SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
Theoretical Question 4 / Solutions Page 1/6
Theoretical Question 4: Heat conduction inside a solid sphere
1. Answers
(a)
x
TT
RjRJ inout22
4||4
−
== σππ
(b)
2
)4( inout2 TT
CDRQ
−
= π
(c) 2(E)
4
D
C
t
σ
= = 3.0×10-3
s
(d) 2
cout
2(B)
)(24
D
TT
L
D
C
t
−
+=
ββ
β
σσ
= 7.8×10-2
s.
(e) c)( TrT = for b0 Rr <<
b
cbout
b
outcb )(1
)(
RR
TRRT
RR
TTRR
r
rT
−
−
+
−
−
= for RrR <<b
(f)
b
2
b
coutb
)(
RRR
R
L
TT
dt
dR
−
−
=
βσ
.
(g) 2
cout )(6
R
TT
L
−
=
βσ
τ = 2.5 s.
Theoretical Question 4 / Solutions Page 2/6
2. Solutions
(a) [0.5 points]
The heat flow rate per unit area at the outer surface of the particle is
x
TT
r
T
j inout −
−=
∆
∆
−= σσ . (a1)
Total heat flow rate J from the heat bath to the particle is
x
TT
RjRJ inout22
44
−
=−= σππ . (a2)
(b) [0.5 points]
Q =(heated volume)·C ·(average temperature change of the heated volume). To the
leading order of RD / ,
2
4 inout2 TT
DCRQ
−
= π . (b1)
(c) [1 point]
The change in Q is induced by J , that is
tJQ ∆=∆ , (c1)
or,
t
x
TT
Rx
TT
CR ∆
−
=∆
− inout2inout2
4
2
4 σππ . (c2)
Thus one obtains
x
C
dx
dt
σ2
= . (c3)
With the help of the integration formula, one obtains
2(E)
4
D
C
t
σ
= (c4)
The evaluation of this expression provides
E)(
t = 3.0×10-3
s (c5)
Alternative Solution:
Since Eq. (c3) is in the exactly same form as atdtdv =/ , where v corresponds to our
t , a corresponds to our σ2/C , and t corresponds to our x , students may use this
analogy to the accelerated motion to obtain (c4).
(*) Comment 1: Student may replace x in the result of (a2) by its average value 2/D
and divide Q by J to obtain Eq. (c4).
Theoretical Question 4 / Solutions Page 3/6
(*) Comment 2: Exact solution without the linear approximation indicates that the time
required to reach the slope DTT /)( inout − at Rr = is given by )/(2
πσCD ,
which is slightly larger than (E)
t since the linear approximation in (b) is bound to
underestimate Q .
(d) [2 points]
The outward heat flow per unit area at Rr = is
x
TT
j cout −
−= βσ (d1)
Total heat flow rate J from the heat bath to the particle is
x
TT
RjRJ cout22
44
−
=−= βσππ (d2)
as before. But the total amount of heat Q necessary to increase x from 0 to a finite
value D is changed to
LDR
TT
CDRQ )4(
2
)4( 2cout2
ππ β +
−
= (d3)
Here the second term arises due to the latent heat. In a similar way as in (c), one then
obtains
2
cout
2(B)
)(24
D
TT
L
D
C
t
−
+=
ββ
β
σσ
. (d4)
From the provided values of the relevant parameters, one obtains
(B)
t = 7.8×10-2
s. (d5)
(e) [2 points]
In the limit 0/ (B)(E)
→tt , the temperature profile within each phase is in its steady
state, that is,
)(4 2
rjrπ is independent of r within each phase (e1)
or
constant4 2
=
dr
dT
r σπ (e2)
By using the provided formula, one obtains
n
n
Y
r
X
T += . (e3)
Theoretical Question 4 / Solutions Page 4/6
The constants nX and nY should be chosen so that the expression gives the proper
value at each boundary, namely,
)0( =rT = finite, cb )( TRT = , and out)( TRT = . (e4)
This way, one obtains
c)( TrT = for bRr < (e5)
b
cbout
b
outcb )(1
)(
RR
TRRT
RR
TTRR
r
rT
−
−
+
−
−
= for RrR <<b (e6)
(f) [2 points]
According to the result in (e), jr2
4π is discontinuous at the phase boundary. Thus the
heat flux flowing into the phase boundary and the heat flux flowing out of the boundary
is not balanced, and this difference provides the necessary latent heat for the phase
transition. Therefore one obtains
( ) .4
)]0()0([4)4(
b
2
b
cout
2
b
bb
2
bb
2
b
t
RRR
R
TTR
tRrjRrjRLRR
∆





−
−=
∆−=−+==∆
βσπ
ππ
(f1)
Thus,
b
2
b
coutb
)(
RRR
R
L
TT
dt
dR
−
−
=
βσ
. (f2)
(g) [2 points]
With the help of the provided formula (i), Eq. (f2) can be inverted to the following form,
R
RRR
TT
L
dR
dt b
2
b
inoutb )(
−
−
=
βσ
, (g1)
which can be integrated by using the provided formula (ii) to produce






+−
−
= constant
2
1
3
11
)(
2
b
3
b
cout
RRR
RTT
L
t
βσ
. (g2)
The constant should be chosen so that 0=t for RR =b . Thus one finds
Theoretical Question 4 / Solutions Page 5/6






+−
−
= 32
b
3
b
cout 6
1
2
1
3
11
)(
RRRR
RTT
L
t
βσ
. (g3)
When bR is replaced by 0, Eq. (g3) results in
2
cout )(6
R
TT
L
−
=
βσ
τ . (g4)
Finally from the provided numerical values of relevant parameters, one obtains
τ = 2.5 s. (g5)
(*) Comment 1: If bR is replaced instead by DR − with RD << , Eq. (g3) results in
2
cout
(B)
)(2
D
TT
L
t
−
=
βσ
, which agrees with the result in Eq. (d4) except for the first
term, which is much smaller than the second term.
(*) Comment 2: The two expressions for τ and (B)
t are the same except for the factor,
1/6 vs. 1/2. This change of the numerical factor from 1/2 to 1/6 arises from the
reduction of the surface area of the phase boundary as bR approaches 0. While this
reduction is not important for RD << (and thus larger factor 1/2), it is not
negligible for D ~ R (and thus smaller factor 1/6).
Theoretical Question 4 / Solutions Page 6/6
3. Mark Distribution
No.
Total
Pt.
Partial
Pt.
Contents
0.2 −=J (surface area) j .
0.2 Correct j .
(a) 0.5
0.1 Correct expression for J .
0.2 CQ = (heated volume)∙(average temperature change).
0.2 Correct heated volume. Other answers, which differ in the second
leading order in RD/ , are also acceptable.
0.2 Correct average temperature change.
(b) 0.7
0.1 Correct expression for Q .
0.3 tJQ ∆=∆ .
0.3 )/(2/ Cxdtdx σ= .
0.5 Correct expression for E)(
t .
Integration may be replaced by analogy to accelerated motion.
(c) 1.4
0.3 Correct evaluation for E)(
t .
0.2 Correct expression for J .
0.6 Correct expression for Q .
0.4 Correct expression for B)(
t .
(d) 1.4
0.2 Correct evaluation for B)(
t .
1.0 jr2
4π is independent of r .
0.4 =T (const1)/ r +(const2).
0.5 Correct boundary conditions.
(e) 2.4
0.5 Correct expression for )(rT .
1.0 Latent heat is provided by the discontinuity in jr2
4π at the phase
boundary.
(f) 1.6
0.6 Correct expression for dtdR /b .
1.5 Correct expression for τ .(g) 2.0
0.5 Correct evaluation of τ .
Approximate result of (d) and
corresponding value: 1.0 pt
Total 10

Contenu connexe

Tendances

Learning object 1 solution
Learning object 1 solutionLearning object 1 solution
Learning object 1 solution
Lyndon Won
 
New technologies-for-modeling-of-gas-turbine-cooled-blades
New technologies-for-modeling-of-gas-turbine-cooled-bladesNew technologies-for-modeling-of-gas-turbine-cooled-blades
New technologies-for-modeling-of-gas-turbine-cooled-blades
Cemal Ardil
 
NozzleBurnThrough
NozzleBurnThroughNozzleBurnThrough
NozzleBurnThrough
luchinskyd
 
Quantum logic synthesis (srikanth)
Quantum logic synthesis (srikanth)Quantum logic synthesis (srikanth)
Quantum logic synthesis (srikanth)
bitra11
 

Tendances (20)

Learning object 1 solution
Learning object 1 solutionLearning object 1 solution
Learning object 1 solution
 
Mathematical Relations
Mathematical RelationsMathematical Relations
Mathematical Relations
 
Heat problems
Heat problemsHeat problems
Heat problems
 
New technologies-for-modeling-of-gas-turbine-cooled-blades
New technologies-for-modeling-of-gas-turbine-cooled-bladesNew technologies-for-modeling-of-gas-turbine-cooled-blades
New technologies-for-modeling-of-gas-turbine-cooled-blades
 
19 primkruskal
19 primkruskal19 primkruskal
19 primkruskal
 
19 prim,kruskal alg. in data structure
19 prim,kruskal alg. in data structure19 prim,kruskal alg. in data structure
19 prim,kruskal alg. in data structure
 
peters_corrected-1
peters_corrected-1peters_corrected-1
peters_corrected-1
 
577hw2s
577hw2s577hw2s
577hw2s
 
NozzleBurnThrough
NozzleBurnThroughNozzleBurnThrough
NozzleBurnThrough
 
Gr aph of cosine
Gr aph of cosineGr aph of cosine
Gr aph of cosine
 
Tutorial no. 1.doc
Tutorial no. 1.docTutorial no. 1.doc
Tutorial no. 1.doc
 
Fieldtheoryhighlights2015
Fieldtheoryhighlights2015Fieldtheoryhighlights2015
Fieldtheoryhighlights2015
 
Master method
Master methodMaster method
Master method
 
Homework 1 of Optical Semiconductor
Homework 1 of Optical SemiconductorHomework 1 of Optical Semiconductor
Homework 1 of Optical Semiconductor
 
A block-step version of KS regularization
A block-step version of KS regularizationA block-step version of KS regularization
A block-step version of KS regularization
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCD
 
Quantum logic synthesis (srikanth)
Quantum logic synthesis (srikanth)Quantum logic synthesis (srikanth)
Quantum logic synthesis (srikanth)
 
2.4 mst prim &kruskal demo
2.4 mst  prim &kruskal demo2.4 mst  prim &kruskal demo
2.4 mst prim &kruskal demo
 
12
1212
12
 

En vedette

Runina para trailrun
Runina para trailrunRunina para trailrun
Runina para trailrun
arayancor
 
Lecturas ing. 2º.doc
Lecturas ing. 2º.docLecturas ing. 2º.doc
Lecturas ing. 2º.doc
enroks
 

En vedette (16)

Фото зі зборів
Фото зі зборівФото зі зборів
Фото зі зборів
 
Yaakov y las 12 tribus
Yaakov y las 12 tribusYaakov y las 12 tribus
Yaakov y las 12 tribus
 
The great fire of london
The great fire of londonThe great fire of london
The great fire of london
 
Evaluation
EvaluationEvaluation
Evaluation
 
Кущак Александр
Кущак АлександрКущак Александр
Кущак Александр
 
Deepak_modi
Deepak_modiDeepak_modi
Deepak_modi
 
Runina para trailrun
Runina para trailrunRunina para trailrun
Runina para trailrun
 
Лазаренко Н.Г., СПО
Лазаренко Н.Г., СПОЛазаренко Н.Г., СПО
Лазаренко Н.Г., СПО
 
Evolución del computador desde el ábaco hasta el móvil
Evolución del computador desde el ábaco  hasta el móvilEvolución del computador desde el ábaco  hasta el móvil
Evolución del computador desde el ábaco hasta el móvil
 
Lecturas ing. 2º.doc
Lecturas ing. 2º.docLecturas ing. 2º.doc
Lecturas ing. 2º.doc
 
4. 13.10.16 на сайт
4. 13.10.16 на сайт4. 13.10.16 на сайт
4. 13.10.16 на сайт
 
CAMBRIDGE GEOGRAPHY AS ULTRA REVISION TEST 2 ATMOSPHERE AND WEATHER
CAMBRIDGE GEOGRAPHY AS ULTRA REVISION TEST 2 ATMOSPHERE AND WEATHERCAMBRIDGE GEOGRAPHY AS ULTRA REVISION TEST 2 ATMOSPHERE AND WEATHER
CAMBRIDGE GEOGRAPHY AS ULTRA REVISION TEST 2 ATMOSPHERE AND WEATHER
 
Energy & Environment Engg
Energy & Environment EnggEnergy & Environment Engg
Energy & Environment Engg
 
Tugas km 3
Tugas km 3Tugas km 3
Tugas km 3
 
Работа в личном кабинете для новичков
Работа в личном кабинете для новичковРабота в личном кабинете для новичков
Работа в личном кабинете для новичков
 
Бальямен
БальяменБальямен
Бальямен
 

Similaire à Solution 4 i ph o 35

Femtosecond two photon absorption measurements based on the accumulative phot...
Femtosecond two photon absorption measurements based on the accumulative phot...Femtosecond two photon absorption measurements based on the accumulative phot...
Femtosecond two photon absorption measurements based on the accumulative phot...
gerarluis
 
Conference poster final
Conference poster finalConference poster final
Conference poster final
Zeeshan Khalid
 
359 me-2009-gate-question-paper
359 me-2009-gate-question-paper359 me-2009-gate-question-paper
359 me-2009-gate-question-paper
drmbalu
 

Similaire à Solution 4 i ph o 35 (15)

T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2
 
Femtosecond two photon absorption measurements based on the accumulative phot...
Femtosecond two photon absorption measurements based on the accumulative phot...Femtosecond two photon absorption measurements based on the accumulative phot...
Femtosecond two photon absorption measurements based on the accumulative phot...
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1
 
Recurrence relation solutions
Recurrence relation solutionsRecurrence relation solutions
Recurrence relation solutions
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Conference poster final
Conference poster finalConference poster final
Conference poster final
 
03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt
 
Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2
 
359 me-2009-gate-question-paper
359 me-2009-gate-question-paper359 me-2009-gate-question-paper
359 me-2009-gate-question-paper
 
(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2
 
Chapter2.pptx
Chapter2.pptxChapter2.pptx
Chapter2.pptx
 
bahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .pptbahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .ppt
 
Ejercicio de fasores
Ejercicio de fasoresEjercicio de fasores
Ejercicio de fasores
 

Plus de eli priyatna laidan

Plus de eli priyatna laidan (20)

Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2
 
Soal utn plus kunci gurusd.net
Soal utn plus kunci gurusd.netSoal utn plus kunci gurusd.net
Soal utn plus kunci gurusd.net
 
Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5
 
Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4
 
Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3
 
Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2
 
Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1
 
Soal up akmal
Soal up akmalSoal up akmal
Soal up akmal
 
Soal tkp serta kunci jawabannya
Soal tkp serta kunci jawabannyaSoal tkp serta kunci jawabannya
Soal tkp serta kunci jawabannya
 
Soal tes wawasan kebangsaan
Soal tes wawasan kebangsaanSoal tes wawasan kebangsaan
Soal tes wawasan kebangsaan
 
Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)
 
Soal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didikSoal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didik
 
Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017
 
Rekap soal kompetensi pedagogi
Rekap soal kompetensi pedagogiRekap soal kompetensi pedagogi
Rekap soal kompetensi pedagogi
 
Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2
 
Bank soal ppg
Bank soal ppgBank soal ppg
Bank soal ppg
 
Soal cpns-paket-17
Soal cpns-paket-17Soal cpns-paket-17
Soal cpns-paket-17
 
Soal cpns-paket-14
Soal cpns-paket-14Soal cpns-paket-14
Soal cpns-paket-14
 
Soal cpns-paket-13
Soal cpns-paket-13Soal cpns-paket-13
Soal cpns-paket-13
 
Soal cpns-paket-12
Soal cpns-paket-12Soal cpns-paket-12
Soal cpns-paket-12
 

Dernier

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Dernier (20)

ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 

Solution 4 i ph o 35

  • 1. Theoretical Question 4 / Solutions Page 1/6 Theoretical Question 4: Heat conduction inside a solid sphere 1. Answers (a) x TT RjRJ inout22 4||4 − == σππ (b) 2 )4( inout2 TT CDRQ − = π (c) 2(E) 4 D C t σ = = 3.0×10-3 s (d) 2 cout 2(B) )(24 D TT L D C t − += ββ β σσ = 7.8×10-2 s. (e) c)( TrT = for b0 Rr << b cbout b outcb )(1 )( RR TRRT RR TTRR r rT − − + − − = for RrR <<b (f) b 2 b coutb )( RRR R L TT dt dR − − = βσ . (g) 2 cout )(6 R TT L − = βσ τ = 2.5 s.
  • 2. Theoretical Question 4 / Solutions Page 2/6 2. Solutions (a) [0.5 points] The heat flow rate per unit area at the outer surface of the particle is x TT r T j inout − −= ∆ ∆ −= σσ . (a1) Total heat flow rate J from the heat bath to the particle is x TT RjRJ inout22 44 − =−= σππ . (a2) (b) [0.5 points] Q =(heated volume)·C ·(average temperature change of the heated volume). To the leading order of RD / , 2 4 inout2 TT DCRQ − = π . (b1) (c) [1 point] The change in Q is induced by J , that is tJQ ∆=∆ , (c1) or, t x TT Rx TT CR ∆ − =∆ − inout2inout2 4 2 4 σππ . (c2) Thus one obtains x C dx dt σ2 = . (c3) With the help of the integration formula, one obtains 2(E) 4 D C t σ = (c4) The evaluation of this expression provides E)( t = 3.0×10-3 s (c5) Alternative Solution: Since Eq. (c3) is in the exactly same form as atdtdv =/ , where v corresponds to our t , a corresponds to our σ2/C , and t corresponds to our x , students may use this analogy to the accelerated motion to obtain (c4). (*) Comment 1: Student may replace x in the result of (a2) by its average value 2/D and divide Q by J to obtain Eq. (c4).
  • 3. Theoretical Question 4 / Solutions Page 3/6 (*) Comment 2: Exact solution without the linear approximation indicates that the time required to reach the slope DTT /)( inout − at Rr = is given by )/(2 πσCD , which is slightly larger than (E) t since the linear approximation in (b) is bound to underestimate Q . (d) [2 points] The outward heat flow per unit area at Rr = is x TT j cout − −= βσ (d1) Total heat flow rate J from the heat bath to the particle is x TT RjRJ cout22 44 − =−= βσππ (d2) as before. But the total amount of heat Q necessary to increase x from 0 to a finite value D is changed to LDR TT CDRQ )4( 2 )4( 2cout2 ππ β + − = (d3) Here the second term arises due to the latent heat. In a similar way as in (c), one then obtains 2 cout 2(B) )(24 D TT L D C t − += ββ β σσ . (d4) From the provided values of the relevant parameters, one obtains (B) t = 7.8×10-2 s. (d5) (e) [2 points] In the limit 0/ (B)(E) →tt , the temperature profile within each phase is in its steady state, that is, )(4 2 rjrπ is independent of r within each phase (e1) or constant4 2 = dr dT r σπ (e2) By using the provided formula, one obtains n n Y r X T += . (e3)
  • 4. Theoretical Question 4 / Solutions Page 4/6 The constants nX and nY should be chosen so that the expression gives the proper value at each boundary, namely, )0( =rT = finite, cb )( TRT = , and out)( TRT = . (e4) This way, one obtains c)( TrT = for bRr < (e5) b cbout b outcb )(1 )( RR TRRT RR TTRR r rT − − + − − = for RrR <<b (e6) (f) [2 points] According to the result in (e), jr2 4π is discontinuous at the phase boundary. Thus the heat flux flowing into the phase boundary and the heat flux flowing out of the boundary is not balanced, and this difference provides the necessary latent heat for the phase transition. Therefore one obtains ( ) .4 )]0()0([4)4( b 2 b cout 2 b bb 2 bb 2 b t RRR R TTR tRrjRrjRLRR ∆      − −= ∆−=−+==∆ βσπ ππ (f1) Thus, b 2 b coutb )( RRR R L TT dt dR − − = βσ . (f2) (g) [2 points] With the help of the provided formula (i), Eq. (f2) can be inverted to the following form, R RRR TT L dR dt b 2 b inoutb )( − − = βσ , (g1) which can be integrated by using the provided formula (ii) to produce       +− − = constant 2 1 3 11 )( 2 b 3 b cout RRR RTT L t βσ . (g2) The constant should be chosen so that 0=t for RR =b . Thus one finds
  • 5. Theoretical Question 4 / Solutions Page 5/6       +− − = 32 b 3 b cout 6 1 2 1 3 11 )( RRRR RTT L t βσ . (g3) When bR is replaced by 0, Eq. (g3) results in 2 cout )(6 R TT L − = βσ τ . (g4) Finally from the provided numerical values of relevant parameters, one obtains τ = 2.5 s. (g5) (*) Comment 1: If bR is replaced instead by DR − with RD << , Eq. (g3) results in 2 cout (B) )(2 D TT L t − = βσ , which agrees with the result in Eq. (d4) except for the first term, which is much smaller than the second term. (*) Comment 2: The two expressions for τ and (B) t are the same except for the factor, 1/6 vs. 1/2. This change of the numerical factor from 1/2 to 1/6 arises from the reduction of the surface area of the phase boundary as bR approaches 0. While this reduction is not important for RD << (and thus larger factor 1/2), it is not negligible for D ~ R (and thus smaller factor 1/6).
  • 6. Theoretical Question 4 / Solutions Page 6/6 3. Mark Distribution No. Total Pt. Partial Pt. Contents 0.2 −=J (surface area) j . 0.2 Correct j . (a) 0.5 0.1 Correct expression for J . 0.2 CQ = (heated volume)∙(average temperature change). 0.2 Correct heated volume. Other answers, which differ in the second leading order in RD/ , are also acceptable. 0.2 Correct average temperature change. (b) 0.7 0.1 Correct expression for Q . 0.3 tJQ ∆=∆ . 0.3 )/(2/ Cxdtdx σ= . 0.5 Correct expression for E)( t . Integration may be replaced by analogy to accelerated motion. (c) 1.4 0.3 Correct evaluation for E)( t . 0.2 Correct expression for J . 0.6 Correct expression for Q . 0.4 Correct expression for B)( t . (d) 1.4 0.2 Correct evaluation for B)( t . 1.0 jr2 4π is independent of r . 0.4 =T (const1)/ r +(const2). 0.5 Correct boundary conditions. (e) 2.4 0.5 Correct expression for )(rT . 1.0 Latent heat is provided by the discontinuity in jr2 4π at the phase boundary. (f) 1.6 0.6 Correct expression for dtdR /b . 1.5 Correct expression for τ .(g) 2.0 0.5 Correct evaluation of τ . Approximate result of (d) and corresponding value: 1.0 pt Total 10