SlideShare une entreprise Scribd logo
1  sur  55
1. Relacionar la estructura con la función
del epitelio intestinal
2. Describir los mecanismos de absorción
de nutrientes, vitaminas y hierro
3. Describir la dinámica del transporte
hidroelectrolítico
 Después de digeridos los carbohidratos,
proteínas y grasas; junto con las
vitaminas, minerales y agua, pasan
desde la luz intestinal a través de la
mucosa hacia la linfa o sangre, este
proceso se conoce como absorción.
 Los carbohidratos, grasas y proteínas se
absorben normal y completamente en
el duodeno y yeyuno antes que el
quimo alcance el íleon.
 En el estómago hay poca absorción de
nutrientes porque no posee la
membrana de absorción con
vellosidades y porque las uniones
celulares son firmes.
 Casi todos los carbohidratos se absorben
como monosacáridos, una pequeña
parte como disacáridos y casi nada
como moléculas de mayor tamaño.
 Los monosacáridos son insolubles en
lípidos en forma alternativa difunden a
través de la membrana o entre las
uniones intercelulares.
 Los carbohidratos entran en la
circulación portal en forma de glucosa,
fructosa o galactosa.
 El que más rápidamente se transporta es
la galactosa seguido de la glucosa.
 Existe una proteína transportadora de
glucosa dependiente de sodio, llamada
cotransportador de Na+ / glucosa.
 La fructosa se absorbe por difusión
facilitada independiente del transporte
de Na+, galactosa y glucosa.
 Cualquier CHO que no es absorbido es
degradado a ác. orgánicos, CO2, H2 y
metano (H4) por las bacterias.
 Amilasa Salival, Ptialina ( a amilasa)
 Secretada por la glándula parótida
 Hidroliza el almidón convirtiéndolo en un
disacárido, la maltosa y en otros
pequeños polímeros de glucosa.
 Debido al poco tiempo que los alimentos
permanecen en la boca no mas del 5 % de
todos los almidones ingeridos son hidrolizados.
 En el momento en que las secreciones
gástricas actúan sobre el alimento se inhibe la
amilasa salival.
 Cuando las secreciones gástricas se mezclan
con el alimento el 30 o 40 % de almidón ya se
ha convertido a maltosa.
 Al igual que la amilasa salival contiene
grandes cantidades de a amilasa.
 Su función es casi idéntica pero varias
veces mas potente; siendo así que entre
15-20 min después del vaciamiento del
quimo hacia el duodeno casi la totalidad
de los CHO ya han sido digeridos.
 Lactasa, Sacarasa y a dextrinasa
 La lactosa se fracciona en una molécula
de galactosa y otra de glucosa por acción
de la Lactasa.
 La sacarosa se divide en una molécula de
fructosa y otra de glucosa por la enzima
Sacarasa.
 La maltosa y los demás polímeros de
glucosa se fraccionan en moléculas mas
pequeñas de glucosa.
 La práctica totalidad de los
monosacáridos se absorben mediante
un proceso de transporte activo.
 Si no hay transporte de Na+ en la
membrana celular apenas se absorberá
glucosa.
 El transporte de sodio a través de la
membrana se divide en dos etapas:
 En primer lugar el transporte activo de los
iones Na+ provoca el descenso de la
concentración intracelular del ion.
 En segundo lugar la reducción del sodio
intracelular induce el paso de sodio de la
luz al interior de la célula.
 El Na+ se combina con una proteína de
transporte.
 La glucosa intestinal se combina también
con esta proteína de transporte, por tanto
el Na+ y la glucosa se transportan juntos al
interior de la célula.
 Otras proteínas de transporte y enzimas
facilitan la difusión de la glucosa a través
de la membrana basolateral y de ahí a la
sangre.
 Similar al de la glucosa
 La fructosa no está sometida al
mecanismo de cotransporte con el Na+
ya que este monosacárido se absorbe
por difusión facilitada.
 Importante enzima péptica del estómago.
 Alcanza su mayor actividad con valores de PH
de 2 a 3, se hace inactiva en valores de PH 5.
 Tiene la capacidad de digerir el colágeno de
las proteínas ( componente importante del tej.
Conjuntivo intercelular de las carnes).
 Solo inicia la digestión de las proteínas y
contribuye con el 10 al 20 % del proceso total
de conversión de las proteínas en proteasas,
peptonas y algunos polipéptidos.
 La digestión proteica tiene lugar en la
parte proximal del intestino delgado.
 Las enzimas proteoliticas pancreaticas
son:
Tripsina
Quimiotripsina
Carboxipolipeptidasa
Proelastasa
 La tripsina y la quimiotripsina separan las
moléculas proteicas en pequeños
polipéptidos.
 La carboxipolipeptidasa ataca al
extremo carboxilo de los polipéptidos y
libera los aa de uno en uno.
 La proelastasa se convierte en elastasa,
digiere las fibras de elastina que
mantienen la arquitectura de las carnes.
 Existen dos tipos de peptidasas: La
aminopolipeptidasa y varias
dipeptidasas.
 Continúan la degradación de los
grandes polipéptidos restantes a
tripéptidos o dipéptidos y algunas
incluso a aminoácidos.
 Tanto los aa como los dipéptidos y
tripéptidos se transportan con facilidad a
través de la membrana hacia el interior del
enterocito.
 En el citosol de los enterocitos existen otras
peptidasas especificas de los restantes
tipos de enlace existentes entre los aa.
 Se completa la digestión de los dipéptidos
y tripéptidos hasta el estadio final de aa
simples.
 Pasan a la sangre por el lado opuesto del
enterocito.
 GRASAS DE LOS ALIMENTOS
 Las grasas mas abundantes de los alimentos
son las neutras, conocidas como
triglicéridos.
La alimentación habitual tambien incluye
pequeñas cantidades de fosfolípidos,
colesterol y ésteres de colesterol.
 DIGESTIÓN DE LAS GRASAS EN EL
INTESTINO
La lipasa lingual secretada por las glándulas
linguales y deglutida con la saliva, digiere
una pequeña cantidad de triglicéridos en el
estómago.
La digestión de todas las grasas tiene lugar
esencialmente en el intestino delgado por el
mecanismo de emulsión por los ácidos
biliares y la lecitina.
 Emulsión de las grasas
 El primer paso para la digestión de las
grasas consiste en reducir el tamaño de
sus glóbulos
 La emulsión de la grasa se inicia con la
agitación dentro del estómago, que
mezcla la grasa con los productos de la
digestión gástrica.
 Después la emulsión tiene lugar sobre
todo en el duodeno gracias a la acción
de la bilis.
 La bilis alberga grandes cantidades de
sales biliares y fosfolípido lecitina útiles para
la emulsión de las grasas.
 Las lipasas son sustancias hidrosolubles que
solo pueden atacar a los glóbulos de grasa
en su superficie.
 La enzima mas importante para la digestión
de los triglicéridos es la lipasa pancreática,
presente en enormes cantidades en el jugo
pancreático. Puede digerir en un minuto
todos los triglicéridos que encuentre.
 Las micelas son pequeños glóbulos esféricos
cilíndricos de 3 a 6 nanómetros de diámetro
constituidos por 20 a 40 moléculas de sales biliares.
 Se forman cuando las sales biliares se encuentran en
concentración suficiente en agua.
 Actúan como medio de transporte de los
monoglicéridos y de los ácidos grasos libres que
luego se absorben hacia la sangre.
 Bases Anatómicas
La cantidad total de líquido que se absorbe
cada día en el intestino es igual a la del
líquido ingerido ( 1.5 lts) más las distintas
secreciones gastrointestinales (7 lts) un total
de 8 a 9 lts.
El estómago es una zona del tubo digestivo
donde la absorción es escasa, ya que no
posee la típica membrana absortiva de tipo
velloso.
 Superficie de absorción de las
vellosidades de la mucosa del intestino
delgado
En la superficie de la mucosa del intestino
delgado existen pliegues llamados válvulas
conniventes (pliegues de Kerckring).
Se extienden a lo largo del intestino, se
encuentran bien desarrollados en el
duodeno y el yeyuno, donde sobresalen
incluso 8 mm hacia la luz.
En toda la superficie del intestino delgado
hasta la válvula ileocecal existen millones de
pequeñas vellosidades.
 Son proyecciones hacia la luz
cubiertas predominantemente con
enterocitos maduros para la absorción,
con ocasionales células que secretan
moco. Cubren la superficie del intestino
delgado, es el sitio principal de
absorción de los productos de digestión.
 Las vellosidades se encuentran tan
próximas unas a otras en la parte proximal
del intestino delgado.
 La presencia de vellosidades en la
superficie de la mucosa hace que el área
de absorción aumente diez veces más.
 Cada célula epitelial de la vellosidad
intestinal posee un borde en cepillo
formada por unas 1000 microvellosidades
de 1 micrómetro de longitud y 0.1
micrómetro de diámetro.
 criptas de Lieberkühn
Invaginaciones de forma tubular del
epitelio intestinal, que ocupan desde la luz
del tubo digestivo hasta la capa muscular
de la mucosa. Poseen un epitelio simple en
el cual se sitúan células calicifores,
cilíndricas absortivas, células de Paneth
(situadas en la base) y células
enterocromafines. En las criptas se
producen enzimas digestivas, sustancias
bactericidas y péptidos reguladores.
 Estructuras tubulares simples que se
extienden desde la muscular de la mucosa
a través de todo el espesor de la lamina
propia y desembocan en el sup. luminal del
intestino.
 Están compuestas de un epitelio simple
cilíndrico que es continuo con el epitelio de
las vellosidades.
 La lamina propia que rodea a estas
glándulas contienen numerosas células del
sistema inmunitario, (linfocitos, plasmocitos,
mastocitos, macrófagos y eosinofilos)
 Absorbe cada día varios cientos de
gramos de carbohidratos, 100 gr de
grasa 50 a 100 gr de aa 50 a 100 gr de
iones y 7 a 8 lts de H2O.
 La capacidad de absorción del intestino
delgado normal alcanza varios
kilogramos de carbohidratos, grasas,
proteínas y agua.
 Transporte activo de Na+
Al día se secretan con las secreciones
intestinales entre 20 y 30 gr de Na+.
El intestino delgado debe absorver de 25 a
35 gr de Na+ diarios.
El motor central de la absorción del Na+ es
el e transporte activo del ion desde el
interior de las células epiteliales hasta los
espacios paracelulares.
 Parte del Na+ se absorbe al mismo
tiempo que los iones cloro.
 El transporte activo del Na+ a través de
las membranas basolaterales reduce su
concentración dentro del citoplasma
hasta valores bajos.
 El Na+ se mueve a favor de un gradiente
electroquímico desde el quimo hacia el
citoplasma de las células epiteliales, a
través del borde en cepillo.
 Los Enterocitos son células epiteliales del
intestino encargadas de "romper"
diversas moléculas alimenticias y
transportarlas al interior del cuerpo
humano. Se encuentran en el intestino
delgado y en el colon. . Estas células
tiene mecanismos especializados de
transporte en el lado apical y en el
basolateral para llevar las sustancias
desde la luz hasta la sangre o la linfa.
 Las uniones estrechas entre los
enterocitos son para mantenerlos como
una empalizada para reforzar la barrera
que es el epitelio.
 Sirven para el paso de agua y moléculas
pequeñas de la luz al espacio paracelular y
viceversa.
 Se forman de células indiferenciadas en el
fondo de las criptas de Lieberkühn que
migran a la punta de las vellosidades y
tienen una alta tasa de recambio cada 48
horas.
 Estas células tienen una función
secretora.
 Cumplen también funciones de barrera
biomecánica, bioquímica e
inmunológica
 Su capacidad para romper moléculas
alimenticias es parte de su función como
barrera química
 Los enterocitos migran desde el fondo
de las criptas hasta la punta de la
vellosidades y allí se descaman y cae en
la luz y forman parte de la secreción
intestinal
 La absorción de los iones cloro se dan
en las primeras porciones del intestino
delgado (yeyuno e íleon).
 La absorción de cloro es rápida y
sucede por difusión.
 La absorción de los iones Na+ a través
del epitelio facilita el paso de los iones
cloros.
 Los iones potasio se absorben de forma
activa en la mucosa intestinal.
 En general estos iones se absorben con
facilidad y en grandes cantidades.
 En las primeras porciones del intestino
delgado se da una gran reabsorción del
bicarbonato.
 Se absorbe por un mecanismo indirecto
Cuando se absorben los iones Na+, se
secretan hacia la luz intestinal cantidades
moderadas de iones H+ , que se
intercambian por aquellos.
Los iones H+ se combinan con el
Bicarbonato para formar Ac. Carbónico
(H2CO3), que se disocia de inmediato en
agua y anhídrico carbónico.
El agua permanece para formar parte del
quimo en el intestino.
El anhídrico carbónico pasa con facilidad a
la sangre para ser eliminado después por los
pulmones.
Este proceso se denomina “Absorción activa
de iones bicarbonato”
 El agua se transporta en su totalidad a través
de la membrana intestinal por difusión.
 El paso del agua a través de la mucosa
intestinal hacia los vasos sanguíneos de las
vellosidades ocurre por ósmosis.
 El agua también puede dirigirse en sentido
opuesto, desde el plasma al quimo, sobre todo
cuando la solución que alcanza el duodeno
desde el estómago es hiperosmótica.
 La ósmosis del agua hacia los espacios
paracelulares se debe al gradiente
osmótico creada por la elevada
concentración de iones en el espacio
paracelular.
 El movimiento osmótico del agua crea
un flujo de líquido hacia le espacio
paracelular y por último hacia la sangre
que circula por la vellosidad.
 Las reservas corporales totales de hierro son
reguladas por la cantidad total que es
absorbida en el intestino.
 La cantidad absorbida es de 3 a 6 % de la
cantidad ingerida, 0.5 a 1 mg/día en el
varón y 1,5 a 2 mg/día en la mujer.
 El hierro se absorbe con mayor facilidad en
estado ferroso, pero la mayor parte está en
forma férrica.
 En la luz intestinal el hierro inorgánico forma
compuestos con el ácido ascórbico, aa y
azúcares por un mecanismo de quelación.
 La quelación aumenta la solubilidad del hierro
en el medio más alcalino del duodeno.
 El hierro necesario pasará la membrana
basolateral hacia la sangre portal el exceso se
almacena como ferritina hasta la
descamación celular.
 El hierro se absorbe en todo el intestino
delgado pero el principal sitio de absorción es
el duodeno y yeyuno.
 El hierro absorbido por los enterocitos se destina a: las
mitocondrias por un transportador intracelular, la
apoferritina y la transferrina.
 La absorción de hierro aumenta cuando las reservas
corporales están disminuidas o por aumento de la
eritropoyesis y viceversa.
 En deficiencia de hierro la transferrina plasmática se
eleva, su saturación disminuye mas hierro se mueve
del transportador intracelular
 Las personas normales pueden mantener una tasa
normal de absorción aun cuando la carga de
ingestión sea 5 o 10 veces mayor que la necesaria.
 La cobalamina se une a las proteínas en los
alimentos
 El acido gástrico y la pepsina liberan cobalamina de
las proteínas de la dieta
 Las células parietales secretan el factor intrínseco
 Se forma el complejo IF-CBL
 La vit. B12 es absorbida activamente en el íleon
unida al factor intrínseco.
 La deficiencia de vit. B12 causa anemia perniciosa
Absorcion tubo digestivo

Contenu connexe

Tendances

digestion y absorcion de alimento_ppt
digestion y absorcion de alimento_pptdigestion y absorcion de alimento_ppt
digestion y absorcion de alimento_pptmasachuses
 
Metabolismo lípidos 15 (1)
Metabolismo lípidos 15 (1)Metabolismo lípidos 15 (1)
Metabolismo lípidos 15 (1)Facebook
 
Sistema Digestivo. Anatomía y Fisiología del Tubo Digestivo
Sistema Digestivo. Anatomía y Fisiología del Tubo DigestivoSistema Digestivo. Anatomía y Fisiología del Tubo Digestivo
Sistema Digestivo. Anatomía y Fisiología del Tubo Digestivorsirera
 
Digestion y absorcion de lipidos
 Digestion y absorcion de lipidos Digestion y absorcion de lipidos
Digestion y absorcion de lipidosDulce Soto
 
Digestion y Absorcion de Proteinas y Aminoacidos
Digestion y Absorcion de Proteinas y Aminoacidos Digestion y Absorcion de Proteinas y Aminoacidos
Digestion y Absorcion de Proteinas y Aminoacidos Neybemar Perez
 
Digestion de carbohidratos
Digestion de carbohidratosDigestion de carbohidratos
Digestion de carbohidratosIvanna Hoffman
 
Digestion y absorcion de carbohidratos,proteinas,lipidos
Digestion y absorcion de carbohidratos,proteinas,lipidosDigestion y absorcion de carbohidratos,proteinas,lipidos
Digestion y absorcion de carbohidratos,proteinas,lipidosJhon Henry Ceballos S.
 
Estructura proteinas
Estructura proteinasEstructura proteinas
Estructura proteinasthecat1420
 
Digestión y absorción de los Lipidos
Digestión y absorción de los LipidosDigestión y absorción de los Lipidos
Digestión y absorción de los LipidosJoe Estrada
 
292404643 2015-estructura-de-lipidos-1-pdf
292404643 2015-estructura-de-lipidos-1-pdf292404643 2015-estructura-de-lipidos-1-pdf
292404643 2015-estructura-de-lipidos-1-pdfToncho Ramos
 

Tendances (20)

Semiario 4 bq
Semiario 4 bqSemiario 4 bq
Semiario 4 bq
 
Secrecion biliar
Secrecion biliarSecrecion biliar
Secrecion biliar
 
DigestióN De Carbohidratos
DigestióN De CarbohidratosDigestióN De Carbohidratos
DigestióN De Carbohidratos
 
FISIOLOGIA
FISIOLOGIAFISIOLOGIA
FISIOLOGIA
 
digestion y absorcion de alimento_ppt
digestion y absorcion de alimento_pptdigestion y absorcion de alimento_ppt
digestion y absorcion de alimento_ppt
 
Metabolismo lípidos 15 (1)
Metabolismo lípidos 15 (1)Metabolismo lípidos 15 (1)
Metabolismo lípidos 15 (1)
 
Sistema Digestivo. Anatomía y Fisiología del Tubo Digestivo
Sistema Digestivo. Anatomía y Fisiología del Tubo DigestivoSistema Digestivo. Anatomía y Fisiología del Tubo Digestivo
Sistema Digestivo. Anatomía y Fisiología del Tubo Digestivo
 
Digestion y absorcion de lipidos
 Digestion y absorcion de lipidos Digestion y absorcion de lipidos
Digestion y absorcion de lipidos
 
Digestion y Absorcion de Proteinas y Aminoacidos
Digestion y Absorcion de Proteinas y Aminoacidos Digestion y Absorcion de Proteinas y Aminoacidos
Digestion y Absorcion de Proteinas y Aminoacidos
 
Digestion de carbohidratos
Digestion de carbohidratosDigestion de carbohidratos
Digestion de carbohidratos
 
B oxidacion
B  oxidacionB  oxidacion
B oxidacion
 
Aparato digestivo humano
Aparato digestivo humanoAparato digestivo humano
Aparato digestivo humano
 
Cuestionario guía metabolismo de lípidos
Cuestionario guía metabolismo de lípidosCuestionario guía metabolismo de lípidos
Cuestionario guía metabolismo de lípidos
 
Integracion del metabolismo.ppt
Integracion del metabolismo.pptIntegracion del metabolismo.ppt
Integracion del metabolismo.ppt
 
Digestion y absorcion de carbohidratos,proteinas,lipidos
Digestion y absorcion de carbohidratos,proteinas,lipidosDigestion y absorcion de carbohidratos,proteinas,lipidos
Digestion y absorcion de carbohidratos,proteinas,lipidos
 
ANATOMÍA Y FISIOLOGÍA DEL APARATO DIGESTIVO
ANATOMÍA Y FISIOLOGÍA DEL APARATO DIGESTIVOANATOMÍA Y FISIOLOGÍA DEL APARATO DIGESTIVO
ANATOMÍA Y FISIOLOGÍA DEL APARATO DIGESTIVO
 
Estructura proteinas
Estructura proteinasEstructura proteinas
Estructura proteinas
 
Digestión y absorción de los Lipidos
Digestión y absorción de los LipidosDigestión y absorción de los Lipidos
Digestión y absorción de los Lipidos
 
292404643 2015-estructura-de-lipidos-1-pdf
292404643 2015-estructura-de-lipidos-1-pdf292404643 2015-estructura-de-lipidos-1-pdf
292404643 2015-estructura-de-lipidos-1-pdf
 
METABOLISMO DE LO LIPIDOS
METABOLISMO DE LO LIPIDOSMETABOLISMO DE LO LIPIDOS
METABOLISMO DE LO LIPIDOS
 

En vedette

Digestion absorcion web 6-2010
Digestion  absorcion web 6-2010Digestion  absorcion web 6-2010
Digestion absorcion web 6-2010Chechi Mansilla
 
C:\Fakepath\Fisioq1
C:\Fakepath\Fisioq1C:\Fakepath\Fisioq1
C:\Fakepath\Fisioq1linemar
 
Digestion y absorcion de nutrientes
Digestion y absorcion de nutrientesDigestion y absorcion de nutrientes
Digestion y absorcion de nutrientesLimberg Crespo
 
Digestión Y Absorción En El Tubo Digestivo
Digestión Y Absorción En El Tubo DigestivoDigestión Y Absorción En El Tubo Digestivo
Digestión Y Absorción En El Tubo DigestivoLuis Fernando
 
Digestión de proteínas
Digestión de proteínasDigestión de proteínas
Digestión de proteínasEduardo Herrera
 
Digestión y absorción de lípidos
Digestión y absorción de lípidosDigestión y absorción de lípidos
Digestión y absorción de lípidosÇärlôs Ülîsês
 
El sentido de la audición
El sentido de la audiciónEl sentido de la audición
El sentido de la audiciónYazmin A. Garcia
 
SISTEMA DIGESTIVO Y ABSORCION DE NUTRIENTES
SISTEMA DIGESTIVO Y ABSORCION DE NUTRIENTESSISTEMA DIGESTIVO Y ABSORCION DE NUTRIENTES
SISTEMA DIGESTIVO Y ABSORCION DE NUTRIENTESOzkr Iacôno
 
Fisiología - Digestión de Carbohidratos, Lípidos y Proteínas
Fisiología - Digestión de Carbohidratos, Lípidos y ProteínasFisiología - Digestión de Carbohidratos, Lípidos y Proteínas
Fisiología - Digestión de Carbohidratos, Lípidos y ProteínasRamses Abundiz
 
vias de administracion de farmacos
vias de administracion de farmacosvias de administracion de farmacos
vias de administracion de farmacoslinemar
 
Proteinas. Digestión, absorción y metabolismo
Proteinas. Digestión, absorción y metabolismoProteinas. Digestión, absorción y metabolismo
Proteinas. Digestión, absorción y metabolismoMery Yan
 
Absorción, metabolismo y excreción
Absorción, metabolismo y excreciónAbsorción, metabolismo y excreción
Absorción, metabolismo y excreciónAna Gabriela
 
Embarazo de alto riesgo
Embarazo de alto riesgo  Embarazo de alto riesgo
Embarazo de alto riesgo Lía Arce
 
Fecundación interna
Fecundación internaFecundación interna
Fecundación internaJack Daniel S
 

En vedette (20)

Digestion absorcion web 6-2010
Digestion  absorcion web 6-2010Digestion  absorcion web 6-2010
Digestion absorcion web 6-2010
 
C:\Fakepath\Fisioq1
C:\Fakepath\Fisioq1C:\Fakepath\Fisioq1
C:\Fakepath\Fisioq1
 
Digestion y absorcion de nutrientes
Digestion y absorcion de nutrientesDigestion y absorcion de nutrientes
Digestion y absorcion de nutrientes
 
Digestión Y Absorción En El Tubo Digestivo
Digestión Y Absorción En El Tubo DigestivoDigestión Y Absorción En El Tubo Digestivo
Digestión Y Absorción En El Tubo Digestivo
 
Digestión de proteínas
Digestión de proteínasDigestión de proteínas
Digestión de proteínas
 
Digestión y absorción de lípidos
Digestión y absorción de lípidosDigestión y absorción de lípidos
Digestión y absorción de lípidos
 
Digestion kristel fisio
Digestion kristel fisioDigestion kristel fisio
Digestion kristel fisio
 
El sentido de la audición
El sentido de la audiciónEl sentido de la audición
El sentido de la audición
 
Alimentos más sanos, más seguros
Alimentos más sanos, más seguros Alimentos más sanos, más seguros
Alimentos más sanos, más seguros
 
SISTEMA DIGESTIVO Y ABSORCION DE NUTRIENTES
SISTEMA DIGESTIVO Y ABSORCION DE NUTRIENTESSISTEMA DIGESTIVO Y ABSORCION DE NUTRIENTES
SISTEMA DIGESTIVO Y ABSORCION DE NUTRIENTES
 
Fisiología - Digestión de Carbohidratos, Lípidos y Proteínas
Fisiología - Digestión de Carbohidratos, Lípidos y ProteínasFisiología - Digestión de Carbohidratos, Lípidos y Proteínas
Fisiología - Digestión de Carbohidratos, Lípidos y Proteínas
 
Nutricion equilibrada de la mujer durante el embarazo y la lactancia
Nutricion equilibrada de la mujer durante el embarazo y la lactanciaNutricion equilibrada de la mujer durante el embarazo y la lactancia
Nutricion equilibrada de la mujer durante el embarazo y la lactancia
 
vias de administracion de farmacos
vias de administracion de farmacosvias de administracion de farmacos
vias de administracion de farmacos
 
Circulatorio humano taller y evaluación
Circulatorio humano taller y evaluaciónCirculatorio humano taller y evaluación
Circulatorio humano taller y evaluación
 
Proteinas. Digestión, absorción y metabolismo
Proteinas. Digestión, absorción y metabolismoProteinas. Digestión, absorción y metabolismo
Proteinas. Digestión, absorción y metabolismo
 
Absorción, metabolismo y excreción
Absorción, metabolismo y excreciónAbsorción, metabolismo y excreción
Absorción, metabolismo y excreción
 
Embarazo de alto riesgo
Embarazo de alto riesgo  Embarazo de alto riesgo
Embarazo de alto riesgo
 
Fisiología de intestino grueso y delgado
Fisiología de intestino grueso y delgadoFisiología de intestino grueso y delgado
Fisiología de intestino grueso y delgado
 
Fecundación interna
Fecundación internaFecundación interna
Fecundación interna
 
Alto riesgo obstetrico
Alto riesgo obstetricoAlto riesgo obstetrico
Alto riesgo obstetrico
 

Similaire à Absorcion tubo digestivo

digestion y absorcion.pptx
digestion y absorcion.pptxdigestion y absorcion.pptx
digestion y absorcion.pptxPaolaLizeth7
 
Grupo 7 acción de las enzimas digestivas
Grupo 7 acción de las enzimas digestivasGrupo 7 acción de las enzimas digestivas
Grupo 7 acción de las enzimas digestivasraher31
 
Grupo 7 acción de las enzimas digestivas
Grupo 7 acción de las enzimas digestivasGrupo 7 acción de las enzimas digestivas
Grupo 7 acción de las enzimas digestivasraher31
 
DIGESTION Y ABSORCION EN EL TUBO DIGESTIVO.pptx
DIGESTION Y ABSORCION EN EL TUBO DIGESTIVO.pptxDIGESTION Y ABSORCION EN EL TUBO DIGESTIVO.pptx
DIGESTION Y ABSORCION EN EL TUBO DIGESTIVO.pptxSanchezArturo
 
CAPITULO 1 KRAUSE: INGESTA: DIGESTION ABSORCIÓN, TRANSPORTE Y EXCRECIÓN DE NU...
CAPITULO 1 KRAUSE: INGESTA: DIGESTION ABSORCIÓN, TRANSPORTE Y EXCRECIÓN DE NU...CAPITULO 1 KRAUSE: INGESTA: DIGESTION ABSORCIÓN, TRANSPORTE Y EXCRECIÓN DE NU...
CAPITULO 1 KRAUSE: INGESTA: DIGESTION ABSORCIÓN, TRANSPORTE Y EXCRECIÓN DE NU...ISSEA JS2 NUTRICION
 
Digestion y absorcion en el tubo digestivo
Digestion y absorcion en el tubo digestivoDigestion y absorcion en el tubo digestivo
Digestion y absorcion en el tubo digestivoDR. CARLOS Azañero
 
DIGESTIÓN ABSORCIÓN Y METABOLISMO-SESIÓN N°2-1.pdf
DIGESTIÓN ABSORCIÓN Y METABOLISMO-SESIÓN N°2-1.pdfDIGESTIÓN ABSORCIÓN Y METABOLISMO-SESIÓN N°2-1.pdf
DIGESTIÓN ABSORCIÓN Y METABOLISMO-SESIÓN N°2-1.pdfROMINALPEZ19
 
Proceso digestivo
Proceso digestivoProceso digestivo
Proceso digestivoyennycardi
 
Diapositivas sistema digestivo
Diapositivas sistema digestivoDiapositivas sistema digestivo
Diapositivas sistema digestivoheidi cordero
 
Proceso digestivo
Proceso digestivoProceso digestivo
Proceso digestivoaikelys
 
Proceso digestivo
Proceso digestivoProceso digestivo
Proceso digestivoaikelys
 

Similaire à Absorcion tubo digestivo (20)

digestion y absorcion.pptx
digestion y absorcion.pptxdigestion y absorcion.pptx
digestion y absorcion.pptx
 
capitulo 65 guyton
capitulo 65 guytoncapitulo 65 guyton
capitulo 65 guyton
 
Grupo 7 acción de las enzimas digestivas
Grupo 7 acción de las enzimas digestivasGrupo 7 acción de las enzimas digestivas
Grupo 7 acción de las enzimas digestivas
 
Grupo 7 acción de las enzimas digestivas
Grupo 7 acción de las enzimas digestivasGrupo 7 acción de las enzimas digestivas
Grupo 7 acción de las enzimas digestivas
 
DIGESTION Y ABSORCION EN EL TUBO DIGESTIVO.pptx
DIGESTION Y ABSORCION EN EL TUBO DIGESTIVO.pptxDIGESTION Y ABSORCION EN EL TUBO DIGESTIVO.pptx
DIGESTION Y ABSORCION EN EL TUBO DIGESTIVO.pptx
 
CAPITULO 1 KRAUSE: INGESTA: DIGESTION ABSORCIÓN, TRANSPORTE Y EXCRECIÓN DE NU...
CAPITULO 1 KRAUSE: INGESTA: DIGESTION ABSORCIÓN, TRANSPORTE Y EXCRECIÓN DE NU...CAPITULO 1 KRAUSE: INGESTA: DIGESTION ABSORCIÓN, TRANSPORTE Y EXCRECIÓN DE NU...
CAPITULO 1 KRAUSE: INGESTA: DIGESTION ABSORCIÓN, TRANSPORTE Y EXCRECIÓN DE NU...
 
Teo 10. digestion de lipidos
Teo 10. digestion de lipidosTeo 10. digestion de lipidos
Teo 10. digestion de lipidos
 
Aparato digestivo
Aparato digestivoAparato digestivo
Aparato digestivo
 
Digestion y absorcion en el tubo digestivo
Digestion y absorcion en el tubo digestivoDigestion y absorcion en el tubo digestivo
Digestion y absorcion en el tubo digestivo
 
DIGESTIÓN ABSORCIÓN Y METABOLISMO-SESIÓN N°2-1.pdf
DIGESTIÓN ABSORCIÓN Y METABOLISMO-SESIÓN N°2-1.pdfDIGESTIÓN ABSORCIÓN Y METABOLISMO-SESIÓN N°2-1.pdf
DIGESTIÓN ABSORCIÓN Y METABOLISMO-SESIÓN N°2-1.pdf
 
Digestion metabolismo
Digestion metabolismoDigestion metabolismo
Digestion metabolismo
 
Intestino delgado
Intestino delgadoIntestino delgado
Intestino delgado
 
12
1212
12
 
Proceso digestivo
Proceso digestivoProceso digestivo
Proceso digestivo
 
Digestivo
DigestivoDigestivo
Digestivo
 
3° sistema digestivo
3°   sistema digestivo3°   sistema digestivo
3° sistema digestivo
 
Diapositivas sistema digestivo
Diapositivas sistema digestivoDiapositivas sistema digestivo
Diapositivas sistema digestivo
 
Proceso digestivo
Proceso digestivoProceso digestivo
Proceso digestivo
 
Proceso digestivo
Proceso digestivoProceso digestivo
Proceso digestivo
 
Aparato Digestivo
Aparato DigestivoAparato Digestivo
Aparato Digestivo
 

Absorcion tubo digestivo

  • 1.
  • 2. 1. Relacionar la estructura con la función del epitelio intestinal 2. Describir los mecanismos de absorción de nutrientes, vitaminas y hierro 3. Describir la dinámica del transporte hidroelectrolítico
  • 3.  Después de digeridos los carbohidratos, proteínas y grasas; junto con las vitaminas, minerales y agua, pasan desde la luz intestinal a través de la mucosa hacia la linfa o sangre, este proceso se conoce como absorción.
  • 4.
  • 5.  Los carbohidratos, grasas y proteínas se absorben normal y completamente en el duodeno y yeyuno antes que el quimo alcance el íleon.  En el estómago hay poca absorción de nutrientes porque no posee la membrana de absorción con vellosidades y porque las uniones celulares son firmes.
  • 6.  Casi todos los carbohidratos se absorben como monosacáridos, una pequeña parte como disacáridos y casi nada como moléculas de mayor tamaño.  Los monosacáridos son insolubles en lípidos en forma alternativa difunden a través de la membrana o entre las uniones intercelulares.
  • 7.  Los carbohidratos entran en la circulación portal en forma de glucosa, fructosa o galactosa.  El que más rápidamente se transporta es la galactosa seguido de la glucosa.  Existe una proteína transportadora de glucosa dependiente de sodio, llamada cotransportador de Na+ / glucosa.
  • 8.  La fructosa se absorbe por difusión facilitada independiente del transporte de Na+, galactosa y glucosa.  Cualquier CHO que no es absorbido es degradado a ác. orgánicos, CO2, H2 y metano (H4) por las bacterias.
  • 9.  Amilasa Salival, Ptialina ( a amilasa)  Secretada por la glándula parótida  Hidroliza el almidón convirtiéndolo en un disacárido, la maltosa y en otros pequeños polímeros de glucosa.
  • 10.  Debido al poco tiempo que los alimentos permanecen en la boca no mas del 5 % de todos los almidones ingeridos son hidrolizados.  En el momento en que las secreciones gástricas actúan sobre el alimento se inhibe la amilasa salival.  Cuando las secreciones gástricas se mezclan con el alimento el 30 o 40 % de almidón ya se ha convertido a maltosa.
  • 11.  Al igual que la amilasa salival contiene grandes cantidades de a amilasa.  Su función es casi idéntica pero varias veces mas potente; siendo así que entre 15-20 min después del vaciamiento del quimo hacia el duodeno casi la totalidad de los CHO ya han sido digeridos.
  • 12.  Lactasa, Sacarasa y a dextrinasa  La lactosa se fracciona en una molécula de galactosa y otra de glucosa por acción de la Lactasa.  La sacarosa se divide en una molécula de fructosa y otra de glucosa por la enzima Sacarasa.  La maltosa y los demás polímeros de glucosa se fraccionan en moléculas mas pequeñas de glucosa.
  • 13.  La práctica totalidad de los monosacáridos se absorben mediante un proceso de transporte activo.
  • 14.  Si no hay transporte de Na+ en la membrana celular apenas se absorberá glucosa.  El transporte de sodio a través de la membrana se divide en dos etapas:  En primer lugar el transporte activo de los iones Na+ provoca el descenso de la concentración intracelular del ion.  En segundo lugar la reducción del sodio intracelular induce el paso de sodio de la luz al interior de la célula.
  • 15.  El Na+ se combina con una proteína de transporte.  La glucosa intestinal se combina también con esta proteína de transporte, por tanto el Na+ y la glucosa se transportan juntos al interior de la célula.  Otras proteínas de transporte y enzimas facilitan la difusión de la glucosa a través de la membrana basolateral y de ahí a la sangre.
  • 16.  Similar al de la glucosa  La fructosa no está sometida al mecanismo de cotransporte con el Na+ ya que este monosacárido se absorbe por difusión facilitada.
  • 17.  Importante enzima péptica del estómago.  Alcanza su mayor actividad con valores de PH de 2 a 3, se hace inactiva en valores de PH 5.  Tiene la capacidad de digerir el colágeno de las proteínas ( componente importante del tej. Conjuntivo intercelular de las carnes).  Solo inicia la digestión de las proteínas y contribuye con el 10 al 20 % del proceso total de conversión de las proteínas en proteasas, peptonas y algunos polipéptidos.
  • 18.  La digestión proteica tiene lugar en la parte proximal del intestino delgado.  Las enzimas proteoliticas pancreaticas son: Tripsina Quimiotripsina Carboxipolipeptidasa Proelastasa
  • 19.  La tripsina y la quimiotripsina separan las moléculas proteicas en pequeños polipéptidos.  La carboxipolipeptidasa ataca al extremo carboxilo de los polipéptidos y libera los aa de uno en uno.  La proelastasa se convierte en elastasa, digiere las fibras de elastina que mantienen la arquitectura de las carnes.
  • 20.  Existen dos tipos de peptidasas: La aminopolipeptidasa y varias dipeptidasas.  Continúan la degradación de los grandes polipéptidos restantes a tripéptidos o dipéptidos y algunas incluso a aminoácidos.
  • 21.  Tanto los aa como los dipéptidos y tripéptidos se transportan con facilidad a través de la membrana hacia el interior del enterocito.  En el citosol de los enterocitos existen otras peptidasas especificas de los restantes tipos de enlace existentes entre los aa.  Se completa la digestión de los dipéptidos y tripéptidos hasta el estadio final de aa simples.  Pasan a la sangre por el lado opuesto del enterocito.
  • 22.  GRASAS DE LOS ALIMENTOS  Las grasas mas abundantes de los alimentos son las neutras, conocidas como triglicéridos. La alimentación habitual tambien incluye pequeñas cantidades de fosfolípidos, colesterol y ésteres de colesterol.
  • 23.  DIGESTIÓN DE LAS GRASAS EN EL INTESTINO La lipasa lingual secretada por las glándulas linguales y deglutida con la saliva, digiere una pequeña cantidad de triglicéridos en el estómago. La digestión de todas las grasas tiene lugar esencialmente en el intestino delgado por el mecanismo de emulsión por los ácidos biliares y la lecitina.
  • 24.  Emulsión de las grasas  El primer paso para la digestión de las grasas consiste en reducir el tamaño de sus glóbulos  La emulsión de la grasa se inicia con la agitación dentro del estómago, que mezcla la grasa con los productos de la digestión gástrica.  Después la emulsión tiene lugar sobre todo en el duodeno gracias a la acción de la bilis.
  • 25.  La bilis alberga grandes cantidades de sales biliares y fosfolípido lecitina útiles para la emulsión de las grasas.  Las lipasas son sustancias hidrosolubles que solo pueden atacar a los glóbulos de grasa en su superficie.  La enzima mas importante para la digestión de los triglicéridos es la lipasa pancreática, presente en enormes cantidades en el jugo pancreático. Puede digerir en un minuto todos los triglicéridos que encuentre.
  • 26.  Las micelas son pequeños glóbulos esféricos cilíndricos de 3 a 6 nanómetros de diámetro constituidos por 20 a 40 moléculas de sales biliares.  Se forman cuando las sales biliares se encuentran en concentración suficiente en agua.  Actúan como medio de transporte de los monoglicéridos y de los ácidos grasos libres que luego se absorben hacia la sangre.
  • 27.
  • 28.  Bases Anatómicas La cantidad total de líquido que se absorbe cada día en el intestino es igual a la del líquido ingerido ( 1.5 lts) más las distintas secreciones gastrointestinales (7 lts) un total de 8 a 9 lts. El estómago es una zona del tubo digestivo donde la absorción es escasa, ya que no posee la típica membrana absortiva de tipo velloso.
  • 29.  Superficie de absorción de las vellosidades de la mucosa del intestino delgado En la superficie de la mucosa del intestino delgado existen pliegues llamados válvulas conniventes (pliegues de Kerckring). Se extienden a lo largo del intestino, se encuentran bien desarrollados en el duodeno y el yeyuno, donde sobresalen incluso 8 mm hacia la luz. En toda la superficie del intestino delgado hasta la válvula ileocecal existen millones de pequeñas vellosidades.
  • 30.  Son proyecciones hacia la luz cubiertas predominantemente con enterocitos maduros para la absorción, con ocasionales células que secretan moco. Cubren la superficie del intestino delgado, es el sitio principal de absorción de los productos de digestión.
  • 31.
  • 32.
  • 33.  Las vellosidades se encuentran tan próximas unas a otras en la parte proximal del intestino delgado.  La presencia de vellosidades en la superficie de la mucosa hace que el área de absorción aumente diez veces más.  Cada célula epitelial de la vellosidad intestinal posee un borde en cepillo formada por unas 1000 microvellosidades de 1 micrómetro de longitud y 0.1 micrómetro de diámetro.
  • 34.
  • 35.  criptas de Lieberkühn Invaginaciones de forma tubular del epitelio intestinal, que ocupan desde la luz del tubo digestivo hasta la capa muscular de la mucosa. Poseen un epitelio simple en el cual se sitúan células calicifores, cilíndricas absortivas, células de Paneth (situadas en la base) y células enterocromafines. En las criptas se producen enzimas digestivas, sustancias bactericidas y péptidos reguladores.
  • 36.  Estructuras tubulares simples que se extienden desde la muscular de la mucosa a través de todo el espesor de la lamina propia y desembocan en el sup. luminal del intestino.  Están compuestas de un epitelio simple cilíndrico que es continuo con el epitelio de las vellosidades.  La lamina propia que rodea a estas glándulas contienen numerosas células del sistema inmunitario, (linfocitos, plasmocitos, mastocitos, macrófagos y eosinofilos)
  • 37.  Absorbe cada día varios cientos de gramos de carbohidratos, 100 gr de grasa 50 a 100 gr de aa 50 a 100 gr de iones y 7 a 8 lts de H2O.  La capacidad de absorción del intestino delgado normal alcanza varios kilogramos de carbohidratos, grasas, proteínas y agua.
  • 38.  Transporte activo de Na+ Al día se secretan con las secreciones intestinales entre 20 y 30 gr de Na+. El intestino delgado debe absorver de 25 a 35 gr de Na+ diarios. El motor central de la absorción del Na+ es el e transporte activo del ion desde el interior de las células epiteliales hasta los espacios paracelulares.
  • 39.
  • 40.  Parte del Na+ se absorbe al mismo tiempo que los iones cloro.  El transporte activo del Na+ a través de las membranas basolaterales reduce su concentración dentro del citoplasma hasta valores bajos.  El Na+ se mueve a favor de un gradiente electroquímico desde el quimo hacia el citoplasma de las células epiteliales, a través del borde en cepillo.
  • 41.  Los Enterocitos son células epiteliales del intestino encargadas de "romper" diversas moléculas alimenticias y transportarlas al interior del cuerpo humano. Se encuentran en el intestino delgado y en el colon. . Estas células tiene mecanismos especializados de transporte en el lado apical y en el basolateral para llevar las sustancias desde la luz hasta la sangre o la linfa.
  • 42.  Las uniones estrechas entre los enterocitos son para mantenerlos como una empalizada para reforzar la barrera que es el epitelio.  Sirven para el paso de agua y moléculas pequeñas de la luz al espacio paracelular y viceversa.  Se forman de células indiferenciadas en el fondo de las criptas de Lieberkühn que migran a la punta de las vellosidades y tienen una alta tasa de recambio cada 48 horas.
  • 43.  Estas células tienen una función secretora.  Cumplen también funciones de barrera biomecánica, bioquímica e inmunológica  Su capacidad para romper moléculas alimenticias es parte de su función como barrera química
  • 44.  Los enterocitos migran desde el fondo de las criptas hasta la punta de la vellosidades y allí se descaman y cae en la luz y forman parte de la secreción intestinal
  • 45.  La absorción de los iones cloro se dan en las primeras porciones del intestino delgado (yeyuno e íleon).  La absorción de cloro es rápida y sucede por difusión.  La absorción de los iones Na+ a través del epitelio facilita el paso de los iones cloros.
  • 46.  Los iones potasio se absorben de forma activa en la mucosa intestinal.  En general estos iones se absorben con facilidad y en grandes cantidades.
  • 47.  En las primeras porciones del intestino delgado se da una gran reabsorción del bicarbonato.  Se absorbe por un mecanismo indirecto Cuando se absorben los iones Na+, se secretan hacia la luz intestinal cantidades moderadas de iones H+ , que se intercambian por aquellos.
  • 48. Los iones H+ se combinan con el Bicarbonato para formar Ac. Carbónico (H2CO3), que se disocia de inmediato en agua y anhídrico carbónico. El agua permanece para formar parte del quimo en el intestino. El anhídrico carbónico pasa con facilidad a la sangre para ser eliminado después por los pulmones. Este proceso se denomina “Absorción activa de iones bicarbonato”
  • 49.  El agua se transporta en su totalidad a través de la membrana intestinal por difusión.  El paso del agua a través de la mucosa intestinal hacia los vasos sanguíneos de las vellosidades ocurre por ósmosis.  El agua también puede dirigirse en sentido opuesto, desde el plasma al quimo, sobre todo cuando la solución que alcanza el duodeno desde el estómago es hiperosmótica.
  • 50.  La ósmosis del agua hacia los espacios paracelulares se debe al gradiente osmótico creada por la elevada concentración de iones en el espacio paracelular.  El movimiento osmótico del agua crea un flujo de líquido hacia le espacio paracelular y por último hacia la sangre que circula por la vellosidad.
  • 51.  Las reservas corporales totales de hierro son reguladas por la cantidad total que es absorbida en el intestino.  La cantidad absorbida es de 3 a 6 % de la cantidad ingerida, 0.5 a 1 mg/día en el varón y 1,5 a 2 mg/día en la mujer.  El hierro se absorbe con mayor facilidad en estado ferroso, pero la mayor parte está en forma férrica.
  • 52.  En la luz intestinal el hierro inorgánico forma compuestos con el ácido ascórbico, aa y azúcares por un mecanismo de quelación.  La quelación aumenta la solubilidad del hierro en el medio más alcalino del duodeno.  El hierro necesario pasará la membrana basolateral hacia la sangre portal el exceso se almacena como ferritina hasta la descamación celular.  El hierro se absorbe en todo el intestino delgado pero el principal sitio de absorción es el duodeno y yeyuno.
  • 53.  El hierro absorbido por los enterocitos se destina a: las mitocondrias por un transportador intracelular, la apoferritina y la transferrina.  La absorción de hierro aumenta cuando las reservas corporales están disminuidas o por aumento de la eritropoyesis y viceversa.  En deficiencia de hierro la transferrina plasmática se eleva, su saturación disminuye mas hierro se mueve del transportador intracelular  Las personas normales pueden mantener una tasa normal de absorción aun cuando la carga de ingestión sea 5 o 10 veces mayor que la necesaria.
  • 54.  La cobalamina se une a las proteínas en los alimentos  El acido gástrico y la pepsina liberan cobalamina de las proteínas de la dieta  Las células parietales secretan el factor intrínseco  Se forma el complejo IF-CBL  La vit. B12 es absorbida activamente en el íleon unida al factor intrínseco.  La deficiencia de vit. B12 causa anemia perniciosa