SlideShare a Scribd company logo
1 of 25
3.1 Sampling Distributions
Contents:

                 Sampling Distributions
1.   Populations and Samples
2.   The Sampling Distribution of the mean ( known)
3.   The Sampling Distribution of the mean ( unknown)
4.   The Sampling Distribution of the Variance
Populations and Samples


                Finite
              Population
Population
               Infinite
              Population
Populations and Samples
Population: A set or collection of all the objects, actual
  or    conceptual      and    mainly      the  set     of
  numbers, measurements or observations which are
  under investigation.
Finite Population : All students in a College
Infinite Population : Total water in the sea or all the
  sand particle in sea shore.
Populations are often described by the distributions of
  their values, and it is common practice to refer to a
  population in terms of its distribution.
Finite Populations
• Finite populations are described by the actual
  distribution of its values and infinite populations are
  described by corresponding probability distribution or
  probability density.
• “Population f(x)” means a population is described
  by a frequency distribution, a probability distribution
  or a density f(x).
Infinite Population
If a population is infinite it is impossible to observe all
   its values, and even if it is finite it may be impractical
   or uneconomical to observe it in its entirety. Thus it is
   necessary to use a sample.
Sample: A part of population collected for investigation
   which needed to be representative of population and
   to be large enough to contain all information about
   population.
Random Sample (finite population):
• A set of observations X1, X2, …,Xn constitutes a
  random sample of size n from a finite
  population of size N, if its values are chosen so
  that each subset of n of the N elements of the
  population has the same probability of being
  selected.
Random Sample (infinite Population):
A set of observations X1, X2, …, Xn constitutes a random sample
     of size n from the infinite population ƒ(x) if:
      1. Each Xi is a random variable whose distribution is given
     by ƒ(x)
     2. These n random variables are independent.

We consider two types of random sample: those drawn with
   replacement and those drawn without replacement.
Sampling with replacement:
• In sampling with replacement, each object
  chosen is returned to the population before the
  next object is drawn. We define a random
  sample of size n drawn with replacement, as
  an ordered n-tuple of objects from the
  population, repetitions allowed.
The Space of random samples drawn with
              replacement:
 • If samples of size n are drawn with replacement from a
   population of size N, then there are Nn such samples. In any
   survey involving sample of size n, each of these should have
   same probability of being chosen. This is equivalent to making
   a collection of all Nn samples a probability space in which each
   sample has probability of being chosen 1/Nn.
 • Hence in above example There are 32 = 9 random samples of
   size 2 and each of the 9 random sample has probability 1/9 of
   being chosen.
Sampling without replacement:
In sampling without replacement, an object chosen is not returned
   to the population before the next object is drawn. We define
   random sample of size n, drawn without replacement as an
   unordered subset of n objects from the population.
The Space of random samples drawn
        without replacement:
• If sample of size n are drawn without
  replacement from a population of size N, then
            N    
  there are 
             n
               such samples. The collection of
                  
                  
                  

  all random samples drawn without
  replacement can be made into a probability
  space in which each sample has same chance
  of being selected.
Mean and Variance
If X1, X2, …, Xn constitute a random sample, then
                                        n

                                             X   i
                                       i 1
                        X 
                                              n
               is called the sample mean and
                                 n

                                      (X i  X )
                                                      2

                                i 1
                            
                        2
                    S
                                            n 1

                is called the sample variance.
Sampling distribution:
• The probability distribution of a random variable
  defined on a space of random samples is called a
  sampling distribution.
The Sampling Distribution of the Mean ( Known)

 Suppose that a random sample of n observations has been taken from
    some population and x has been computed, say, to estimate the mean
    of the population. If we take a second sample of size n from this
    population we get some different value for x . Similarly if we take
    several more samples and calculate x , probably no two of the x ' s     .
    would be alike. The difference among such x ' s are generally attributed
    to chance and this raises important question concerning their
    distribution, specially concerning the extent of their chance of
    fluctuations.
  Let  X and 
                  2
                  X
                      be mean and variance for sampling    distributi on of the
  mean X .
The Sampling Distribution of the Mean ( Known)

                           2
  Formula for μ X and σ X :
  Theorem 1: If a random sample of size n is taken from a population
  having the mean  and the variance 2, then X is a random variable
  whose distribution has the mean  .
                                                                             
                                                                               2

  For samples from infinite populations the variance of this distribution is     .
                                                                                           n
                                                                               N n
                                                                        2

  For samples from a finite population of size N the variance is n                    .
                                                                                N 1

                                      2
                                                  (for infinite   Population              )
                                      n
   That is  X   and             
                               2
                               X
                                        N n
                                         2
                                                   (for finite Population             )
                                      n N 1
                                     
The Sampling Distribution of the Mean ( Known)

 Proof of    for infinite population for the
                  X


   continuous
 case: From the definition we have
                      

     X      .....  x          f ( x1 , x 2 ,...., x n )dx 1 dx 2 .... dx n
                    
                            n
                                    xi
               .....            n
                                         f ( x1 , x 2 ,...., x n )dx 1 dx 2 .... dx n
                      i 1

                 n                 
            1
        
            n
                 .....  x            i
                                             f ( x1 , x 2 ,...., x n )dx 1 dx 2 .... dx n
                i 1            
The Sampling Distribution of the Mean ( Known


Where f(x1, x2, … , xn) is the joint density function of the random variables
which constitute the random sample. From the assumption of random sample
(for infinite population) each Xi is a random variable whose density function
is given by f(x) and these n random variables are independent, we can write
                   f(x1, x2, … , xn) = f(x1) f(x2) …… f(xn)
and we have
                    n               
               1
       X 
               n
                    .....  x          i
                                              f ( x1 ) f ( x 2 ).... f ( x n )dx 1 dx 2 .... dx n
                   i 1          

                    n                                                  
               1
           
               n
                            f ( x1 ) dx 1 ...  x i f ( x i ) dx i ....  f ( x n ) dx n
                   i 1                                             
The Sampling Distribution of the Mean ( Known)

Since each integral except the one with the integrand xi f(xi) equals 1 and the
one with the integrand xi f(xi) equals to , so we will have
                             n
                        1              1
                 X 
                        n
                                 
                                       n
                                           n   .
                            i 1

Note: for the discrete case the proof follows the same steps, with integral sign
replaced by  ' s.
For the proof of  X   2 / n we require the following result
                    2


Result: If X is a continuous random variable and Y = X - X , then Y = 0
   and hence  Y2   X .
                        2


Proof: Y = E(Y) = E(X - X) = E(X) - X = 0 and 
       Y2 = E[(Y - Y)2] = E [((X - X ) - 0)2] = E[(X - X)2] = X2.
The Sampling Distribution of the Mean ( Known)

• Regardless of the form of the population distribution, the
  distribution of     is approximately normal with mean  and
  variance 2/n whenever n is large.
• In practice, the normal distribution provides an excellent
                    X
  approximation to the sampling distribution of the mean
  for n as small as 25 or 30, with hardly any restrictions on the
  shape of the population.
• If the random samples come from a normal population, the
               X
  sampling distribution of the mean is normal regardless of
  the size of the sample.
The Sampling Distribution of the mean
               ( unknown)
• Application of the theory of previous section requires knowledge of the
  population standard deviation  .
• If n is large, this does not pose any problems even when  is unknown, as
  it is reasonable in that case to use for it the sample standard deviation s.
• However, when it comes to random variable whose values are given by
           very little is known about its exact sampling distribution for

   small values of n unless we make the assumption that the sample comes
   from a normal population.

                                 X  
                                           ,
                                 S /   n
The Sampling Distribution of the mean
            ( unknown)
 Theorem : If     is the mean of a random sample of size n taken from a
   normal population having the mean  and the variance 2, and
             X



                      (Xi  X )
                n                 2

                                    , then
       2
   S
               i 1     n 1
                                       X 
                               t
                       S/ n
is a random variable having the t distribution with the parameter  = n – 1.
This theorem is more general than Theorem 6.2 in the sense that it does not
require knowledge of  ; on the other hand, it is less general than Theorem 6.2
in the sense that it requires the assumption of a normal population.
The Sampling Distribution of the mean
           ( unknown)
• The t distribution was introduced by William S.Gosset in
  1908, who published his scientific paper under the pen name
  “Student,” since his company did not permit publication by
  employees. That’s why t distribution is also known as the
  Student-t distribution, or Student’s           t distribution.
• The shape of t distribution is similar to that of a normal
  distribution i.e. both are bell-shaped and symmetric about the
  mean.
• Like the standard normal distribution, the t distribution has the
  mean 0, but its variance depends on the parameter , called the
  number of degrees of freedom.
The Sampling Distribution of the mean
           ( unknown)


                                      t ( =10)
                  Normal




                           t ( =1)


 Figure: t distribution and standard normal distributions
The Sampling Distribution of the mean
              ( unknown)
• When   , the t distribution approaches the standard
  normal distribution i.e. when   , t  z.
• The standard normal distribution provides a good
  approximation to the t distribution for samples of size 30 or
  more.

More Related Content

What's hot

The sampling distribution
The sampling distributionThe sampling distribution
The sampling distributionHarve Abella
 
Sampling and Sampling Distributions
Sampling and Sampling DistributionsSampling and Sampling Distributions
Sampling and Sampling DistributionsJessa Albit
 
F Distribution
F  DistributionF  Distribution
F Distributionjravish
 
sampling distribution
sampling distributionsampling distribution
sampling distributionMmedsc Hahm
 
Discrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsDiscrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsBabasab Patil
 
sampling simple random sampling
sampling simple random samplingsampling simple random sampling
sampling simple random samplingDENNY VARGHESE
 
One Sample T Test
One Sample T TestOne Sample T Test
One Sample T Testshoffma5
 
Types of random sampling
Types of random samplingTypes of random sampling
Types of random samplingStudying
 
Sampling and sampling distribution tttt
Sampling and sampling distribution ttttSampling and sampling distribution tttt
Sampling and sampling distribution ttttpardeepkaur60
 
Testing of hypotheses
Testing of hypothesesTesting of hypotheses
Testing of hypothesesRajThakuri
 
Statistical inference concept, procedure of hypothesis testing
Statistical inference   concept, procedure of hypothesis testingStatistical inference   concept, procedure of hypothesis testing
Statistical inference concept, procedure of hypothesis testingAmitaChaudhary19
 
Systematic ranom sampling for slide share
Systematic ranom sampling for slide shareSystematic ranom sampling for slide share
Systematic ranom sampling for slide shareIVenkatReddyGaaru
 
Statistical inference
Statistical inferenceStatistical inference
Statistical inferenceJags Jagdish
 

What's hot (20)

The sampling distribution
The sampling distributionThe sampling distribution
The sampling distribution
 
Hypothesis testing
Hypothesis testingHypothesis testing
Hypothesis testing
 
Sampling and Sampling Distributions
Sampling and Sampling DistributionsSampling and Sampling Distributions
Sampling and Sampling Distributions
 
Sampling distribution
Sampling distributionSampling distribution
Sampling distribution
 
F Distribution
F  DistributionF  Distribution
F Distribution
 
sampling distribution
sampling distributionsampling distribution
sampling distribution
 
HYPOTHESIS TESTING.ppt
HYPOTHESIS TESTING.pptHYPOTHESIS TESTING.ppt
HYPOTHESIS TESTING.ppt
 
Discrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsDiscrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec doms
 
Z test
Z testZ test
Z test
 
sampling simple random sampling
sampling simple random samplingsampling simple random sampling
sampling simple random sampling
 
One Sample T Test
One Sample T TestOne Sample T Test
One Sample T Test
 
Testing Hypothesis
Testing HypothesisTesting Hypothesis
Testing Hypothesis
 
Hypothesis Testing
Hypothesis TestingHypothesis Testing
Hypothesis Testing
 
Types of random sampling
Types of random samplingTypes of random sampling
Types of random sampling
 
Sampling and sampling distribution tttt
Sampling and sampling distribution ttttSampling and sampling distribution tttt
Sampling and sampling distribution tttt
 
Testing of hypotheses
Testing of hypothesesTesting of hypotheses
Testing of hypotheses
 
Statistical inference concept, procedure of hypothesis testing
Statistical inference   concept, procedure of hypothesis testingStatistical inference   concept, procedure of hypothesis testing
Statistical inference concept, procedure of hypothesis testing
 
Sampling Distribution
Sampling DistributionSampling Distribution
Sampling Distribution
 
Systematic ranom sampling for slide share
Systematic ranom sampling for slide shareSystematic ranom sampling for slide share
Systematic ranom sampling for slide share
 
Statistical inference
Statistical inferenceStatistical inference
Statistical inference
 

Similar to Sampling Distributions

Sampling Distributions
Sampling DistributionsSampling Distributions
Sampling Distributionsmathscontent
 
Hypergeometric Distribution
Hypergeometric DistributionHypergeometric Distribution
Hypergeometric Distributionmathscontent
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingSSA KPI
 
Doe02 statistics
Doe02 statisticsDoe02 statistics
Doe02 statisticsArif Rahman
 
Ssp notes
Ssp notesSsp notes
Ssp notesbalu902
 
Intro probability 4
Intro probability 4Intro probability 4
Intro probability 4Phong Vo
 
Statistics (1): estimation, Chapter 1: Models
Statistics (1): estimation, Chapter 1: ModelsStatistics (1): estimation, Chapter 1: Models
Statistics (1): estimation, Chapter 1: ModelsChristian Robert
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Robustness under Independent Contamination Model
Robustness under Independent Contamination ModelRobustness under Independent Contamination Model
Robustness under Independent Contamination Modelrusmike
 
ISM_Session_5 _ 23rd and 24th December.pptx
ISM_Session_5 _ 23rd and 24th December.pptxISM_Session_5 _ 23rd and 24th December.pptx
ISM_Session_5 _ 23rd and 24th December.pptxssuser1eba67
 
Probability distribution
Probability distributionProbability distribution
Probability distributionManoj Bhambu
 
Probability and Statistics : Binomial Distribution notes ppt.pdf
Probability and Statistics : Binomial Distribution notes ppt.pdfProbability and Statistics : Binomial Distribution notes ppt.pdf
Probability and Statistics : Binomial Distribution notes ppt.pdfnomovi6416
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14Sanyam Singh
 
Stochastic Differentiation
Stochastic DifferentiationStochastic Differentiation
Stochastic DifferentiationSSA KPI
 

Similar to Sampling Distributions (20)

Sampling Distributions
Sampling DistributionsSampling Distributions
Sampling Distributions
 
Hypergeometric Distribution
Hypergeometric DistributionHypergeometric Distribution
Hypergeometric Distribution
 
Hypergeometric Distribution
Hypergeometric DistributionHypergeometric Distribution
Hypergeometric Distribution
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programming
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
 
Doe02 statistics
Doe02 statisticsDoe02 statistics
Doe02 statistics
 
Ssp notes
Ssp notesSsp notes
Ssp notes
 
Intro probability 4
Intro probability 4Intro probability 4
Intro probability 4
 
Statistics (1): estimation, Chapter 1: Models
Statistics (1): estimation, Chapter 1: ModelsStatistics (1): estimation, Chapter 1: Models
Statistics (1): estimation, Chapter 1: Models
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Talk 3
Talk 3Talk 3
Talk 3
 
Robustness under Independent Contamination Model
Robustness under Independent Contamination ModelRobustness under Independent Contamination Model
Robustness under Independent Contamination Model
 
ttest_intro.pdf
ttest_intro.pdfttest_intro.pdf
ttest_intro.pdf
 
ISM_Session_5 _ 23rd and 24th December.pptx
ISM_Session_5 _ 23rd and 24th December.pptxISM_Session_5 _ 23rd and 24th December.pptx
ISM_Session_5 _ 23rd and 24th December.pptx
 
Probability distribution
Probability distributionProbability distribution
Probability distribution
 
Probability and Statistics : Binomial Distribution notes ppt.pdf
Probability and Statistics : Binomial Distribution notes ppt.pdfProbability and Statistics : Binomial Distribution notes ppt.pdf
Probability and Statistics : Binomial Distribution notes ppt.pdf
 
Analysis of variance
Analysis of varianceAnalysis of variance
Analysis of variance
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 
Stochastic Differentiation
Stochastic DifferentiationStochastic Differentiation
Stochastic Differentiation
 

More from DataminingTools Inc

AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceDataminingTools Inc
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web miningDataminingTools Inc
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataDataminingTools Inc
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsDataminingTools Inc
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisDataminingTools Inc
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technologyDataminingTools Inc
 

More from DataminingTools Inc (20)

Terminology Machine Learning
Terminology Machine LearningTerminology Machine Learning
Terminology Machine Learning
 
Techniques Machine Learning
Techniques Machine LearningTechniques Machine Learning
Techniques Machine Learning
 
Machine learning Introduction
Machine learning IntroductionMachine learning Introduction
Machine learning Introduction
 
Areas of machine leanring
Areas of machine leanringAreas of machine leanring
Areas of machine leanring
 
AI: Planning and AI
AI: Planning and AIAI: Planning and AI
AI: Planning and AI
 
AI: Logic in AI 2
AI: Logic in AI 2AI: Logic in AI 2
AI: Logic in AI 2
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
 
AI: Learning in AI 2
AI: Learning in AI 2AI: Learning in AI 2
AI: Learning in AI 2
 
AI: Learning in AI
AI: Learning in AI AI: Learning in AI
AI: Learning in AI
 
AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligence
 
AI: Belief Networks
AI: Belief NetworksAI: Belief Networks
AI: Belief Networks
 
AI: AI & Searching
AI: AI & SearchingAI: AI & Searching
AI: AI & Searching
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web mining
 
Data Mining: Outlier analysis
Data Mining: Outlier analysisData Mining: Outlier analysis
Data Mining: Outlier analysis
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence data
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlations
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysis
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technology
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
 

Recently uploaded

Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 

Recently uploaded (20)

Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 

Sampling Distributions

  • 2. Contents: Sampling Distributions 1. Populations and Samples 2. The Sampling Distribution of the mean ( known) 3. The Sampling Distribution of the mean ( unknown) 4. The Sampling Distribution of the Variance
  • 3. Populations and Samples Finite Population Population Infinite Population
  • 4. Populations and Samples Population: A set or collection of all the objects, actual or conceptual and mainly the set of numbers, measurements or observations which are under investigation. Finite Population : All students in a College Infinite Population : Total water in the sea or all the sand particle in sea shore. Populations are often described by the distributions of their values, and it is common practice to refer to a population in terms of its distribution.
  • 5. Finite Populations • Finite populations are described by the actual distribution of its values and infinite populations are described by corresponding probability distribution or probability density. • “Population f(x)” means a population is described by a frequency distribution, a probability distribution or a density f(x).
  • 6. Infinite Population If a population is infinite it is impossible to observe all its values, and even if it is finite it may be impractical or uneconomical to observe it in its entirety. Thus it is necessary to use a sample. Sample: A part of population collected for investigation which needed to be representative of population and to be large enough to contain all information about population.
  • 7. Random Sample (finite population): • A set of observations X1, X2, …,Xn constitutes a random sample of size n from a finite population of size N, if its values are chosen so that each subset of n of the N elements of the population has the same probability of being selected.
  • 8. Random Sample (infinite Population): A set of observations X1, X2, …, Xn constitutes a random sample of size n from the infinite population ƒ(x) if: 1. Each Xi is a random variable whose distribution is given by ƒ(x) 2. These n random variables are independent. We consider two types of random sample: those drawn with replacement and those drawn without replacement.
  • 9. Sampling with replacement: • In sampling with replacement, each object chosen is returned to the population before the next object is drawn. We define a random sample of size n drawn with replacement, as an ordered n-tuple of objects from the population, repetitions allowed.
  • 10. The Space of random samples drawn with replacement: • If samples of size n are drawn with replacement from a population of size N, then there are Nn such samples. In any survey involving sample of size n, each of these should have same probability of being chosen. This is equivalent to making a collection of all Nn samples a probability space in which each sample has probability of being chosen 1/Nn. • Hence in above example There are 32 = 9 random samples of size 2 and each of the 9 random sample has probability 1/9 of being chosen.
  • 11. Sampling without replacement: In sampling without replacement, an object chosen is not returned to the population before the next object is drawn. We define random sample of size n, drawn without replacement as an unordered subset of n objects from the population.
  • 12. The Space of random samples drawn without replacement: • If sample of size n are drawn without replacement from a population of size N, then N  there are   n  such samples. The collection of    all random samples drawn without replacement can be made into a probability space in which each sample has same chance of being selected.
  • 13. Mean and Variance If X1, X2, …, Xn constitute a random sample, then n  X i i 1 X  n is called the sample mean and n  (X i  X ) 2 i 1  2 S n 1 is called the sample variance.
  • 14. Sampling distribution: • The probability distribution of a random variable defined on a space of random samples is called a sampling distribution.
  • 15. The Sampling Distribution of the Mean ( Known) Suppose that a random sample of n observations has been taken from some population and x has been computed, say, to estimate the mean of the population. If we take a second sample of size n from this population we get some different value for x . Similarly if we take several more samples and calculate x , probably no two of the x ' s . would be alike. The difference among such x ' s are generally attributed to chance and this raises important question concerning their distribution, specially concerning the extent of their chance of fluctuations. Let  X and  2 X be mean and variance for sampling distributi on of the mean X .
  • 16. The Sampling Distribution of the Mean ( Known) 2 Formula for μ X and σ X : Theorem 1: If a random sample of size n is taken from a population having the mean  and the variance 2, then X is a random variable whose distribution has the mean  .  2 For samples from infinite populations the variance of this distribution is . n  N n 2 For samples from a finite population of size N the variance is n  . N 1  2  (for infinite Population )  n That is  X   and    2 X  N n 2  (for finite Population )  n N 1 
  • 17. The Sampling Distribution of the Mean ( Known) Proof of    for infinite population for the X continuous case: From the definition we have    X    .....  x f ( x1 , x 2 ,...., x n )dx 1 dx 2 .... dx n      n xi    .....   n f ( x1 , x 2 ,...., x n )dx 1 dx 2 .... dx n    i 1 n    1  n    .....  x i f ( x1 , x 2 ,...., x n )dx 1 dx 2 .... dx n i 1     
  • 18. The Sampling Distribution of the Mean ( Known Where f(x1, x2, … , xn) is the joint density function of the random variables which constitute the random sample. From the assumption of random sample (for infinite population) each Xi is a random variable whose density function is given by f(x) and these n random variables are independent, we can write f(x1, x2, … , xn) = f(x1) f(x2) …… f(xn) and we have n    1 X  n    .....  x i f ( x1 ) f ( x 2 ).... f ( x n )dx 1 dx 2 .... dx n i 1      n    1  n   f ( x1 ) dx 1 ...  x i f ( x i ) dx i ....  f ( x n ) dx n i 1    
  • 19. The Sampling Distribution of the Mean ( Known) Since each integral except the one with the integrand xi f(xi) equals 1 and the one with the integrand xi f(xi) equals to , so we will have n 1 1 X  n   n n   . i 1 Note: for the discrete case the proof follows the same steps, with integral sign replaced by  ' s. For the proof of  X   2 / n we require the following result 2 Result: If X is a continuous random variable and Y = X - X , then Y = 0 and hence  Y2   X . 2 Proof: Y = E(Y) = E(X - X) = E(X) - X = 0 and  Y2 = E[(Y - Y)2] = E [((X - X ) - 0)2] = E[(X - X)2] = X2.
  • 20. The Sampling Distribution of the Mean ( Known) • Regardless of the form of the population distribution, the distribution of is approximately normal with mean  and variance 2/n whenever n is large. • In practice, the normal distribution provides an excellent X approximation to the sampling distribution of the mean for n as small as 25 or 30, with hardly any restrictions on the shape of the population. • If the random samples come from a normal population, the X sampling distribution of the mean is normal regardless of the size of the sample.
  • 21. The Sampling Distribution of the mean ( unknown) • Application of the theory of previous section requires knowledge of the population standard deviation  . • If n is large, this does not pose any problems even when  is unknown, as it is reasonable in that case to use for it the sample standard deviation s. • However, when it comes to random variable whose values are given by very little is known about its exact sampling distribution for small values of n unless we make the assumption that the sample comes from a normal population. X   , S / n
  • 22. The Sampling Distribution of the mean ( unknown) Theorem : If is the mean of a random sample of size n taken from a normal population having the mean  and the variance 2, and X (Xi  X ) n 2   , then 2 S i 1 n 1 X  t S/ n is a random variable having the t distribution with the parameter  = n – 1. This theorem is more general than Theorem 6.2 in the sense that it does not require knowledge of  ; on the other hand, it is less general than Theorem 6.2 in the sense that it requires the assumption of a normal population.
  • 23. The Sampling Distribution of the mean ( unknown) • The t distribution was introduced by William S.Gosset in 1908, who published his scientific paper under the pen name “Student,” since his company did not permit publication by employees. That’s why t distribution is also known as the Student-t distribution, or Student’s t distribution. • The shape of t distribution is similar to that of a normal distribution i.e. both are bell-shaped and symmetric about the mean. • Like the standard normal distribution, the t distribution has the mean 0, but its variance depends on the parameter , called the number of degrees of freedom.
  • 24. The Sampling Distribution of the mean ( unknown) t ( =10) Normal t ( =1) Figure: t distribution and standard normal distributions
  • 25. The Sampling Distribution of the mean ( unknown) • When   , the t distribution approaches the standard normal distribution i.e. when   , t  z. • The standard normal distribution provides a good approximation to the t distribution for samples of size 30 or more.