SlideShare une entreprise Scribd logo
1  sur  15
Télécharger pour lire hors ligne
ExAME NAcioNAl do ENsiNo sEcuNdário

                                   Decreto-Lei n.º 74/2004, de 26 de Março




Prova Escrita de Matemática A
12.º Ano de Escolaridade

Prova 635/1.ª Fase                                                              15 Páginas

Duração da Prova: 150 minutos. Tolerância: 30 minutos.


2011




VERSÃO 1




                                                               Prova 635.V1 • Página 1/ 15
–––––—––––––––––—–—–—–—— Página em branco –––––––––—–—–––—–————–-––




Prova 635.V1 • Página 2/ 15
Na folha de respostas, indique de forma legível a versão da prova. A ausência dessa indicação implica a
classificação com zero pontos das respostas aos itens do Grupo I.




Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta, excepto nas respostas que impliquem
a elaboração de construções, de desenhos ou de outras representações, que podem ser, primeiramente,
elaborados a lápis, sendo, a seguir, passados a tinta.

Utilize a régua, o compasso, o esquadro, o transferidor e a calculadora gráfica sempre que for necessário.

Não é permitido o uso de corrector. Em caso de engano, deve riscar de forma inequívoca aquilo que pretende
que não seja classificado.

Escreva de forma legível a numeração dos grupos e dos itens, bem como as respectivas respostas. As
respostas ilegíveis ou que não possam ser identificadas são classificadas com zero pontos.

Para cada item, apresente apenas uma resposta. Se escrever mais do que uma resposta a um mesmo item,
apenas é classificada a resposta apresentada em primeiro lugar.




Para responder aos itens de escolha múltipla, escreva, na folha de respostas:
   •  o número do item;
   •  a letra que identifica a única opção escolhida.

Não apresente cálculos, nem justificações.




A prova inclui, na página 4, um Formulário.

As cotações dos itens encontram-se no final do enunciado da prova.




                                                                                Prova 635.V1 • Página 3/ 15
Formulário


Comprimento de um arco de circunferência                 Probabilidades
a r (a – amplitude, em radianos, do ângulo ao            µ = p1 x1 + f + p n x n
         centro; r – raio )
                                                         σ=      p 1 _x1 − µi2 + f + p n _x n − µi2

                                                         Se X é N _µ, σi, então:
Áreas de figuras planas                                  P_µ − σ 1 X 1 µ + σ i . 0,6827
         Diagonal maior # Diagonal menor                 P_µ − 2 σ 1 X 1 µ + 2 σ i . 0,9545
losango:
                        2                                P_µ − 3 σ 1 X 1 µ + 3 σ i . 0,9973

Trapézio: Base maior + Base menor # Altura
                             2
                                                         Regras de derivação
Polígono regular: Semiperímetro × Apótema
                                                         _u + v il = u l + v l
                    2
sector circular: ar
                  2                                      _u $ v il = u l $ v + u $ v l
(a – amplitude, em radianos, do ângulo ao                 u l ul $ v − u $ vl
                                                         av k =     v2
     centro; r – raio)
                                                         _un il = n $ un − 1 $ u l       _n ! R i

Áreas de superfícies                                     _sen u il = u l $ cos u

área lateral de um cone: p r g                           _cos u il = − u l $ sen u
                                                                        ul
(r – raio da base; g – geratriz )                        _ tg u il =
                                                                       cos2 u
área de uma superfície esférica: 4 p r 2                 _eu il = u l $ eu
(r – raio )
                                                         _au il = u l $ au $ ln a _a ! R + #1 -i
                                                                   ul
                                                         _ln u il = u
Volumes
                                                                       ul
Pirâmide: 1 # Área da base # Altura                      _loga u il = u ln a         _a ! R + #1 -i
                  3                                                    $
cone: 1 # Área da base # Altura
          3
                                                         Limites notáveis
Esfera: 4 pr 3 _r - raio i
              3                                                         n
                                                         lim c1 + 1 m = e
                                                                  n
Trigonometria                                            lim sen x = 1
                                                         x"0    x
sen (a + b) = sena . cosb + senb . cosa
                                                         lim e − 1 = 1
                                                              x
cos (a + b) = cosa . cosb - sena . senb                  x"0    x
              tg a + tg b
tg (a + b) =                                                  ln _x + 1i
             1 − tg a $ tg b                             lim             =1
                                                         x"0      x

Complexos                                                  lim ln x = 0
                                                         x "+3 x
         n
_ρ cis θi = ρ n cis _n θ i                                     x
                                                          lim e p = + 3 _ p ! R i
                                                         x "+3x
n   ρ cis θ = n ρ cis c θ + 2k π m, k ! #0, f, n − 1 -
                           n



Prova 635.V1 • Página 4/ 15
GRUPO I


Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta.

Escreva, na folha de respostas:
   •  o número do item;
   •  a letra que identifica a única opção escolhida.
Não apresente cálculos, nem justificações.




1. Seja W o espaço de resultados associado a uma certa experiência aleatória.

   Sejam A e B dois acontecimentos (A Ì W e B Ì W ) independentes, com P(A) ≠ 0

   Qual das afirmações seguintes é necessariamente verdadeira?

          ( )
   (A) P A + P B = 1( )
          (         )
   (B) P A  B = P A + P B    ( )   ( )
          ( )
   (C) P A ≠ P B        ( )
          (     )
   (D) P B | A = P B          ( )



2. O código de um auto-rádio é constituído por uma sequência de quatro algarismos. Por exemplo, 0137

   Quantos desses códigos têm dois e só dois algarismos iguais a 7 ?

   (A) 486

   (B) 810

   (C) 432

   (D) 600




                                                                             Prova 635.V1 • Página 5/ 15
3. Na Figura 1, está representada, num referencial o. n. xOy , parte do gráfico de uma função g , de

   domínio A− 3, + 37

                                                                  y
                                                                                g




                                                                 O                    x




                                                                Figura 1




   A recta de equação y = 2x - 4 é assimptota do gráfico de g

   Qual das afirmações seguintes é verdadeira?


   (A)     lim _g (x ) − 2 x − 4i = 0
         x "+3



   (B)     lim      x =2
         x "+3    g _x i


   (C)     lim _g (x ) − 2 x + 4i = 0
         x "+3



   (D)     lim _g (x ) − 2 x i = 0
         x "+3




4. Seja f uma função de domínio 70, + 37 , definida por

                                                            Zx
                                                            ]2 − 9        se 0 # x 1 5
                                                            ]
                                                   f ^x h = [
                                                            ] 1 − ex
                                                            ]              se x $ 5
                                                             x



   Em qual dos intervalos seguintes o teorema de Bolzano permite garantir a existência de, pelo menos, um
   zero da função f ?


   (A) A0, 17               (B) A1, 47               (C) A4, 67               (D) A6, 77




Prova 635.V1 • Página 6/ 15
 1       x 
5. Qual é o valor de lim       sen2    ?
                             2           
                        x →0 x
                                     2 

   (A) 4


   (B)   0


   (C)   1
         4


   (D)   1
         2




6. Na Figura 2, está representada, num referencial o. n. xOy , parte do gráfico de uma função polinomial f
   de grau 3, de domínio 

                                                   y
                                                                      f




                                      -2       O         2        5       x




                                                       Figura 2




   Sabe-se que:

   •  -2, 2 e 5 são zeros de f
   •  f ′ representa a função derivada de f


   Qual das afirmações seguintes é verdadeira?

   (A)   f ′(0) × f ′(6) = 0

   (B)   f ′(−3) × f ′(6) < 0

   (C)   f ′(−3) × f ′(0) > 0

   (D)   f ′(0) × f ′(6) < 0




                                                                              Prova 635.V1 • Página 7/ 15
7. Na Figura 3, estão representadas, no plano complexo, as imagens geométricas de quatro números
   complexos z 1 , z 2 , z 3 e z 4



                                         Im(z )
                                                    z2



                                    z3        O              z1    Re(z )


                                                    z4


                                                  Figura 3




   Qual é o número complexo que, com n Î , pode ser igual a i
                                                                  4n
                                                                       + i 4n + 1 + i 4n + 2 ?

   (A) z 1

   (B) z 2

   (C) z 3

   (D) z 4




Prova 635.V1 • Página 8/ 15
8. Na Figura 4, está representado, no plano complexo, a sombreado, um sector circular.

   Sabe-se que:

   •  o ponto A está situado no 1.º quadrante;
   •  o ponto B está situado no 4.º quadrante;
   •  [AB ] é um dos lados de um polígono regular cujos vértices são as imagens geométricas das raízes de
                                    p
         índice 5 do complexo 32 cis  
                                    2
   •  o arco AB está contido na circunferência de centro na origem do referencial e raio igual a OA


                                           Im(z )

                                                               A

                                               O                   Re(z )



                                                         B

                                                    Figura 4



   Qual dos números seguintes é o valor da área do sector circular AOB ?

           p
   (A)
           5

           4p
   (B)
            5

           2p
   (C)
            5

           8p
   (D)
            5




                                                                              Prova 635.V1 • Página 9/ 15
GRUPO II


Na resposta a cada um dos itens deste grupo, apresente todos os cálculos que tiver de efectuar e todas as
justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exacto.




1. Em , conjunto dos números complexos, considere

                                                                   n p 
                               z1 = 1 , z 2 = 5 i    e   z 3 = cis      , n∈
                                                                    40 


   Resolva os dois itens seguintes sem recorrer à calculadora.



   1.1. O complexo z 1 é raiz do polinómio z 3 − z 2 + 16z − 16

        Determine, em , as restantes raízes do polinómio.

        Apresente as raízes obtidas na forma trigonométrica.



   1.2. Determine o menor valor de n natural para o qual a imagem geométrica de z 2 × z 3 , no plano
        complexo, está no terceiro quadrante e pertence à bissectriz dos quadrantes ímpares.



2. Uma companhia aérea vende bilhetes a baixo custo exclusivamente para viagens cujos destinos sejam
   Berlim ou Paris.



   2.1. Nove jovens decidem ir a Berlim e escolhem essa companhia aérea. Cada jovem paga o bilhete com
        cartão multibanco, ou não, independentemente da forma de pagamento utilizada pelos outros jovens.
        Considere que a probabilidade de um jovem utilizar cartão multibanco, para pagar o seu bilhete, é
        igual a 0,6.

        Determine a probabilidade de exactamente 6 desses jovens utilizarem cartão multibanco para
        pagarem o seu bilhete.
        Apresente o resultado com arredondamento às centésimas.



   2.2. A companhia aérea constatou que, quando o destino é Berlim, 5% dos seus passageiros perdem o
        voo e que, quando o destino é Paris, 92% dos passageiros seguem viagem. Sabe-se que 30% dos
        bilhetes a baixo custo que a companhia aérea vende têm por destino Berlim.

        Determine a probabilidade de um passageiro, que comprou um bilhete a baixo custo nessa companhia
        aérea, perder o voo.
        Apresente o resultado na forma de dízima.



Prova 635.V1 • Página 10/ 15
3. Seja W o espaço de resultados associado a uma certa experiência aleatória, e sejam A e B dois
   acontecimentos (A ⊂ Ω e B ⊂ Ω) , com P (A) ≠ 0

                                1 − P (B )
   Mostre que P (B | A) ≥ 1 −
                                 P (A)




4. Num museu, a temperatura ambiente em graus centígrados, t horas após as zero horas do dia 1 de Abril
   de 2010, é dada, aproximadamente, por

                                 T _ t i = 15 + 0,1 t 2e −0,15t,   com t ! 70, 20 A


   Determine o instante em que a temperatura atingiu o valor máximo recorrendo a métodos exclusivamente
   analíticos.

   Apresente o resultado em horas e minutos, apresentando os minutos arredondados às unidades.

   Se utilizar a calculadora em eventuais cálculos numéricos, sempre que proceder a arredondamentos, use
   três casas decimais.



                                                               3
                                                                              se x < 1
                                                              x − 1
5. Considere a função f , de domínio , definida por f (x ) = 
                                                              2 + ln x
                                                                               se x ≥ 1
                                                               x



   5.1. O gráfico de f admite uma assimptota horizontal.

        Seja P o ponto de intersecção dessa assimptota com a recta tangente ao gráfico de f no ponto de
        abcissa e.

        Determine as coordenadas do ponto P recorrendo a métodos exclusivamente analíticos.



   5.2. Existem dois pontos no gráfico de f cujas ordenadas são o cubo das abcissas.

        Determine as coordenadas desses pontos recorrendo à calculadora gráfica.

        Na sua resposta, deve:
        •  equacionar o problema;
        •  reproduzir o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na
           calculadora, devidamente identificado(s), incluindo o referencial;
        •  assinalar esses pontos;
        •  indicar as coordenadas desses pontos com arredondamento às centésimas.




                                                                                      Prova 635.V1 • Página 11/ 15
6. Na Figura 5, está representada, num referencial o. n. xOy, parte do gráfico da função f , de domínio  ,
   definida por f (x ) = 4 cos(2x )

   Sabe-se que:

   •  os vértices A e D do trapézio [ABCD ] pertencem ao eixo Ox
   •  o vértice B do trapézio [ABCD ] pertence ao eixo Oy
   •  o vértice D do trapézio [ABCD ] tem abcissa - p
                                                     6
   •  os pontos A e C pertencem ao gráfico de f
   •  a recta CD é paralela ao eixo Oy


                                                      y


                                                                  f




                                           C              B




                                               D     O                A         x


                                                       Figura 5


   Resolva os dois itens seguintes recorrendo a métodos exclusivamente analíticos.



   6.1. Determine o valor exacto da área do trapézio [ABCD]



   6.2. Seja f ′  a primeira derivada da função f , e seja f ll a segunda derivada da função f

        Mostre que f _x i + f l_x i + f ll_x i = − 4 a3 cos _2x i + 2 sen _2x ik , para qualquer número real x




Prova 635.V1 • Página 12/ 15
7. Na Figura 6, está representada, num referencial o. n. xOy , parte do gráfico da função g

                                                       y
                                                                        g




                                                       O                    x

                                                       Figura 6
   Sabe-se que:

   •  g é uma função contínua em 
   •  g não tem zeros
   •  a segunda derivada, f ll, de uma certa função f tem domínio  e é definida por f ll_x i = g _x i # _x 2 − 5x + 4i
   •  f (1) # f (4) 2 0

   Apenas uma das opções seguintes pode representar a função f

        I                                                             II

                      y                                                               y

                      O       1        4
                                                 x
                                                                                      O      1           4
                                                                                                                 x




  III                                                                  IV
                                                                                       y
                  y




                  O       1        4        x                                         O      1           4        x



   Elabore uma composição na qual:
   •  indique a opção que pode representar f
   •  apresente as razões que o levam a rejeitar as restantes opções

        Apresente três razões, uma por cada gráfico rejeitado.



                                                        FIM


                                                                                      Prova 635.V1 • Página 13/ 15
–––––—––––––––––—–—–—–—— Página em branco –––––––––—–—–––—–————–-––




Prova 635.V1 • Página 14/ 15
COTAÇÕES


                                                                  GRUPO I

................................................................(8 × 5 pontos) ........................          40 pontos

                                                                                                                              40 pontos



                                                                 GRUPO II

1.
     1.1. ..................................................................................................     15 pontos
     1.2. ..................................................................................................     15 pontos

2.
     2.1. ..................................................................................................     10 pontos
     2.2. ..................................................................................................     15 pontos

3. ...........................................................................................................   15 pontos

4. ...........................................................................................................   15 pontos

5.
     5.1. ..................................................................................................     20 pontos
     5.2. ..................................................................................................     15 pontos

6.
     6.1. ..................................................................................................     15 pontos
     6.2. ..................................................................................................     10 pontos

7. ...........................................................................................................   15 pontos

                                                                                                                             160 pontos



                                                                           TOTAL .........................................   200 pontos




                                                                                                                 Prova 635.V1 • Página 15/ 15

Contenu connexe

Tendances

Discurso direto, indireto e indireto livre
Discurso direto, indireto e indireto livreDiscurso direto, indireto e indireto livre
Discurso direto, indireto e indireto livreAntónio Fernandes
 
"Mestre Finezas" de Manuel da Fonseca
"Mestre Finezas" de Manuel da Fonseca"Mestre Finezas" de Manuel da Fonseca
"Mestre Finezas" de Manuel da Fonsecaavoguida2014
 
Funções sintáticas
Funções sintáticasFunções sintáticas
Funções sintáticasrijcp
 
Ilha dos Amores- Os Lusíadas: simbologia
Ilha dos Amores- Os Lusíadas: simbologiaIlha dos Amores- Os Lusíadas: simbologia
Ilha dos Amores- Os Lusíadas: simbologiasin3stesia
 
Análise de Os Lusíadas
Análise de Os Lusíadas Análise de Os Lusíadas
Análise de Os Lusíadas Lurdes Augusto
 
Categorias da Narrativa em "A Aia"
Categorias da Narrativa em "A Aia"Categorias da Narrativa em "A Aia"
Categorias da Narrativa em "A Aia"Maria João C. Conde
 
A classe dos nomes e a sua flexão em género
A classe dos nomes e a sua flexão em géneroA classe dos nomes e a sua flexão em género
A classe dos nomes e a sua flexão em géneroluisa santos
 
1º teste de avaliação, 9ºa,b,corrigido
1º teste de avaliação, 9ºa,b,corrigido1º teste de avaliação, 9ºa,b,corrigido
1º teste de avaliação, 9ºa,b,corrigidoildamaria
 
O nome: classe e subclasses
O nome: classe e subclassesO nome: classe e subclasses
O nome: classe e subclassesGonçalo Silva
 
1.conto, características
1.conto, características1.conto, características
1.conto, característicasHelena Coutinho
 
Narração objetiva e subjetiva
Narração objetiva e subjetivaNarração objetiva e subjetiva
Narração objetiva e subjetivaDavid Dias
 
A classe dos quantificadores ficha de trabalho[1]
A classe dos quantificadores   ficha de trabalho[1]A classe dos quantificadores   ficha de trabalho[1]
A classe dos quantificadores ficha de trabalho[1]Teresa Oliveira
 
A Aia - Trabalhos de grupo (alunos)
A Aia - Trabalhos de grupo (alunos)A Aia - Trabalhos de grupo (alunos)
A Aia - Trabalhos de grupo (alunos)Lurdes Augusto
 

Tendances (20)

A Crónica - Ficha de trabalho
A Crónica - Ficha de trabalhoA Crónica - Ficha de trabalho
A Crónica - Ficha de trabalho
 
Discurso direto, indireto e indireto livre
Discurso direto, indireto e indireto livreDiscurso direto, indireto e indireto livre
Discurso direto, indireto e indireto livre
 
"Mestre Finezas" de Manuel da Fonseca
"Mestre Finezas" de Manuel da Fonseca"Mestre Finezas" de Manuel da Fonseca
"Mestre Finezas" de Manuel da Fonseca
 
Funções sintáticas
Funções sintáticasFunções sintáticas
Funções sintáticas
 
Ilha dos Amores- Os Lusíadas: simbologia
Ilha dos Amores- Os Lusíadas: simbologiaIlha dos Amores- Os Lusíadas: simbologia
Ilha dos Amores- Os Lusíadas: simbologia
 
Análise de Os Lusíadas
Análise de Os Lusíadas Análise de Os Lusíadas
Análise de Os Lusíadas
 
Categorias da Narrativa em "A Aia"
Categorias da Narrativa em "A Aia"Categorias da Narrativa em "A Aia"
Categorias da Narrativa em "A Aia"
 
A classe dos nomes e a sua flexão em género
A classe dos nomes e a sua flexão em géneroA classe dos nomes e a sua flexão em género
A classe dos nomes e a sua flexão em género
 
1º teste de avaliação, 9ºa,b,corrigido
1º teste de avaliação, 9ºa,b,corrigido1º teste de avaliação, 9ºa,b,corrigido
1º teste de avaliação, 9ºa,b,corrigido
 
O nome: classe e subclasses
O nome: classe e subclassesO nome: classe e subclasses
O nome: classe e subclasses
 
Fada
FadaFada
Fada
 
Swoosh 9 evaluation tests
Swoosh 9   evaluation testsSwoosh 9   evaluation tests
Swoosh 9 evaluation tests
 
1.conto, características
1.conto, características1.conto, características
1.conto, características
 
Conetores
ConetoresConetores
Conetores
 
Recursos expressivos
Recursos expressivosRecursos expressivos
Recursos expressivos
 
Narração objetiva e subjetiva
Narração objetiva e subjetivaNarração objetiva e subjetiva
Narração objetiva e subjetiva
 
A classe dos quantificadores ficha de trabalho[1]
A classe dos quantificadores   ficha de trabalho[1]A classe dos quantificadores   ficha de trabalho[1]
A classe dos quantificadores ficha de trabalho[1]
 
Os Lusíadas
Os LusíadasOs Lusíadas
Os Lusíadas
 
Aquilo que os meus olhos vêem ou o
Aquilo que os meus olhos vêem ou oAquilo que os meus olhos vêem ou o
Aquilo que os meus olhos vêem ou o
 
A Aia - Trabalhos de grupo (alunos)
A Aia - Trabalhos de grupo (alunos)A Aia - Trabalhos de grupo (alunos)
A Aia - Trabalhos de grupo (alunos)
 

Similaire à Exame de Matemática A_v1_2011

Mat a 635_p2_v1_2011
Mat a 635_p2_v1_2011Mat a 635_p2_v1_2011
Mat a 635_p2_v1_2011Ana Guerra
 
Exame de Matematica A, 11º ano,2016 Versão 1
Exame de Matematica A, 11º ano,2016 Versão 1Exame de Matematica A, 11º ano,2016 Versão 1
Exame de Matematica A, 11º ano,2016 Versão 1Yolanda Acurcio
 
Exame de Matematica A, 11º ano,2016.Versão 2
Exame de Matematica A, 11º ano,2016.Versão 2Exame de Matematica A, 11º ano,2016.Versão 2
Exame de Matematica A, 11º ano,2016.Versão 2Yolanda Acurcio
 
Expoente 12 prova modelo de exame-enunciado
Expoente 12 prova modelo de exame-enunciadoExpoente 12 prova modelo de exame-enunciado
Expoente 12 prova modelo de exame-enunciadoSusana Figueiredo
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 20092marrow
 
Ex mat a635-f1-2015-v1
Ex mat a635-f1-2015-v1Ex mat a635-f1-2015-v1
Ex mat a635-f1-2015-v1Yolanda Maria
 
Proposta_Prova-modelo_MatemáticaA12_2019.pdf
Proposta_Prova-modelo_MatemáticaA12_2019.pdfProposta_Prova-modelo_MatemáticaA12_2019.pdf
Proposta_Prova-modelo_MatemáticaA12_2019.pdfmadamastor
 
Ex mat a635-f1-2015-v2
Ex mat a635-f1-2015-v2Ex mat a635-f1-2015-v2
Ex mat a635-f1-2015-v2Yolanda Maria
 
Poscomp-Cadernodequestes ano2011
Poscomp-Cadernodequestes ano2011Poscomp-Cadernodequestes ano2011
Poscomp-Cadernodequestes ano2011Maellson Marques
 
Circunferencias
CircunferenciasCircunferencias
Circunferenciascon_seguir
 
Testes 5 + 5.pdf
Testes 5 + 5.pdfTestes 5 + 5.pdf
Testes 5 + 5.pdfTniaLopes50
 

Similaire à Exame de Matemática A_v1_2011 (20)

Mat a 635_p2_v1_2011
Mat a 635_p2_v1_2011Mat a 635_p2_v1_2011
Mat a 635_p2_v1_2011
 
Exame de Matematica A, 11º ano,2016 Versão 1
Exame de Matematica A, 11º ano,2016 Versão 1Exame de Matematica A, 11º ano,2016 Versão 1
Exame de Matematica A, 11º ano,2016 Versão 1
 
Exame de Matematica A, 11º ano,2016.Versão 2
Exame de Matematica A, 11º ano,2016.Versão 2Exame de Matematica A, 11º ano,2016.Versão 2
Exame de Matematica A, 11º ano,2016.Versão 2
 
Expoente 12 prova modelo de exame-enunciado
Expoente 12 prova modelo de exame-enunciadoExpoente 12 prova modelo de exame-enunciado
Expoente 12 prova modelo de exame-enunciado
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
 
12 m 2019_f1_c1
12 m 2019_f1_c112 m 2019_f1_c1
12 m 2019_f1_c1
 
Ap matemática m2
Ap matemática m2Ap matemática m2
Ap matemática m2
 
Ex mat a635-f1-2015-v1
Ex mat a635-f1-2015-v1Ex mat a635-f1-2015-v1
Ex mat a635-f1-2015-v1
 
Proposta_Prova-modelo_MatemáticaA12_2019.pdf
Proposta_Prova-modelo_MatemáticaA12_2019.pdfProposta_Prova-modelo_MatemáticaA12_2019.pdf
Proposta_Prova-modelo_MatemáticaA12_2019.pdf
 
Ex mat a635-f1-2015-v2
Ex mat a635-f1-2015-v2Ex mat a635-f1-2015-v2
Ex mat a635-f1-2015-v2
 
Poscomp-Cadernodequestes ano2011
Poscomp-Cadernodequestes ano2011Poscomp-Cadernodequestes ano2011
Poscomp-Cadernodequestes ano2011
 
P3 calculo i_ (3)
P3 calculo i_ (3)P3 calculo i_ (3)
P3 calculo i_ (3)
 
P1 calculo i_ (2)
P1 calculo i_ (2)P1 calculo i_ (2)
P1 calculo i_ (2)
 
Questesdematemtica ano2002
Questesdematemtica ano2002Questesdematemtica ano2002
Questesdematemtica ano2002
 
Circunferencias
CircunferenciasCircunferencias
Circunferencias
 
Remember 03
Remember 03Remember 03
Remember 03
 
Prova 4º bim 9ano
Prova 4º bim   9anoProva 4º bim   9ano
Prova 4º bim 9ano
 
Testes 5 + 5.pdf
Testes 5 + 5.pdfTestes 5 + 5.pdf
Testes 5 + 5.pdf
 
Cadernodequestes ano2004
Cadernodequestes ano2004Cadernodequestes ano2004
Cadernodequestes ano2004
 
Ex algebra (11)
Ex algebra  (11)Ex algebra  (11)
Ex algebra (11)
 

Plus de David Azevedo

Dicas e Sugestões para as Familias durante a Quarentena
Dicas e Sugestões para as Familias durante a QuarentenaDicas e Sugestões para as Familias durante a Quarentena
Dicas e Sugestões para as Familias durante a QuarentenaDavid Azevedo
 
Atividades experimentais. Experiências com o ar.
Atividades experimentais. Experiências com o ar.Atividades experimentais. Experiências com o ar.
Atividades experimentais. Experiências com o ar.David Azevedo
 
Experiências com o Ar
Experiências com o ArExperiências com o Ar
Experiências com o ArDavid Azevedo
 
Proposta mec metas aprendizagem portugues
Proposta mec metas aprendizagem portuguesProposta mec metas aprendizagem portugues
Proposta mec metas aprendizagem portuguesDavid Azevedo
 
Proposta de alteração da Lei do Estatuto do Aluno e Ética Escolar
Proposta de alteração da Lei do Estatuto do Aluno e Ética EscolarProposta de alteração da Lei do Estatuto do Aluno e Ética Escolar
Proposta de alteração da Lei do Estatuto do Aluno e Ética EscolarDavid Azevedo
 
Matrizes Curriculares do Ensino Básico e Secundário
Matrizes Curriculares do Ensino Básico e SecundárioMatrizes Curriculares do Ensino Básico e Secundário
Matrizes Curriculares do Ensino Básico e SecundárioDavid Azevedo
 
Critérios de Correção Prova de Aferição 4.º ano 2012
Critérios de Correção Prova de Aferição 4.º ano 2012Critérios de Correção Prova de Aferição 4.º ano 2012
Critérios de Correção Prova de Aferição 4.º ano 2012David Azevedo
 
Prova de Aferição 4.º ano 2012
Prova de Aferição 4.º ano 2012Prova de Aferição 4.º ano 2012
Prova de Aferição 4.º ano 2012David Azevedo
 
Revisão Curricular 26 de Março 2012
Revisão Curricular 26 de Março 2012Revisão Curricular 26 de Março 2012
Revisão Curricular 26 de Março 2012David Azevedo
 
Proposta final 05_03_2012
Proposta final 05_03_2012Proposta final 05_03_2012
Proposta final 05_03_2012David Azevedo
 
Bateria num copo de água
Bateria  num copo de águaBateria  num copo de água
Bateria num copo de águaDavid Azevedo
 
Relatório das Provas de Aferição de Matemática 2011
Relatório das Provas de Aferição de Matemática 2011Relatório das Provas de Aferição de Matemática 2011
Relatório das Provas de Aferição de Matemática 2011David Azevedo
 
Relatório Nacional Língua Portuguesa 1. ciclo
Relatório Nacional  Língua Portuguesa 1. cicloRelatório Nacional  Língua Portuguesa 1. ciclo
Relatório Nacional Língua Portuguesa 1. cicloDavid Azevedo
 
OFÍCIO CIRCULAR Nº 2 / GGF / 2012
OFÍCIO CIRCULAR Nº 2 / GGF / 2012 OFÍCIO CIRCULAR Nº 2 / GGF / 2012
OFÍCIO CIRCULAR Nº 2 / GGF / 2012 David Azevedo
 
DRE EPE 29 de Novembro de 2011
DRE EPE 29 de Novembro de 2011DRE EPE 29 de Novembro de 2011
DRE EPE 29 de Novembro de 2011David Azevedo
 
Organizacao ensino curricular_basico_11_12
Organizacao ensino curricular_basico_11_12Organizacao ensino curricular_basico_11_12
Organizacao ensino curricular_basico_11_12David Azevedo
 
Programa EPE 2011 12
Programa EPE 2011 12Programa EPE 2011 12
Programa EPE 2011 12David Azevedo
 
Exame Economia A 2011
Exame Economia A 2011Exame Economia A 2011
Exame Economia A 2011David Azevedo
 
Proposta de Resolução Geometria Descritiva 2011
Proposta de Resolução Geometria Descritiva 2011Proposta de Resolução Geometria Descritiva 2011
Proposta de Resolução Geometria Descritiva 2011David Azevedo
 

Plus de David Azevedo (20)

Dicas e Sugestões para as Familias durante a Quarentena
Dicas e Sugestões para as Familias durante a QuarentenaDicas e Sugestões para as Familias durante a Quarentena
Dicas e Sugestões para as Familias durante a Quarentena
 
Atividades experimentais. Experiências com o ar.
Atividades experimentais. Experiências com o ar.Atividades experimentais. Experiências com o ar.
Atividades experimentais. Experiências com o ar.
 
Experiências com o Ar
Experiências com o ArExperiências com o Ar
Experiências com o Ar
 
Proposta mec metas aprendizagem portugues
Proposta mec metas aprendizagem portuguesProposta mec metas aprendizagem portugues
Proposta mec metas aprendizagem portugues
 
Proposta de alteração da Lei do Estatuto do Aluno e Ética Escolar
Proposta de alteração da Lei do Estatuto do Aluno e Ética EscolarProposta de alteração da Lei do Estatuto do Aluno e Ética Escolar
Proposta de alteração da Lei do Estatuto do Aluno e Ética Escolar
 
Matrizes Curriculares do Ensino Básico e Secundário
Matrizes Curriculares do Ensino Básico e SecundárioMatrizes Curriculares do Ensino Básico e Secundário
Matrizes Curriculares do Ensino Básico e Secundário
 
Critérios de Correção Prova de Aferição 4.º ano 2012
Critérios de Correção Prova de Aferição 4.º ano 2012Critérios de Correção Prova de Aferição 4.º ano 2012
Critérios de Correção Prova de Aferição 4.º ano 2012
 
Prova de Aferição 4.º ano 2012
Prova de Aferição 4.º ano 2012Prova de Aferição 4.º ano 2012
Prova de Aferição 4.º ano 2012
 
Revisão Curricular 26 de Março 2012
Revisão Curricular 26 de Março 2012Revisão Curricular 26 de Março 2012
Revisão Curricular 26 de Março 2012
 
Proposta final 05_03_2012
Proposta final 05_03_2012Proposta final 05_03_2012
Proposta final 05_03_2012
 
Bateria num copo de água
Bateria  num copo de águaBateria  num copo de água
Bateria num copo de água
 
Relatório das Provas de Aferição de Matemática 2011
Relatório das Provas de Aferição de Matemática 2011Relatório das Provas de Aferição de Matemática 2011
Relatório das Provas de Aferição de Matemática 2011
 
Relatório Nacional Língua Portuguesa 1. ciclo
Relatório Nacional  Língua Portuguesa 1. cicloRelatório Nacional  Língua Portuguesa 1. ciclo
Relatório Nacional Língua Portuguesa 1. ciclo
 
OFÍCIO CIRCULAR Nº 2 / GGF / 2012
OFÍCIO CIRCULAR Nº 2 / GGF / 2012 OFÍCIO CIRCULAR Nº 2 / GGF / 2012
OFÍCIO CIRCULAR Nº 2 / GGF / 2012
 
Revisao curricular
Revisao curricularRevisao curricular
Revisao curricular
 
DRE EPE 29 de Novembro de 2011
DRE EPE 29 de Novembro de 2011DRE EPE 29 de Novembro de 2011
DRE EPE 29 de Novembro de 2011
 
Organizacao ensino curricular_basico_11_12
Organizacao ensino curricular_basico_11_12Organizacao ensino curricular_basico_11_12
Organizacao ensino curricular_basico_11_12
 
Programa EPE 2011 12
Programa EPE 2011 12Programa EPE 2011 12
Programa EPE 2011 12
 
Exame Economia A 2011
Exame Economia A 2011Exame Economia A 2011
Exame Economia A 2011
 
Proposta de Resolução Geometria Descritiva 2011
Proposta de Resolução Geometria Descritiva 2011Proposta de Resolução Geometria Descritiva 2011
Proposta de Resolução Geometria Descritiva 2011
 

Dernier

Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)Centro Jacques Delors
 
Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxMarcosLemes28
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxJustinoTeixeira1
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...marcelafinkler
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.denisecompasso2
 
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxSlides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxLuizHenriquedeAlmeid6
 
Falando de Física Quântica apresentação introd
Falando de Física Quântica apresentação introdFalando de Física Quântica apresentação introd
Falando de Física Quântica apresentação introdLeonardoDeOliveiraLu2
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptxJssicaCassiano2
 
Aula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .pptAula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .pptNathaliaFreitas32
 
Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)Centro Jacques Delors
 
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!Centro Jacques Delors
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...andreiavys
 
Acessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidadeAcessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidadeLEONIDES PEREIRA DE SOUZA
 
Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Centro Jacques Delors
 
Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024Cabiamar
 
AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022LeandroSilva126216
 
Aprender as diferentes formas de classificar as habilidades motoras é de extr...
Aprender as diferentes formas de classificar as habilidades motoras é de extr...Aprender as diferentes formas de classificar as habilidades motoras é de extr...
Aprender as diferentes formas de classificar as habilidades motoras é de extr...azulassessoria9
 
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdfRepública Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdfLidianeLill2
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024azulassessoria9
 

Dernier (20)

Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)
 
Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptx
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.
 
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxSlides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
 
Falando de Física Quântica apresentação introd
Falando de Física Quântica apresentação introdFalando de Física Quântica apresentação introd
Falando de Física Quântica apresentação introd
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
Aula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .pptAula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .ppt
 
Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)
 
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
 
Acessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidadeAcessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidade
 
Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)
 
Novena de Pentecostes com textos de São João Eudes
Novena de Pentecostes com textos de São João EudesNovena de Pentecostes com textos de São João Eudes
Novena de Pentecostes com textos de São João Eudes
 
Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024
 
AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022
 
Aprender as diferentes formas de classificar as habilidades motoras é de extr...
Aprender as diferentes formas de classificar as habilidades motoras é de extr...Aprender as diferentes formas de classificar as habilidades motoras é de extr...
Aprender as diferentes formas de classificar as habilidades motoras é de extr...
 
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdfRepública Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 

Exame de Matemática A_v1_2011

  • 1. ExAME NAcioNAl do ENsiNo sEcuNdário Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática A 12.º Ano de Escolaridade Prova 635/1.ª Fase 15 Páginas Duração da Prova: 150 minutos. Tolerância: 30 minutos. 2011 VERSÃO 1 Prova 635.V1 • Página 1/ 15
  • 2. –––––—––––––––––—–—–—–—— Página em branco –––––––––—–—–––—–————–-–– Prova 635.V1 • Página 2/ 15
  • 3. Na folha de respostas, indique de forma legível a versão da prova. A ausência dessa indicação implica a classificação com zero pontos das respostas aos itens do Grupo I. Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta, excepto nas respostas que impliquem a elaboração de construções, de desenhos ou de outras representações, que podem ser, primeiramente, elaborados a lápis, sendo, a seguir, passados a tinta. Utilize a régua, o compasso, o esquadro, o transferidor e a calculadora gráfica sempre que for necessário. Não é permitido o uso de corrector. Em caso de engano, deve riscar de forma inequívoca aquilo que pretende que não seja classificado. Escreva de forma legível a numeração dos grupos e dos itens, bem como as respectivas respostas. As respostas ilegíveis ou que não possam ser identificadas são classificadas com zero pontos. Para cada item, apresente apenas uma resposta. Se escrever mais do que uma resposta a um mesmo item, apenas é classificada a resposta apresentada em primeiro lugar. Para responder aos itens de escolha múltipla, escreva, na folha de respostas: •  o número do item; •  a letra que identifica a única opção escolhida. Não apresente cálculos, nem justificações. A prova inclui, na página 4, um Formulário. As cotações dos itens encontram-se no final do enunciado da prova. Prova 635.V1 • Página 3/ 15
  • 4. Formulário Comprimento de um arco de circunferência Probabilidades a r (a – amplitude, em radianos, do ângulo ao µ = p1 x1 + f + p n x n centro; r – raio ) σ= p 1 _x1 − µi2 + f + p n _x n − µi2 Se X é N _µ, σi, então: Áreas de figuras planas P_µ − σ 1 X 1 µ + σ i . 0,6827 Diagonal maior # Diagonal menor P_µ − 2 σ 1 X 1 µ + 2 σ i . 0,9545 losango: 2 P_µ − 3 σ 1 X 1 µ + 3 σ i . 0,9973 Trapézio: Base maior + Base menor # Altura 2 Regras de derivação Polígono regular: Semiperímetro × Apótema _u + v il = u l + v l 2 sector circular: ar 2 _u $ v il = u l $ v + u $ v l (a – amplitude, em radianos, do ângulo ao u l ul $ v − u $ vl av k = v2 centro; r – raio) _un il = n $ un − 1 $ u l _n ! R i Áreas de superfícies _sen u il = u l $ cos u área lateral de um cone: p r g _cos u il = − u l $ sen u ul (r – raio da base; g – geratriz ) _ tg u il = cos2 u área de uma superfície esférica: 4 p r 2 _eu il = u l $ eu (r – raio ) _au il = u l $ au $ ln a _a ! R + #1 -i ul _ln u il = u Volumes ul Pirâmide: 1 # Área da base # Altura _loga u il = u ln a _a ! R + #1 -i 3 $ cone: 1 # Área da base # Altura 3 Limites notáveis Esfera: 4 pr 3 _r - raio i 3 n lim c1 + 1 m = e n Trigonometria lim sen x = 1 x"0 x sen (a + b) = sena . cosb + senb . cosa lim e − 1 = 1 x cos (a + b) = cosa . cosb - sena . senb x"0 x tg a + tg b tg (a + b) = ln _x + 1i 1 − tg a $ tg b lim =1 x"0 x Complexos lim ln x = 0 x "+3 x n _ρ cis θi = ρ n cis _n θ i x lim e p = + 3 _ p ! R i x "+3x n ρ cis θ = n ρ cis c θ + 2k π m, k ! #0, f, n − 1 - n Prova 635.V1 • Página 4/ 15
  • 5. GRUPO I Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta. Escreva, na folha de respostas: •  o número do item; •  a letra que identifica a única opção escolhida. Não apresente cálculos, nem justificações. 1. Seja W o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos (A Ì W e B Ì W ) independentes, com P(A) ≠ 0 Qual das afirmações seguintes é necessariamente verdadeira? ( ) (A) P A + P B = 1( ) ( ) (B) P A  B = P A + P B ( ) ( ) ( ) (C) P A ≠ P B ( ) ( ) (D) P B | A = P B ( ) 2. O código de um auto-rádio é constituído por uma sequência de quatro algarismos. Por exemplo, 0137 Quantos desses códigos têm dois e só dois algarismos iguais a 7 ? (A) 486 (B) 810 (C) 432 (D) 600 Prova 635.V1 • Página 5/ 15
  • 6. 3. Na Figura 1, está representada, num referencial o. n. xOy , parte do gráfico de uma função g , de domínio A− 3, + 37 y g O x Figura 1 A recta de equação y = 2x - 4 é assimptota do gráfico de g Qual das afirmações seguintes é verdadeira? (A) lim _g (x ) − 2 x − 4i = 0 x "+3 (B) lim x =2 x "+3 g _x i (C) lim _g (x ) − 2 x + 4i = 0 x "+3 (D) lim _g (x ) − 2 x i = 0 x "+3 4. Seja f uma função de domínio 70, + 37 , definida por Zx ]2 − 9 se 0 # x 1 5 ] f ^x h = [ ] 1 − ex ] se x $ 5 x Em qual dos intervalos seguintes o teorema de Bolzano permite garantir a existência de, pelo menos, um zero da função f ? (A) A0, 17               (B) A1, 47               (C) A4, 67               (D) A6, 77 Prova 635.V1 • Página 6/ 15
  • 7.  1  x  5. Qual é o valor de lim  sen2    ?  2  x →0 x   2  (A) 4 (B) 0 (C) 1 4 (D) 1 2 6. Na Figura 2, está representada, num referencial o. n. xOy , parte do gráfico de uma função polinomial f de grau 3, de domínio  y f -2 O 2 5 x Figura 2 Sabe-se que: •  -2, 2 e 5 são zeros de f •  f ′ representa a função derivada de f Qual das afirmações seguintes é verdadeira? (A) f ′(0) × f ′(6) = 0 (B) f ′(−3) × f ′(6) < 0 (C) f ′(−3) × f ′(0) > 0 (D) f ′(0) × f ′(6) < 0 Prova 635.V1 • Página 7/ 15
  • 8. 7. Na Figura 3, estão representadas, no plano complexo, as imagens geométricas de quatro números complexos z 1 , z 2 , z 3 e z 4 Im(z ) z2 z3 O z1 Re(z ) z4 Figura 3 Qual é o número complexo que, com n Î , pode ser igual a i 4n + i 4n + 1 + i 4n + 2 ? (A) z 1 (B) z 2 (C) z 3 (D) z 4 Prova 635.V1 • Página 8/ 15
  • 9. 8. Na Figura 4, está representado, no plano complexo, a sombreado, um sector circular. Sabe-se que: •  o ponto A está situado no 1.º quadrante; •  o ponto B está situado no 4.º quadrante; •  [AB ] é um dos lados de um polígono regular cujos vértices são as imagens geométricas das raízes de p índice 5 do complexo 32 cis   2 •  o arco AB está contido na circunferência de centro na origem do referencial e raio igual a OA Im(z ) A O Re(z ) B Figura 4 Qual dos números seguintes é o valor da área do sector circular AOB ? p (A) 5 4p (B) 5 2p (C) 5 8p (D) 5 Prova 635.V1 • Página 9/ 15
  • 10. GRUPO II Na resposta a cada um dos itens deste grupo, apresente todos os cálculos que tiver de efectuar e todas as justificações necessárias. Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exacto. 1. Em , conjunto dos números complexos, considere n p  z1 = 1 , z 2 = 5 i e z 3 = cis   , n∈  40  Resolva os dois itens seguintes sem recorrer à calculadora. 1.1. O complexo z 1 é raiz do polinómio z 3 − z 2 + 16z − 16 Determine, em , as restantes raízes do polinómio. Apresente as raízes obtidas na forma trigonométrica. 1.2. Determine o menor valor de n natural para o qual a imagem geométrica de z 2 × z 3 , no plano complexo, está no terceiro quadrante e pertence à bissectriz dos quadrantes ímpares. 2. Uma companhia aérea vende bilhetes a baixo custo exclusivamente para viagens cujos destinos sejam Berlim ou Paris. 2.1. Nove jovens decidem ir a Berlim e escolhem essa companhia aérea. Cada jovem paga o bilhete com cartão multibanco, ou não, independentemente da forma de pagamento utilizada pelos outros jovens. Considere que a probabilidade de um jovem utilizar cartão multibanco, para pagar o seu bilhete, é igual a 0,6. Determine a probabilidade de exactamente 6 desses jovens utilizarem cartão multibanco para pagarem o seu bilhete. Apresente o resultado com arredondamento às centésimas. 2.2. A companhia aérea constatou que, quando o destino é Berlim, 5% dos seus passageiros perdem o voo e que, quando o destino é Paris, 92% dos passageiros seguem viagem. Sabe-se que 30% dos bilhetes a baixo custo que a companhia aérea vende têm por destino Berlim. Determine a probabilidade de um passageiro, que comprou um bilhete a baixo custo nessa companhia aérea, perder o voo. Apresente o resultado na forma de dízima. Prova 635.V1 • Página 10/ 15
  • 11. 3. Seja W o espaço de resultados associado a uma certa experiência aleatória, e sejam A e B dois acontecimentos (A ⊂ Ω e B ⊂ Ω) , com P (A) ≠ 0 1 − P (B ) Mostre que P (B | A) ≥ 1 − P (A) 4. Num museu, a temperatura ambiente em graus centígrados, t horas após as zero horas do dia 1 de Abril de 2010, é dada, aproximadamente, por T _ t i = 15 + 0,1 t 2e −0,15t, com t ! 70, 20 A Determine o instante em que a temperatura atingiu o valor máximo recorrendo a métodos exclusivamente analíticos. Apresente o resultado em horas e minutos, apresentando os minutos arredondados às unidades. Se utilizar a calculadora em eventuais cálculos numéricos, sempre que proceder a arredondamentos, use três casas decimais.  3  se x < 1 x − 1 5. Considere a função f , de domínio , definida por f (x ) =  2 + ln x  se x ≥ 1  x 5.1. O gráfico de f admite uma assimptota horizontal. Seja P o ponto de intersecção dessa assimptota com a recta tangente ao gráfico de f no ponto de abcissa e. Determine as coordenadas do ponto P recorrendo a métodos exclusivamente analíticos. 5.2. Existem dois pontos no gráfico de f cujas ordenadas são o cubo das abcissas. Determine as coordenadas desses pontos recorrendo à calculadora gráfica. Na sua resposta, deve: •  equacionar o problema; •  reproduzir o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificado(s), incluindo o referencial; •  assinalar esses pontos; •  indicar as coordenadas desses pontos com arredondamento às centésimas. Prova 635.V1 • Página 11/ 15
  • 12. 6. Na Figura 5, está representada, num referencial o. n. xOy, parte do gráfico da função f , de domínio  , definida por f (x ) = 4 cos(2x ) Sabe-se que: •  os vértices A e D do trapézio [ABCD ] pertencem ao eixo Ox •  o vértice B do trapézio [ABCD ] pertence ao eixo Oy •  o vértice D do trapézio [ABCD ] tem abcissa - p 6 •  os pontos A e C pertencem ao gráfico de f •  a recta CD é paralela ao eixo Oy y f C B D O A x Figura 5 Resolva os dois itens seguintes recorrendo a métodos exclusivamente analíticos. 6.1. Determine o valor exacto da área do trapézio [ABCD] 6.2. Seja f ′  a primeira derivada da função f , e seja f ll a segunda derivada da função f Mostre que f _x i + f l_x i + f ll_x i = − 4 a3 cos _2x i + 2 sen _2x ik , para qualquer número real x Prova 635.V1 • Página 12/ 15
  • 13. 7. Na Figura 6, está representada, num referencial o. n. xOy , parte do gráfico da função g y g O x Figura 6 Sabe-se que: •  g é uma função contínua em  •  g não tem zeros •  a segunda derivada, f ll, de uma certa função f tem domínio  e é definida por f ll_x i = g _x i # _x 2 − 5x + 4i •  f (1) # f (4) 2 0 Apenas uma das opções seguintes pode representar a função f I II y y O 1 4 x O 1 4 x III IV y y O 1 4 x O 1 4 x Elabore uma composição na qual: •  indique a opção que pode representar f •  apresente as razões que o levam a rejeitar as restantes opções Apresente três razões, uma por cada gráfico rejeitado. FIM Prova 635.V1 • Página 13/ 15
  • 14. –––––—––––––––––—–—–—–—— Página em branco –––––––––—–—–––—–————–-–– Prova 635.V1 • Página 14/ 15
  • 15. COTAÇÕES GRUPO I ................................................................(8 × 5 pontos) ........................ 40 pontos 40 pontos GRUPO II 1. 1.1. .................................................................................................. 15 pontos 1.2. .................................................................................................. 15 pontos 2. 2.1. .................................................................................................. 10 pontos 2.2. .................................................................................................. 15 pontos 3. ........................................................................................................... 15 pontos 4. ........................................................................................................... 15 pontos 5. 5.1. .................................................................................................. 20 pontos 5.2. .................................................................................................. 15 pontos 6. 6.1. .................................................................................................. 15 pontos 6.2. .................................................................................................. 10 pontos 7. ........................................................................................................... 15 pontos 160 pontos TOTAL ......................................... 200 pontos Prova 635.V1 • Página 15/ 15