SlideShare a Scribd company logo
1 of 5
Download to read offline
Weighted Logratio Biplots, Correspondence Analysis and Spectral Maps
                                    Michael Greenacre1 and Paul Lewi2
                             1
                                Universitat Pompeu Fabra, Barcelona, Spain; michael@upf.es
                 2
                   Center for Molecular Design, Janssen Pharmaceutica , Belgium; PLEWI@PRDBE.jnj.com



                                                     Abstract

         Starting with logratio biplots for compositional data, which are based on the principle of
         subcompositional coherence, and then adding weights, as in correspondence analysis,
         we rediscover Lewi's spectral map and many connections to analyses of two-way tables
         of non-negative data. Thanks to the weighting, the method also achieves the property of
         distributional equivalence.

         Keywords: biplot; compositional data; contingency tables; correspondence analysis;
         distributional equivalence; logratio transformation; singular value decomposition;
         spectral map.


1 Introduction
Compositional data analysis is concerned with the analysis of positive data with row sums (or column
sums) equal to a constant, usually 1 if the data are proportions or 100 if they are percentages. One of the
reigning principles in Aitchison's (1980, 1983, 1986) approach is that of subcompositional coherence, that
is the invariance in the analysis to considering subcompositions by themselves or as part of the full
composition. With this principle in mind, ratios of values in the data matrix are considered, since these
are invariant to taking subcompositions. Aitchison and Greenacre (2002) defined a biplot based on the
logarithms of ratios, or logratios, which has many interesting properties and links to the modelling of
two-way tables. As we will show, however, this biplot can be perturbed by low-value components. A
remedy is to introduce weights for each component, proportional to their means, in the same way as rows
and columns are weighted proportional to margins in correspondence analysis. This leads to what we call
a "weighted logratio biplot" (Greenacre 2002), a method shown to have all the properties of the logratio
biplot previously defined by Aitchison and Greenacre, but in addition obeying the principle of
distributional equivalence, one of the cornerstones of correspondence analysis. Furthermore, the method
can be applied to any matrix of positive data, and turns out to be identical to Lewi's spectral map, defined
originally by Lewi (1976) in the context of analysing biological activity spectra. Wouters et al. (2003)
compare principal component analysis, correspondence analysis and spectral mapping on the same data.


2 Weighted logratio biplot
Suppose that N = [nij] denotes an I×J table of positive data, with row totals, column totals and grand total
denoted by ni+, n+j and n respectively. Let ri = ni+/n and cj = n+j /n be the row and column sums relative to
the grand total, which we call masses. Let r be the vector of row masses, c the vector of column masses
and Dr and Dc the corresponding diagonal matrices. Denote by L the matrix of logarithms of the
frequencies, lij = log(nij). Aitchison's “relative variation diagram” (Aitchison 1980, 1983) consists of
double-centring the matrix L with respect to averages of the rows and columns, followed by a singular
value decomposition (SVD) to obtain least-squares matrix approximations and maps depicting rows and
columns in a low-dimensional subspace. The same result can be achieved by row-centring L and then
applying a regular principal component analysis with column-centring but no column-normalization.

Applying this algorithm to Baxter's data on the chemical composition of 47 Roman glass cups from
Colchester (Baxter, Cool and Heyworth 1990), we obtain the map in Figure 1, reported by the same
authors. This map shows three diagonal bands of points which are due to the values of the element
manganese (Mn) which takes on only three different values in the data set, all very small: 0.01, 0.02 and
0.03. These values, reported (and presumably measured) to two decimal places on a percentage scale,
engender large differences in the logratios; for example, amongst themselves there are differences as high
as threefold, hence manganese has a much higher variance than any other component in the data set. As a
consequence, this rare component dominates the solution, as can be seen in Figure 1, with samples 3 and
25 having the highest values (0.03%).
In order to downgrade the role of such rare components with high logratio variance, an idea is imported
       from correspondence analysis to use the row and column masses as weights. In this “weighted logratio”
       approach, the row and column masses are introduced first into the double-centring stage, so that centring
       is with respect to weighted averages, and then into the matrix approximation stage, so that fitting is by
       weighted least squares. This simple modification of the algorithm, giving differential importance to the
       rows and columns in the centring and fitting, rectifies the above problem and also bestows on the method
       the principle of distributional equivalence, which is a fundamental property of correspondence analysis.
0.6
                                                        Axis 2: 30.4%                      31
                                                                                   44 21
                                                                                      32
                                                                                   40
0.4

                                                  Si                          20
                                                                        37
                                                                   Al     4
                                                              Na         23
                                                                          9
                                                                                   Mg
0.2
                                                                         19
                                                                  18               Ti
                                                               45 33
                                                                2 Ca
                                                                6
                                                                7
                                                                17
                                                               58
                                                          43
                                                           1
                                                       13 11
  0                                                     28                               Fe
                                                                   K                                                 30
                                                     39 12
                                                    22                                                              27
                                                              P                                                        Axis 1: 39.6%
                                               36                                                              16

                                                                                                          26
-0.2                                                                                                29
                                    42
                                             15                                                           46
                                      35
                                   14                                                              24
                                    10                                                             41                              25


-0.4

                      38                                                              34
                                                                                     47
                                                                                                                              3   Mn

-0.6



                      Sb
-0.8
    -0.8           -0.6             -0.4               -0.2              0              0.2              0.4              0.6       0.8

                  Figure 1: Unweighted logratio biplot of Baxter data, showing rows in principal coordinates (form biplot).


       The computational steps to find the coordinates of the rows and columns in the weighted logratio map are
       as follows:

       Step 1. Double-centre the matrix L with respect to its weighted row and column averages, the order of
       centring being invariant. That is, calculate the weighted averages of the rows of L, using the column
       masses to weight each column element: li·= Σj cj lij (i=1,···,I ), subtracting these averages from all the
       elements in the corresponding row. The resultant matrix, with general element lij – li·, is now centred with
       respect to weighted averages of the columns, using the row masses to weight each element: Σi ri (lij – li·)
       (j=1,···,J ), subtracting these averages from all the elements in the corresponding columns. The result of
       this operation is the double-centred matrix with elements zij =lij – li· – l·j + l··, where the dot subscript
indicates weighted averaging over the corresponding subscript. In matrix notation, this double-centring
can be written as (where I is the identity matrix and 1 the vector of ones of appropriate order):
         Z = (I – 1rT)L(I – c1T)
.
Step 2. Multiply zij by (ri cj)1/2, that is multiply the rows and columns by the square root of their
respective masses (this transformation induces the weighted least-squares approximation):
         S = Dr½ Z Dc½

Step 3. Perform the SVD of this transformed matrix:
         S = UΓVT       where UTU = VTV = I
and the singular values down the diagonal of Γ are in descending order: γ1 ≥ γ2 ≥ ··· >0.

Step 4. Calculate the standard coordinates (Greenacre 1984) by dividing the rows of the matrix of left
singular vectors by ri½, and the rows of the matrix of right singular vectors by cj½ :
         (row standard) X = Dr–½ U                      (column standard) Y = Dc–½ V
The row and column principal coordinates are the standard coordinates scaled by the singular values:
         (row principal) F = XΓ = Dr–½ UΓ               (column principal) G = XΓ = Dc–½ VΓ

Notice how the masses are used to pre-transform the matrix and post-transform the resultant singular
vectors, which is effectively performing a weighted (or generalized) SVD (Greenacre 1984: Appendix).
As in all methods of this type, we can choose to represent either of two so-called asymmetric maps,
representing the respective rows and columns by either (i) F and Y – this map is also called “row-
principal” or “row-metric-preserving (RMP)”, or (ii) X and G – this asymmetric map which is “column-
principal” or “column-metric-preserving (CMP)”. Both asymmetric maps are biplots in the true sense of
the term (Gabriel 1971), where row-column scalar products approximate the elements of the double-
centred matrix Z. When the data are in the usual row by column format of cases (or samples) by
variables, Aitchison and Greenacre (2002) call the RMP biplot a form biplot and the CMP biplot a
covariance biplot. A popular alternative map, especially in correspondence analysis, is the symmetric
map, using principal coordinates F and G for both rows and columns. The symmetric map is, strictly
speaking, not a biplot (see, for example, Greenacre (1993)), but Gabriel (2002) shows that the scalar-
product approximations are not substantially degraded in most cases.


3 Application and properties of weighted logratio biplot
The weighted logratio biplot of Baxter’s glass cup data is given in Figure 2. Notice that the effect of the
rare element Mn has been downplayed in the map and we obtain a visualization of the data that is
distributed more evenly over all the elements. The first axis shows the contrast between the most
frequent element, Silicon (Si) and all the others. Notice that because of the weighting, the origin of the
biplot is at the centroid of the elements, where the elements are weighted by their respective average
percentages. The second axis shows a contrast between antimony (Sb), along with phosphorous and
potassium (P and K) to a lesser extent, and the other elements that are positive on the vertical axis. If one
is not interested in the Silicon/non-Silicon contrast, which is accentuated by our weighting of the
elements proportional to their averages, then the projection onto axes 2 and 3 would be of primary interest
(in the workshop presentation of this example, a three-dimensional view of the points will be shown, with
rotation of the configuration).

All the properties of the unweighted logratio map listed by Aitchison and Greenacre (2002) carry over to
the present weighted version: the multidimensional scaling properties in terms of representing ratios of
elements by lines connecting the respective pairs of points, and the diagnosis of equilibrium models for
subcompositions of elements that lie on an approximate straight line. In addition, thanks to the weighting,
the map now obeys the principle of distributional equivalence, which is one of the cornerstones of
correspondence analysis. Suppose two columns j and j' (e.g., elements or compounds) have the same
relative values (in correspondence analysis we say that they have the same profile), that is the ratios nij/nij'
are identical for all i. Then they can be amalgamated into one column with values equal to the sum of
respective elements without any change to the analysis (this property is proved by Greenacre (2002)). In
compositional data analysis this property would be highly desirable, assuring invariance with respect to
  combining components that are essentially identical across samples apart from their overall levels.

 3
                                                   Axis 2: 12.5%                Mg
 2                       21               44
                  31                                                             Ti
                   32                                  20
 1                          40                                  Al      4                       Fe                Mn
                                                                     37
                                    17 23                               25 30
                          18           27          Na                      16         29
                             45 19 Si 33 9 2 43                      26                         24
 0                      7
                                       5
                                                                           Ca
             11        8 6        28            46                    13         3
                          12               41
                                            39                                  34
                                                                                                            Axis 1: 67.2%
             1                22
 -1                                                                              35        47
                    15                   14 42 36
                  10
 -2                                       38
                                                                         K
 -3
                                                                             P
 -4


 -5


 -6


 -7


 -8


 -9


-10


-11


-12


-13


-14


-15


-16
                                                                                 Sb
      -4    -3         -2         -1           0            1        2           3          4           5          6        7


             Figure 2: Weighted logratio biplot of Baxter data, showing rows in principal coordinates (form biplot).


  4 Beyond compositional data: the spectral map
  Everything described above applies equally to any table of positive numbers. In fact, the methodology
  defined in Section 2 as a weighted version of the logratio biplot of Aitchison and Greenacre (2002) is
  identical to the so-called spectral map developed by Lewi (1976) in applications to biological activity
spectra, and more recently by Wouters et al (2003) to gene expression data. The spectral map can also
be applied to contingency tables and is thus a direct competitor to correspondence analysis as a
visualization method for such data – see Lewi (1998). It has the disadvantage of being applicable to
positive data only, which rules it out for many social science applications and most ecological
applications where the data matrix contains zero frequencies. As in the analysis of contingency tables by
logarithmic models, zeros could be replaced by some acceptable positive value, for example half the
detection limit (i.e., ½ in the case of count data). Apart from this drawback, the method has very similar
properties to correspondence analysis and may even be judged superior from a theoretical viewpoint since
correspondence analysis does not possess subcompositional coherence.

When the data have low variability, correspondence analysis and the weighted logratio biplot are almost
identical. This fact stems from the approximation:
                      p ij              p      p
                 log          = log 1 + ij − 1 ≈ ij − 1        when p ij ≈ ri c j
                     rc              rc        rc
                      i j               i j    i j
where pij = nij / n is the value of the (i,j)-th cell relative to the grand total, and where the ratios pij /(ri cj)
are called contingency ratios in the context of contingency tables, i.e. the ratios of “observed” to
“expected” frequencies. The weighted logratio biplot / spectral map involves a double-centring and
weighted SVD of the left-hand expression, while correspondence analysis involves the double-centring
and weighted SVD (with the same weights) of the right-hand expression. When pij is close to ri cj, i.e. pij
/(ri cj) – 1 is small, the two approaches are practically the same, but if there is high variance in the data, so
that “observed” and “expected” values are widely different, the approaches give different results. This
observation holds equally well for compositional data.

Acknowledgements
The authors acknowledge the support of the Fundación BBVA and Janssen Pharmaceutica, respectively.

References
Aitchison, J. (1980). Relative variation diagrams for describing patterns of variability in compositional
   data. Mathematical Geology 22, 487–512.
Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70, 57–65.
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London: Chapman & Hall.
Aitchison, J. & Greenacre, M.J. (2002). Biplots of compositional data. Applied Statistics 51, 375–392.
Baxter, M.J., Cool, H.E.M. and Heyworth, M.P. (1990). Principal component and correspondence
   analysis of compositional data: some similarities. Journal of Applied Statistics 17, 229–235.
Gabriel, K.R. (1971). The biplot-graphical display with applications to principal component analysis.
   Biometrika 58, 453 – 467.
Gabriel, K. R. (2002). Goodness of fit of biplots and correspondence analysis. Biometrika 89, 423–436.
Greenacre, M.J. (1984). Theory and Applications of Correspondence Analysis. London: Academic Press.
Greenacre, M.J. (1993). Biplots in correspondence analysis. Journal of Appied Statistics 20, 251 – 269.
Greenacre, M.J. (2002). Ratio maps and correspondence analysis. Research report 598, Departament
   d’Economia i Empresa, Universitat Pompeu Fabra, submitted for publication.
Lewi, P.J. (1976). Spectral mapping, a technique for classifying biological activity profiles of chemical
   compounds. Arzneim. Forsch. (Drug Res.) 26, 1295–1300.
Lewi, P.J. (1998), Analysis of contingency tables. In B.G.M. Vandeginste, D.L. Massart, L.M.C.
  Buydens, S. de Jong, P.J. Lewi, J. Smeyers-Verbeke (Eds.), Handbook of Chemometrics and
  Qualimetrics: Part B, Chapter 32, pp. 161–206. Amsterdam: Elsevier.
Wouters, L., Göhlmann, H.W., Bijnens, L., Kass, S.U., Molenberghs, G. and Lewi, P.J. (2003). Graphical
  exploration of gene expression data: a comparative study of three multivariate methods. Biometrics
  59, 1131–139.

More Related Content

Similar to Weighted Logratio Biplots for Compositional Data Analysis

ScienceShare.co.uk Shared Resource
ScienceShare.co.uk Shared ResourceScienceShare.co.uk Shared Resource
ScienceShare.co.uk Shared ResourceScienceShare.co.uk
 
Way leaves and right of way
Way leaves and right of wayWay leaves and right of way
Way leaves and right of wayT Ch Hanuman Rao
 
Infrastructure in Africa - February 2009.
Infrastructure in Africa - February 2009.Infrastructure in Africa - February 2009.
Infrastructure in Africa - February 2009.Saide OER Africa
 
Infrastructure in Africa - February 2009.
Infrastructure in Africa - February 2009.Infrastructure in Africa - February 2009.
Infrastructure in Africa - February 2009.PiLNAfrica
 
Trigonometry%20to%20 find%20angle%20measures
Trigonometry%20to%20 find%20angle%20measuresTrigonometry%20to%20 find%20angle%20measures
Trigonometry%20to%20 find%20angle%20measuresNene Thomas
 
Simon McIntosh-Smith, University of Bristol, 'Accelerating molecular docking ...
Simon McIntosh-Smith, University of Bristol, 'Accelerating molecular docking ...Simon McIntosh-Smith, University of Bristol, 'Accelerating molecular docking ...
Simon McIntosh-Smith, University of Bristol, 'Accelerating molecular docking ...Cresset
 
Cook County Redistricting Committee: Map of Proposed District Changes
Cook County Redistricting Committee: Map of Proposed District ChangesCook County Redistricting Committee: Map of Proposed District Changes
Cook County Redistricting Committee: Map of Proposed District Changescookcountyblog
 
Iconic Clubhouse
Iconic ClubhouseIconic Clubhouse
Iconic ClubhouseTaralb14
 

Similar to Weighted Logratio Biplots for Compositional Data Analysis (13)

Giant blob eso
Giant blob esoGiant blob eso
Giant blob eso
 
ScienceShare.co.uk Shared Resource
ScienceShare.co.uk Shared ResourceScienceShare.co.uk Shared Resource
ScienceShare.co.uk Shared Resource
 
Way leaves and right of way
Way leaves and right of wayWay leaves and right of way
Way leaves and right of way
 
Akvo's Admin Features
Akvo's Admin FeaturesAkvo's Admin Features
Akvo's Admin Features
 
Infrastructure in Africa - February 2009.
Infrastructure in Africa - February 2009.Infrastructure in Africa - February 2009.
Infrastructure in Africa - February 2009.
 
Infrastructure in Africa - February 2009.
Infrastructure in Africa - February 2009.Infrastructure in Africa - February 2009.
Infrastructure in Africa - February 2009.
 
Sei
SeiSei
Sei
 
Trigonometry%20to%20 find%20angle%20measures
Trigonometry%20to%20 find%20angle%20measuresTrigonometry%20to%20 find%20angle%20measures
Trigonometry%20to%20 find%20angle%20measures
 
Projeto
ProjetoProjeto
Projeto
 
Simon McIntosh-Smith, University of Bristol, 'Accelerating molecular docking ...
Simon McIntosh-Smith, University of Bristol, 'Accelerating molecular docking ...Simon McIntosh-Smith, University of Bristol, 'Accelerating molecular docking ...
Simon McIntosh-Smith, University of Bristol, 'Accelerating molecular docking ...
 
Cook County Redistricting Committee: Map of Proposed District Changes
Cook County Redistricting Committee: Map of Proposed District ChangesCook County Redistricting Committee: Map of Proposed District Changes
Cook County Redistricting Committee: Map of Proposed District Changes
 
Iconic Clubhouse
Iconic ClubhouseIconic Clubhouse
Iconic Clubhouse
 
New Ad Models
New Ad ModelsNew Ad Models
New Ad Models
 

More from dessybudiyanti

Kapita Selekta-a space time model (Salisa & Anna)
Kapita Selekta-a space time model (Salisa & Anna)Kapita Selekta-a space time model (Salisa & Anna)
Kapita Selekta-a space time model (Salisa & Anna)dessybudiyanti
 
Presentasi "Fast and Bootstrap Robust LTS" (Mega&Ika)
Presentasi "Fast and Bootstrap Robust LTS" (Mega&Ika)Presentasi "Fast and Bootstrap Robust LTS" (Mega&Ika)
Presentasi "Fast and Bootstrap Robust LTS" (Mega&Ika)dessybudiyanti
 
Fast and Bootstrap Robust for LTS
Fast and Bootstrap Robust for LTSFast and Bootstrap Robust for LTS
Fast and Bootstrap Robust for LTSdessybudiyanti
 
Pemilihan Model Terbaik
Pemilihan Model TerbaikPemilihan Model Terbaik
Pemilihan Model Terbaikdessybudiyanti
 
ANALISIS PENYEIMBANGAN LINTASAN SERTA PENGUJIAN PERBEDAAN SHIFT KERJA TERHADA...
ANALISIS PENYEIMBANGAN LINTASAN SERTA PENGUJIAN PERBEDAAN SHIFT KERJA TERHADA...ANALISIS PENYEIMBANGAN LINTASAN SERTA PENGUJIAN PERBEDAAN SHIFT KERJA TERHADA...
ANALISIS PENYEIMBANGAN LINTASAN SERTA PENGUJIAN PERBEDAAN SHIFT KERJA TERHADA...dessybudiyanti
 
APLIKASI SIX SIGMA PADA PENGUKURAN KINERJA DI UD. SUMBER KULIT MAGETAN
APLIKASI SIX SIGMA PADA PENGUKURAN KINERJA DI UD. SUMBER KULIT MAGETAN APLIKASI SIX SIGMA PADA PENGUKURAN KINERJA DI UD. SUMBER KULIT MAGETAN
APLIKASI SIX SIGMA PADA PENGUKURAN KINERJA DI UD. SUMBER KULIT MAGETAN dessybudiyanti
 
Presentasi Tentang Regresi Linear
Presentasi Tentang Regresi LinearPresentasi Tentang Regresi Linear
Presentasi Tentang Regresi Lineardessybudiyanti
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensidessybudiyanti
 
Optimasi Produksi Dengan Metode Respon Surface
Optimasi Produksi Dengan Metode Respon SurfaceOptimasi Produksi Dengan Metode Respon Surface
Optimasi Produksi Dengan Metode Respon Surfacedessybudiyanti
 
Simple Linier Regression
Simple Linier RegressionSimple Linier Regression
Simple Linier Regressiondessybudiyanti
 
Presentasi Tentang AHP
Presentasi Tentang AHPPresentasi Tentang AHP
Presentasi Tentang AHPdessybudiyanti
 
Korespondensi Analisis
Korespondensi AnalisisKorespondensi Analisis
Korespondensi Analisisdessybudiyanti
 
Corespondence Analysis
Corespondence AnalysisCorespondence Analysis
Corespondence Analysisdessybudiyanti
 
WeightedWEIGHTED METRIC MULTIDIMENSIONAL SCALING
WeightedWEIGHTED METRIC MULTIDIMENSIONAL SCALINGWeightedWEIGHTED METRIC MULTIDIMENSIONAL SCALING
WeightedWEIGHTED METRIC MULTIDIMENSIONAL SCALINGdessybudiyanti
 

More from dessybudiyanti (20)

a space time model
a space time modela space time model
a space time model
 
Kapita Selekta-a space time model (Salisa & Anna)
Kapita Selekta-a space time model (Salisa & Anna)Kapita Selekta-a space time model (Salisa & Anna)
Kapita Selekta-a space time model (Salisa & Anna)
 
Presentasi "Fast and Bootstrap Robust LTS" (Mega&Ika)
Presentasi "Fast and Bootstrap Robust LTS" (Mega&Ika)Presentasi "Fast and Bootstrap Robust LTS" (Mega&Ika)
Presentasi "Fast and Bootstrap Robust LTS" (Mega&Ika)
 
Fast and Bootstrap Robust for LTS
Fast and Bootstrap Robust for LTSFast and Bootstrap Robust for LTS
Fast and Bootstrap Robust for LTS
 
Pemilihan Model Terbaik
Pemilihan Model TerbaikPemilihan Model Terbaik
Pemilihan Model Terbaik
 
ANALISIS PENYEIMBANGAN LINTASAN SERTA PENGUJIAN PERBEDAAN SHIFT KERJA TERHADA...
ANALISIS PENYEIMBANGAN LINTASAN SERTA PENGUJIAN PERBEDAAN SHIFT KERJA TERHADA...ANALISIS PENYEIMBANGAN LINTASAN SERTA PENGUJIAN PERBEDAAN SHIFT KERJA TERHADA...
ANALISIS PENYEIMBANGAN LINTASAN SERTA PENGUJIAN PERBEDAAN SHIFT KERJA TERHADA...
 
Teknik Sampling
Teknik SamplingTeknik Sampling
Teknik Sampling
 
APLIKASI SIX SIGMA PADA PENGUKURAN KINERJA DI UD. SUMBER KULIT MAGETAN
APLIKASI SIX SIGMA PADA PENGUKURAN KINERJA DI UD. SUMBER KULIT MAGETAN APLIKASI SIX SIGMA PADA PENGUKURAN KINERJA DI UD. SUMBER KULIT MAGETAN
APLIKASI SIX SIGMA PADA PENGUKURAN KINERJA DI UD. SUMBER KULIT MAGETAN
 
Presentasi Tentang Regresi Linear
Presentasi Tentang Regresi LinearPresentasi Tentang Regresi Linear
Presentasi Tentang Regresi Linear
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensi
 
Optimasi Produksi Dengan Metode Respon Surface
Optimasi Produksi Dengan Metode Respon SurfaceOptimasi Produksi Dengan Metode Respon Surface
Optimasi Produksi Dengan Metode Respon Surface
 
Simple Linier Regression
Simple Linier RegressionSimple Linier Regression
Simple Linier Regression
 
Presentasi Tentang AHP
Presentasi Tentang AHPPresentasi Tentang AHP
Presentasi Tentang AHP
 
Jurnal Time Series
Jurnal Time SeriesJurnal Time Series
Jurnal Time Series
 
Uji Klinik
Uji KlinikUji Klinik
Uji Klinik
 
Multivariate
MultivariateMultivariate
Multivariate
 
Korespondensi Analisis
Korespondensi AnalisisKorespondensi Analisis
Korespondensi Analisis
 
Corespondence Analysis
Corespondence AnalysisCorespondence Analysis
Corespondence Analysis
 
WeightedWEIGHTED METRIC MULTIDIMENSIONAL SCALING
WeightedWEIGHTED METRIC MULTIDIMENSIONAL SCALINGWeightedWEIGHTED METRIC MULTIDIMENSIONAL SCALING
WeightedWEIGHTED METRIC MULTIDIMENSIONAL SCALING
 
Pemasaran
PemasaranPemasaran
Pemasaran
 

Recently uploaded

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 

Recently uploaded (20)

LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 

Weighted Logratio Biplots for Compositional Data Analysis

  • 1. Weighted Logratio Biplots, Correspondence Analysis and Spectral Maps Michael Greenacre1 and Paul Lewi2 1 Universitat Pompeu Fabra, Barcelona, Spain; michael@upf.es 2 Center for Molecular Design, Janssen Pharmaceutica , Belgium; PLEWI@PRDBE.jnj.com Abstract Starting with logratio biplots for compositional data, which are based on the principle of subcompositional coherence, and then adding weights, as in correspondence analysis, we rediscover Lewi's spectral map and many connections to analyses of two-way tables of non-negative data. Thanks to the weighting, the method also achieves the property of distributional equivalence. Keywords: biplot; compositional data; contingency tables; correspondence analysis; distributional equivalence; logratio transformation; singular value decomposition; spectral map. 1 Introduction Compositional data analysis is concerned with the analysis of positive data with row sums (or column sums) equal to a constant, usually 1 if the data are proportions or 100 if they are percentages. One of the reigning principles in Aitchison's (1980, 1983, 1986) approach is that of subcompositional coherence, that is the invariance in the analysis to considering subcompositions by themselves or as part of the full composition. With this principle in mind, ratios of values in the data matrix are considered, since these are invariant to taking subcompositions. Aitchison and Greenacre (2002) defined a biplot based on the logarithms of ratios, or logratios, which has many interesting properties and links to the modelling of two-way tables. As we will show, however, this biplot can be perturbed by low-value components. A remedy is to introduce weights for each component, proportional to their means, in the same way as rows and columns are weighted proportional to margins in correspondence analysis. This leads to what we call a "weighted logratio biplot" (Greenacre 2002), a method shown to have all the properties of the logratio biplot previously defined by Aitchison and Greenacre, but in addition obeying the principle of distributional equivalence, one of the cornerstones of correspondence analysis. Furthermore, the method can be applied to any matrix of positive data, and turns out to be identical to Lewi's spectral map, defined originally by Lewi (1976) in the context of analysing biological activity spectra. Wouters et al. (2003) compare principal component analysis, correspondence analysis and spectral mapping on the same data. 2 Weighted logratio biplot Suppose that N = [nij] denotes an I×J table of positive data, with row totals, column totals and grand total denoted by ni+, n+j and n respectively. Let ri = ni+/n and cj = n+j /n be the row and column sums relative to the grand total, which we call masses. Let r be the vector of row masses, c the vector of column masses and Dr and Dc the corresponding diagonal matrices. Denote by L the matrix of logarithms of the frequencies, lij = log(nij). Aitchison's “relative variation diagram” (Aitchison 1980, 1983) consists of double-centring the matrix L with respect to averages of the rows and columns, followed by a singular value decomposition (SVD) to obtain least-squares matrix approximations and maps depicting rows and columns in a low-dimensional subspace. The same result can be achieved by row-centring L and then applying a regular principal component analysis with column-centring but no column-normalization. Applying this algorithm to Baxter's data on the chemical composition of 47 Roman glass cups from Colchester (Baxter, Cool and Heyworth 1990), we obtain the map in Figure 1, reported by the same authors. This map shows three diagonal bands of points which are due to the values of the element manganese (Mn) which takes on only three different values in the data set, all very small: 0.01, 0.02 and 0.03. These values, reported (and presumably measured) to two decimal places on a percentage scale, engender large differences in the logratios; for example, amongst themselves there are differences as high as threefold, hence manganese has a much higher variance than any other component in the data set. As a consequence, this rare component dominates the solution, as can be seen in Figure 1, with samples 3 and 25 having the highest values (0.03%).
  • 2. In order to downgrade the role of such rare components with high logratio variance, an idea is imported from correspondence analysis to use the row and column masses as weights. In this “weighted logratio” approach, the row and column masses are introduced first into the double-centring stage, so that centring is with respect to weighted averages, and then into the matrix approximation stage, so that fitting is by weighted least squares. This simple modification of the algorithm, giving differential importance to the rows and columns in the centring and fitting, rectifies the above problem and also bestows on the method the principle of distributional equivalence, which is a fundamental property of correspondence analysis. 0.6 Axis 2: 30.4% 31 44 21 32 40 0.4 Si 20 37 Al 4 Na 23 9 Mg 0.2 19 18 Ti 45 33 2 Ca 6 7 17 58 43 1 13 11 0 28 Fe K 30 39 12 22 27 P Axis 1: 39.6% 36 16 26 -0.2 29 42 15 46 35 14 24 10 41 25 -0.4 38 34 47 3 Mn -0.6 Sb -0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Figure 1: Unweighted logratio biplot of Baxter data, showing rows in principal coordinates (form biplot). The computational steps to find the coordinates of the rows and columns in the weighted logratio map are as follows: Step 1. Double-centre the matrix L with respect to its weighted row and column averages, the order of centring being invariant. That is, calculate the weighted averages of the rows of L, using the column masses to weight each column element: li·= Σj cj lij (i=1,···,I ), subtracting these averages from all the elements in the corresponding row. The resultant matrix, with general element lij – li·, is now centred with respect to weighted averages of the columns, using the row masses to weight each element: Σi ri (lij – li·) (j=1,···,J ), subtracting these averages from all the elements in the corresponding columns. The result of this operation is the double-centred matrix with elements zij =lij – li· – l·j + l··, where the dot subscript
  • 3. indicates weighted averaging over the corresponding subscript. In matrix notation, this double-centring can be written as (where I is the identity matrix and 1 the vector of ones of appropriate order): Z = (I – 1rT)L(I – c1T) . Step 2. Multiply zij by (ri cj)1/2, that is multiply the rows and columns by the square root of their respective masses (this transformation induces the weighted least-squares approximation): S = Dr½ Z Dc½ Step 3. Perform the SVD of this transformed matrix: S = UΓVT where UTU = VTV = I and the singular values down the diagonal of Γ are in descending order: γ1 ≥ γ2 ≥ ··· >0. Step 4. Calculate the standard coordinates (Greenacre 1984) by dividing the rows of the matrix of left singular vectors by ri½, and the rows of the matrix of right singular vectors by cj½ : (row standard) X = Dr–½ U (column standard) Y = Dc–½ V The row and column principal coordinates are the standard coordinates scaled by the singular values: (row principal) F = XΓ = Dr–½ UΓ (column principal) G = XΓ = Dc–½ VΓ Notice how the masses are used to pre-transform the matrix and post-transform the resultant singular vectors, which is effectively performing a weighted (or generalized) SVD (Greenacre 1984: Appendix). As in all methods of this type, we can choose to represent either of two so-called asymmetric maps, representing the respective rows and columns by either (i) F and Y – this map is also called “row- principal” or “row-metric-preserving (RMP)”, or (ii) X and G – this asymmetric map which is “column- principal” or “column-metric-preserving (CMP)”. Both asymmetric maps are biplots in the true sense of the term (Gabriel 1971), where row-column scalar products approximate the elements of the double- centred matrix Z. When the data are in the usual row by column format of cases (or samples) by variables, Aitchison and Greenacre (2002) call the RMP biplot a form biplot and the CMP biplot a covariance biplot. A popular alternative map, especially in correspondence analysis, is the symmetric map, using principal coordinates F and G for both rows and columns. The symmetric map is, strictly speaking, not a biplot (see, for example, Greenacre (1993)), but Gabriel (2002) shows that the scalar- product approximations are not substantially degraded in most cases. 3 Application and properties of weighted logratio biplot The weighted logratio biplot of Baxter’s glass cup data is given in Figure 2. Notice that the effect of the rare element Mn has been downplayed in the map and we obtain a visualization of the data that is distributed more evenly over all the elements. The first axis shows the contrast between the most frequent element, Silicon (Si) and all the others. Notice that because of the weighting, the origin of the biplot is at the centroid of the elements, where the elements are weighted by their respective average percentages. The second axis shows a contrast between antimony (Sb), along with phosphorous and potassium (P and K) to a lesser extent, and the other elements that are positive on the vertical axis. If one is not interested in the Silicon/non-Silicon contrast, which is accentuated by our weighting of the elements proportional to their averages, then the projection onto axes 2 and 3 would be of primary interest (in the workshop presentation of this example, a three-dimensional view of the points will be shown, with rotation of the configuration). All the properties of the unweighted logratio map listed by Aitchison and Greenacre (2002) carry over to the present weighted version: the multidimensional scaling properties in terms of representing ratios of elements by lines connecting the respective pairs of points, and the diagnosis of equilibrium models for subcompositions of elements that lie on an approximate straight line. In addition, thanks to the weighting, the map now obeys the principle of distributional equivalence, which is one of the cornerstones of correspondence analysis. Suppose two columns j and j' (e.g., elements or compounds) have the same relative values (in correspondence analysis we say that they have the same profile), that is the ratios nij/nij' are identical for all i. Then they can be amalgamated into one column with values equal to the sum of respective elements without any change to the analysis (this property is proved by Greenacre (2002)). In
  • 4. compositional data analysis this property would be highly desirable, assuring invariance with respect to combining components that are essentially identical across samples apart from their overall levels. 3 Axis 2: 12.5% Mg 2 21 44 31 Ti 32 20 1 40 Al 4 Fe Mn 37 17 23 25 30 18 27 Na 16 29 45 19 Si 33 9 2 43 26 24 0 7 5 Ca 11 8 6 28 46 13 3 12 41 39 34 Axis 1: 67.2% 1 22 -1 35 47 15 14 42 36 10 -2 38 K -3 P -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 Sb -4 -3 -2 -1 0 1 2 3 4 5 6 7 Figure 2: Weighted logratio biplot of Baxter data, showing rows in principal coordinates (form biplot). 4 Beyond compositional data: the spectral map Everything described above applies equally to any table of positive numbers. In fact, the methodology defined in Section 2 as a weighted version of the logratio biplot of Aitchison and Greenacre (2002) is identical to the so-called spectral map developed by Lewi (1976) in applications to biological activity
  • 5. spectra, and more recently by Wouters et al (2003) to gene expression data. The spectral map can also be applied to contingency tables and is thus a direct competitor to correspondence analysis as a visualization method for such data – see Lewi (1998). It has the disadvantage of being applicable to positive data only, which rules it out for many social science applications and most ecological applications where the data matrix contains zero frequencies. As in the analysis of contingency tables by logarithmic models, zeros could be replaced by some acceptable positive value, for example half the detection limit (i.e., ½ in the case of count data). Apart from this drawback, the method has very similar properties to correspondence analysis and may even be judged superior from a theoretical viewpoint since correspondence analysis does not possess subcompositional coherence. When the data have low variability, correspondence analysis and the weighted logratio biplot are almost identical. This fact stems from the approximation:  p ij   p  p log   = log 1 + ij − 1 ≈ ij − 1 when p ij ≈ ri c j rc   rc  rc  i j   i j  i j where pij = nij / n is the value of the (i,j)-th cell relative to the grand total, and where the ratios pij /(ri cj) are called contingency ratios in the context of contingency tables, i.e. the ratios of “observed” to “expected” frequencies. The weighted logratio biplot / spectral map involves a double-centring and weighted SVD of the left-hand expression, while correspondence analysis involves the double-centring and weighted SVD (with the same weights) of the right-hand expression. When pij is close to ri cj, i.e. pij /(ri cj) – 1 is small, the two approaches are practically the same, but if there is high variance in the data, so that “observed” and “expected” values are widely different, the approaches give different results. This observation holds equally well for compositional data. Acknowledgements The authors acknowledge the support of the Fundación BBVA and Janssen Pharmaceutica, respectively. References Aitchison, J. (1980). Relative variation diagrams for describing patterns of variability in compositional data. Mathematical Geology 22, 487–512. Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70, 57–65. Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London: Chapman & Hall. Aitchison, J. & Greenacre, M.J. (2002). Biplots of compositional data. Applied Statistics 51, 375–392. Baxter, M.J., Cool, H.E.M. and Heyworth, M.P. (1990). Principal component and correspondence analysis of compositional data: some similarities. Journal of Applied Statistics 17, 229–235. Gabriel, K.R. (1971). The biplot-graphical display with applications to principal component analysis. Biometrika 58, 453 – 467. Gabriel, K. R. (2002). Goodness of fit of biplots and correspondence analysis. Biometrika 89, 423–436. Greenacre, M.J. (1984). Theory and Applications of Correspondence Analysis. London: Academic Press. Greenacre, M.J. (1993). Biplots in correspondence analysis. Journal of Appied Statistics 20, 251 – 269. Greenacre, M.J. (2002). Ratio maps and correspondence analysis. Research report 598, Departament d’Economia i Empresa, Universitat Pompeu Fabra, submitted for publication. Lewi, P.J. (1976). Spectral mapping, a technique for classifying biological activity profiles of chemical compounds. Arzneim. Forsch. (Drug Res.) 26, 1295–1300. Lewi, P.J. (1998), Analysis of contingency tables. In B.G.M. Vandeginste, D.L. Massart, L.M.C. Buydens, S. de Jong, P.J. Lewi, J. Smeyers-Verbeke (Eds.), Handbook of Chemometrics and Qualimetrics: Part B, Chapter 32, pp. 161–206. Amsterdam: Elsevier. Wouters, L., Göhlmann, H.W., Bijnens, L., Kass, S.U., Molenberghs, G. and Lewi, P.J. (2003). Graphical exploration of gene expression data: a comparative study of three multivariate methods. Biometrics 59, 1131–139.