þ                                   


    ¾




        ý


        ÓÒ ÚÐ Ú ÖÔÓÓк 
ºÙ
            Ä Ú ÖÔÓÓÐ ÍÒ Ú Ö× ØÝ

...
´Ö       
Ø Ú ×Ý×Ø Ñ×µ



        þ
                     ¸                            ¸   ¸       ººº




                ...
þ   þ
þ   þ

                         »
                  º
                  ¸   ¸          ¸
        ººº




    ü
ü       »
                º

                            º

                        º

                    º

    þ
      ...
ü                »
                         º

                                     º

                                 º
...
¸
´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ




                                  (Q, E , T , q0 , L)
      L1
                   Q
 S1        S2 ...
´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ




                           (Q, T , q0 , L)
S1   S2
            Q
            T ⊆Q ×Q
            q...
´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ




                           (Q, T , q0 , L)
S1   S2
            Q
            T ⊆Q ×Q
            q...
´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ




                           (Q, T , q0 , L)
S1   S2
            Q
            T ⊆Q ×Q
            q...
´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ




                           (Q, T , q0 , L)
S1   S2
            Q
            T ⊆Q ×Q
            q...
´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ




                           (Q, T , q0 , L)
S1   S2
            Q
            T ⊆Q ×Q
            q...
´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ




                           (Q, T , q0 , L)
S1   S2
            Q
            T ⊆Q ×Q
            q...
´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ




                           (Q, T , q0 , L)
S1   S2
            Q
            T ⊆Q ×Q
            q...
Prop = {On, Fault}
Q = {1, 2, 3}                     press
                                                               ...
¸




    þ




              ´       µ




                    ´
            µ
S1 = (Q1 , E1 , T1 , q0,1 , L1 ) S2 = (Q2 , E2 , T2 , q0,2 , L2 )

                                  S1 × S2 = (Q, E , T ,...
S1 = (Q1 , E1 , T1 , q0,1 , L1 ) S2 = (Q2 , E2 , T2 , q0,2 , L2 )

       X ⊆ (E1 ∪ {−}) × (E2 ∪ {−})


S1 × S2 = (Q, E , ...
repair            repair

                                                   Zero            One                 Two
     ...
þ          3         ¸                ´
    ³−³µ

           ¿       ¸ ¾             ´          ³−³µ

               3×3=9...
v := 0
v := v + 1
                                            ¸
                         Òظ   Ó Ø¸º º º




    (PC= 1, 0...
½¼ Û Ð ÌÖÙ Ó
       ½½   Û Ø ´ØÙÖÒ ¼µ
       ½¾  ØÙÖÒ ½
       ½¿ Ò Û Ð

       ||
turn   ¾¼ Û Ð ÌÖÙ Ó
       ¾½   Û Ø ´ØÙ...
t=0                        t=1
        10,20                      10,20


 t=0        t=0                t=1          t=1
...
´½µ


                                ¸
                            ´              µ


    ÈÖÓ
 ××                        ...
´¾µ


ÈÖÓ
 ××                           ÈÖÓ
 ××
x := x + y ;                      y := y + x;

                           ...
ü
        ´       µ




            
    ü
t=0                           t=1
                10,20                         10,20


         t=0        t=0           ...
A



                                        B       C           G
(Q, E , T , q0 , L)
              q           ¸
       ...
ü


    (Q, E , T , q0 , L)
    P ⊆Q

         ÈÖ (P) = {q ∈ Q | ∃p ∈ P, ∃e ∈ E : (q, e, p) ∈ T }
         ÈÓ×Ø(P) = {q ∈ ...
ü


    new        ¸
                       þ                      S
    new            ¸
                       þ      Ê ...
ü                               
    ü           ¸                           ¸
                                        ¸
 ...
Prochain SlideShare
Chargement dans…5
×

20071020 verification konev_lecture02

326 vues

Publié le

Publié dans : Technologie, Business
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
326
Sur SlideShare
0
Issues des intégrations
0
Intégrations
27
Actions
Partages
0
Téléchargements
1
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

20071020 verification konev_lecture02

  1. 1. þ ¾ ý ÓÒ ÚÐ Ú ÖÔÓÓк ºÙ Ä Ú ÖÔÓÓÐ ÍÒ Ú Ö× ØÝ ¹ ¾¼¼
  2. 2. ´Ö Ø Ú ×Ý×Ø Ñ×µ þ ¸ ¸ ¸ ººº ¸ ¸ Ò× ¸ ¸ þ ¸
  3. 3. þ þ
  4. 4. þ þ » º ¸ ¸ ¸ ººº ü
  5. 5. ü » º º º º þ º
  6. 6. ü » º º º º þ º
  7. 7. ¸
  8. 8. ´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ (Q, E , T , q0 , L) L1 Q S1 S2 E L1 L1 L2 T ⊆ Q×E × Q L1 S4 S3 q0 L : Q → Prop L2
  9. 9. ´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ (Q, T , q0 , L) S1 S2 Q T ⊆Q ×Q q0 S4 S3 L : Q → Prop
  10. 10. ´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ (Q, T , q0 , L) S1 S2 Q T ⊆Q ×Q q0 S4 S3 L : Q → Prop
  11. 11. ´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ (Q, T , q0 , L) S1 S2 Q T ⊆Q ×Q q0 S4 S3 L : Q → Prop
  12. 12. ´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ (Q, T , q0 , L) S1 S2 Q T ⊆Q ×Q q0 S4 S3 L : Q → Prop
  13. 13. ´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ (Q, T , q0 , L) S1 S2 Q T ⊆Q ×Q q0 S4 S3 L : Q → Prop
  14. 14. ´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ (Q, T , q0 , L) S1 S2 Q T ⊆Q ×Q q0 S4 S3 L : Q → Prop
  15. 15. ´ØÖ Ò× Ø ÓÒ ×Ý×Ø Ñµ (Q, T , q0 , L) S1 S2 Q T ⊆Q ×Q q0 S4 S3 L : Q → Prop
  16. 16. Prop = {On, Fault} Q = {1, 2, 3} press 2 q0 = 1 1 ~On On press T = {(1, press, 2), ~Fault ~Fault (2, press, 1), press (2, press, 3), (1, repair , 1)} repair L = {1 → {} ~On Fault 2 → {On} 3 3 → {Fault}}
  17. 17. ¸ þ ´ µ ´ µ
  18. 18. S1 = (Q1 , E1 , T1 , q0,1 , L1 ) S2 = (Q2 , E2 , T2 , q0,2 , L2 ) S1 × S2 = (Q, E , T , q0 , L) Q = Q1 × Q2 E = (E1 ∪ {−}) × (E2 ∪ {−}) T = ′ ′ i = 1, 2 ei =′ −′ qi′ = qi ((q1 , q2 ), (e1 , e2 ), (q1 , q2 )) ei = −′ (qi , ei , qi′ ) ∈ Ti ′ q0 = (q0,1 , q0,2 ) L((q1 , q2 )) = L1 (q2 ) ∪ L2 (q2 ) ′ −′
  19. 19. S1 = (Q1 , E1 , T1 , q0,1 , L1 ) S2 = (Q2 , E2 , T2 , q0,2 , L2 ) X ⊆ (E1 ∪ {−}) × (E2 ∪ {−}) S1 × S2 = (Q, E , T , q0 , L) Q = Q1 × Q2 E = (E1 ∪ {−}) × (E2 ∪ {−}) T = (e1 , e2 ) ∈ X i = 1, 2 ei =′ −′ ′ ′ ((q1 , q2 ), (e1 , e2 ), (q1 , q2 )) qi′ = qi ei = −′ (qi , ei , qi′ ) ∈ ′ Ti q0 = (q0,1 , q0,2 ) L((q1 , q2 )) = L1 (q2 ) ∪ L2 (q2 )
  20. 20. repair repair Zero One Two A B C þ · X = {(press, −), (repair , repair )} (press,-) (press,-) (repair,repair) (3,A) (1,A) (2,A) (press,-) (press,-) (1,B) … (press,-)
  21. 21. þ 3 ¸ ´ ³−³µ ¿ ¸ ¾ ´ ³−³µ 3×3=9 ¸ 4×2 =8
  22. 22. v := 0 v := v + 1 ¸ Òظ Ó Ø¸º º º (PC= 1, 0) v= (PC= 1, 1) v= (PC= 1, 143) v= ………………. v: 0 = v: 0 = v: 0 = (PC= 2,v= 0) (PC= 2,v= 1) v: v+ 1 = (PC= 3,v= 1) …..
  23. 23. ½¼ Û Ð ÌÖÙ Ó ½½ Û Ø ´ØÙÖÒ ¼µ ½¾ ØÙÖÒ ½ ½¿ Ò Û Ð || turn ¾¼ Û Ð ÌÖÙ Ó ¾½ Û Ø ´ØÙÖÒ ½µ ¾¾ ØÙÖÒ ¼ ¾¿ Ò Û Ð
  24. 24. t=0 t=1 10,20 10,20 t=0 t=0 t=1 t=1 10,21 11,20 10,21 11,20 t=0 t=0 t=1 t=1 11,21 12,20 10,22 11,21 t=0 t=1 12,21 11,22
  25. 25. ´½µ ¸ ´ µ ÈÖÓ ×× ÈÖÓ ×× x := x + y ; y := y + x; x = 2¸ y = 3 x y ÈÖÓ ×× ÈÖÓ ×× Ö½¸ Ö¾ Ö¾¸ Ö½ þ Ü Ö½ ¸ Ý Ö¾ Ü Ö½ ¸ Ý Ö¾
  26. 26. ´¾µ ÈÖÓ ×× ÈÖÓ ×× x := x + y ; y := y + x; x = 2¸ y = 3 x y ÈÖÓ ×× ÈÖÓ ×× ÐÓ Ö½¸ ѽ ÐÓ Ö¾¸ Ѿ Ö½¸ Ѿ Ö¾¸ ѽ ×ØÓÖ Ö½¸ ѽ ×ØÓÖ Ö¾¸ Ѿ þ Ü Ñ½ ¸ Ý Ñ¾ ¸ Ö½ ¸ Ö¾ Ü Ñ½ ¸ Ý Ñ¾ ¸ Ö½ ¸ Ö¾ Ü Ñ½ ¸ Ý Ñ¾ ¸ Ö½ ¸ Ö¾
  27. 27. ü ´ µ ü
  28. 28. t=0 t=1 10,20 10,20 t=0 t=0 t=1 t=1 10,21 11,20 10,21 11,20 t=0 t=0 t=1 t=1 11,21 12,20 10,22 11,21 t=0 t=1 12,21 11,22 ¸ È ½ ½¾ È ¾ ¾¾
  29. 29. A B C G (Q, E , T , q0 , L) q ¸ q0 D F Ê (S) = {q|q S} E
  30. 30. ü (Q, E , T , q0 , L) P ⊆Q ÈÖ (P) = {q ∈ Q | ∃p ∈ P, ∃e ∈ E : (q, e, p) ∈ T } ÈÓ×Ø(P) = {q ∈ Q | ∃p ∈ P, ∃e ∈ E : (p, e, q) ∈ T } ¸ press 2 1 ~On On press ÈÖ ({1, 2}) = {1, 2, 3} ~Fault ~Fault press ÈÓ×Ø({2}) = {1, 3} repair ~On Fault 3
  31. 31. ü new ¸ þ S new ¸ þ Ê (S) new ← {q0 } R ← {} Û Ð new = {} Ó n q new ¸ q m new q∈R Ø Ò / O(n + m) q R ÈÓ×Ø(q) new Ò Ò Û Ð Ö ØÙÖÒ R
  32. 32. ü ü ¸ ¸ ¸ ÈÖ (P)º ¸ ¸ ø
  33. 33. þ ÄÌÄ ÆÙËÅÎ

×