 × b × dy_d VRd,c_min = 86.6 kN/m Shear resistance; VRd,c_y_d = max(VRd,c_min, 0.18 N/mm 2 / γC × k × (100 × ρl × (fck/1 N/mm 2 )) 0.333 × b × dy_d) VRd,c_y_d = 86.6 kN/m PASS - Shear capacity is adequate (0.720) Basic span-to-depth deflection ratio check (cl. 7.4.2) Reference reinforcement ratio; ρ0 = (fck / 1 N/mm 2 ) 0.5 / 1000 = 0.0050 Required tension reinforcement ratio; ρ = max(0.0035, Asx_p_req / (b × dx_p)) = 0.0035 Required compression reinforcement ratio; ρ’ = Ascx_p_req / (b × dx_p) = 0.0000 Stuctural system factor (Table 7.4N); Kδ = 1.3 Basic limit span-to-depth ratio; ratiolim_x_bas = Kδ × [11 +1.5×(fck/1 N/mm 2 ) 0.5 ×ρ0/ρ + 3.2×(fck/1 N/mm 2 ) 0.5 ×(ρ0/ρ -1) 1.5 ] (Exp. 7.16); ratiolim_x_bas = 34.06 Mod span-to-depth ratio limit; ratiolim_x = min(40 × Kδ, min(1.5, (500 N/mm 2 /fyk)×( Asx_p/Asx_p_m)) × ratiolim_x_bas) = 51.10 Actual span-to-eff. depth ratio; ratioact_x = lx / dx_p = 42.78 PASS - Actual span-to-effective depth ratio is acceptable
  • 7. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: RC Slab Analysis & Design, In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 13/05/2014 Chk'd by Date App'd by Date 7 Reinforcement summary Midspan in short span direction; 16 mm dia. bars at 200 mm centres B1 Midspan in long span direction; 16 mm dia. bars at 250 mm centres B2 Continuous support in short span direction; 16 mm dia. bars at 200 mm centres T1 Continuous support in long span direction; 16 mm dia. bars at 200 mm centres T2 Discontinuous support in short span direction; 8 mm dia. bars at 200 mm centres B1 Discontinuous support in long span direction; 8 mm dia. bars at 250 mm centres B2 Reinforcement sketch The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.