SlideShare une entreprise Scribd logo
1  sur  26
Düsseldorf, Germany
WWW.MPIE.DE
d.raabe@mpie.de
MS&T‘10 Conference 18. Oct. 2010 Houston, USA
D. Raabe, D. Ponge, O. Dmitrieva, J. Millán, P. Choi, G. Inden
Ultrahigh strength maraging-TRIP steels
Overview
1www.mpie.de
Dierk Raabe (d.raabe@mpie.de)
2
Motivation: Combine TRIP and maraging effects
Mn is among the most important alloying elements for the design
of advanced high strength steels
It affects the stabilization of the austenite, the stacking fault
energy, and the transformation kinetics
Mn has very low diffusion rates in the austenite and a high
segregation or respectively partitioning tendency at interfaces
This context makes Mn a very interesting candidate for an
atomic-scale study of compositional changes across
austenite/martensite interfaces.
Dierk Raabe (d.raabe@mpie.de)
3
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
0
10
20
30
40
50
60
70
80
totalelongationtofracture[%]
ultimate tensile strength [MPa]
TRIP and
complex phase
martensitic
Maraging-TRIP
and advanced QP
dual phase
ferritic
Motivation: Combine TRIP and maraging effects
austenitic
stainless
advanced
TWIP and
TRIP
Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141
Dierk Raabe (d.raabe@mpie.de)
4
Motivation: Combine TRIP and maraging effects
The material studied here is a precipitation-hardened alloy that is referred
to as maraging TRIP steel
It combines the TRIP mechanism with the maraging effect (maraging:
martensite aging)
The TRIP effect exploits the deformation-stimulated transformation of
metastable austenite into martensite and the resulting plasticity required to
accommodate the transformation misfit
The maraging effect uses the hardening of the heavily strained martensite
through the formation of nano-sized intermetallic precipitates during aging
heat treatment
The maraging TRIP steels used in this work reveal the surprising property
that both strength and total elongation increase upon aging reaching an
ultimate tensile strength of nearly 1.3 GPa at an elongation above 20%
Dierk Raabe (d.raabe@mpie.de)
Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141
5
Fe-Mn based maraging TRIP steel development
 TRIP: deformation-stimulated transformation of instable austenite
into martensite and accommodation plasticity (e.g. Mn, Ni, low C)
 Maraging effect: hardening of heavily strained martensite via nano-
sized (intermetallic) precipitates (Ni, Al, Ti, Mo)
(see also conventional Maraging steels)
* TRIP: transformation-induced plasticity
* Maraging: martensite aging
Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547
Quenched austenite: ductile low carbon martensite
Retained austenite (TRIP)
Controlled precipitation hardening
What is maraging-TRIP ?
Dierk Raabe (d.raabe@mpie.de)
6
Low carbon: ductile martensite
Steel C Ni Co Mo Ti Al Mn Fe
Maraging 0.01 18 12 4 1.6 0.15 0.05 Balance
09MnPH 0.01 2 - 1 1.0 0.15 9 Balance
12MnPH 0.01 2 - 1 1.0 0.15 12 Balance
15MnPH 0.01 2 - 1 1.0 0.15 15 Balance
Precipitation Hardenable
Mn (+Ni): austenite (TRIP)
Compositions in mass%
PH
PH
PH
D. Raabe et al. Scripta Materialia 60 (2009) 1141
Martensite aging after quenching at 450°C
Dierk Raabe (d.raabe@mpie.de)
Overview
www.mpie.de 7
Dierk Raabe (d.raabe@mpie.de)
0 5 10 15 20 25
0
300
600
900
1200
1500
1800
2100
2400
EngineeringStress(MPa)
Engineering Strain (%)
0 5 10 15 20 25
0
300
600
900
1200
1500
1800
2100
2400
EngineeringStress(MPa)
Engineering Strain (%)
8
0 5 10 15 20 25
0
300
600
900
1200
1500
1800
2100
2400
EngineeringStress(MPa)
Engineering Strain (%)
Maraging
aged
(450°C/48h)
quenched
maraging-TRIP, 12MnPH
aged
(450°C/48h)
quenched
Tensile tests
(X3NiCoMoTi18-12-4)
higher strength
AND
higher elongation
Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141
Dierk Raabe (d.raabe@mpie.de)
9
Tensile tests, maraging TRIP
FCC
BCC
e=0% e=15%
Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141
Dierk Raabe (d.raabe@mpie.de)
10
Tensile tests, maraging TRIP
Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141
Overview
www.mpie.de 11
Dierk Raabe (d.raabe@mpie.de)
12
Microstructure hierarchy
Dmitrieva et al., Acta Mater, in press 2010
Dierk Raabe (d.raabe@mpie.de)
Overview
Calcagnotto et al. Mater. Sc. Engin. A 527 (2010) 2738 13
Dierk Raabe (d.raabe@mpie.de)
14
R. Kainuma, M. Ise, K. Ishikawa, I. Ohnuma, and K. Ishida, Phase Equilibria and Stability of the B2
Phase in the Ni-Mn-Al and Co-Mn-Al Systems, J. Alloys Compd., 1998, 269, p 173-180
Ni-Mn-Al isothermal section at 850 °C
Ni Mn
Al
Dierk Raabe (d.raabe@mpie.de)
Mn atoms
Ni atoms
Mn iso-concentration surfaces at 18 at.%
APT results: Atomic map (12MnPH aged 450°C/48h)
70 million ions
Laser mode
(0.4nJ, 54K)
Dmitrieva et al., Acta Mater, in press 2010
Martensite decorated by precipitations
Austenite
?
?
Dierk Raabe (d.raabe@mpie.de)
15
M A
Mn layer 1
Mn layer 2
Mn layer2
Mn layer 1
Mn iso-concentration surfaces at 18 at.%
Thermo-Calc 
Phase equilibrium Mn-contents:
27 at. % Mn in austenite (A)
3 at. % Mn in ferrite (martensite) (M)
1D profile: step size 0.5 nm
M A M
depletion zone
nominal 12 at.% Mn
APT results: chemical profiles
Dmitrieva et al., Acta Mater, in press 2010 16
Dierk Raabe (d.raabe@mpie.de)
17
precipitates in a`
no precipitates in
12MnPH after aging (48h 450°C)
nmDtxDiff 302 
nmxDiff 2
Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547
Mean diffusion path of Mn in austenite
(aging 450°C/48h)  2 nm
M A
Mn layer 1
Mn layer 2
nominal 12 at.%
Thermo-Calc 
Phase equilibrium Mn content:
27 at. % in austenite
3 at. % in ferrite (martensite)
10 nm
Ti, Si,
Mo
Mn-rich
layer
AM
PB migration
Mn diffusion
phase boundary
aging
New
austenite
(formed
during
aging)
DICTRA
AM
original position
phase boundary
final position
phase boundary
APT results and simulation: DICTRA/ThermoCalc
Dmitrieva et al., Acta Mater, in press 2010 18
Dierk Raabe (d.raabe@mpie.de)
Overview
www.mpie.de 19
Dierk Raabe (d.raabe@mpie.de)
20
20
2 nm
12 wt.% Mn maraging-aged (48 h, 450°C), TEM
APT Characterization
Iso-concentration surface
at 14 at.% Ni
450°C/0.5h
10 nm
Ni
Fe
450°C/6h
10 nm
Ni
Fe
www.mpie.de 21
APT Characterization
10 nm
450°C/48h
Iso-concentration surface
at 14 at.% Ni
450°C/192h
Ni
Fe
www.mpie.de
Dierk Raabe (d.raabe@mpie.de)
22
48h 192h
0.5 hours 6 hours 48 hours 192 hours
Volume fraction 0.06% 0.8% 1.5% 4.3%
Number density of
particles (m-3) 4.8x1022 7.8x1023 3.6x1024 1.9x1024
Mean diameter (nm) 2.7 ± 0.9 2.5 ± 0.7 4.7 ± 0.7 6.1 ± 2.2
6hAging time: 0.5h
APT Characterization
www.mpie.de
Dierk Raabe (d.raabe@mpie.de)
23
Overview
24Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547
Dierk Raabe (d.raabe@mpie.de)
Conclusions
25
Mn atoms
Ni atoms
Mn iso-concentration surfaces at 18
at.%
martensite
with
precipitates
martensite with
precipitates
70 million ions
Laser mode
(0.4nJ, 54K)
martensite
with
precipitates
austenit
e
Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547
Dierk Raabe (d.raabe@mpie.de)

Contenu connexe

Similaire à Ultrahigh strength maraging-TRIP steels

2011 Acta Materialia A P T Steel Fe Mn
2011  Acta  Materialia  A P T  Steel  Fe  Mn2011  Acta  Materialia  A P T  Steel  Fe  Mn
2011 Acta Materialia A P T Steel Fe MnDierk Raabe
 
Effect of Nanophase on the Nucleation of Intragranular Ferrite in Microalloye...
Effect of Nanophase on the Nucleation of Intragranular Ferrite in Microalloye...Effect of Nanophase on the Nucleation of Intragranular Ferrite in Microalloye...
Effect of Nanophase on the Nucleation of Intragranular Ferrite in Microalloye...Nigel Wang
 
Transition Metal Coatings on Graphite via Laser Processing
Transition Metal Coatings on Graphite via Laser ProcessingTransition Metal Coatings on Graphite via Laser Processing
Transition Metal Coatings on Graphite via Laser ProcessingDeepak Rajput
 
CHARACTERIZATION AND CORROSION BEHAVIOR OF DMR249A WITH IN-SITU.pptx
CHARACTERIZATION AND CORROSION BEHAVIOR OF DMR249A WITH IN-SITU.pptxCHARACTERIZATION AND CORROSION BEHAVIOR OF DMR249A WITH IN-SITU.pptx
CHARACTERIZATION AND CORROSION BEHAVIOR OF DMR249A WITH IN-SITU.pptxMonyRrr
 
HTC congress 2009
HTC congress  2009HTC congress  2009
HTC congress 2009xoolio
 
Fabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsFabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsUniversidad de Oviedo
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMagNanoFrontMag-cm
 
Molecular dynamics simulation on the tribology properties of two hard nanopar...
Molecular dynamics simulation on the tribology properties of two hard nanopar...Molecular dynamics simulation on the tribology properties of two hard nanopar...
Molecular dynamics simulation on the tribology properties of two hard nanopar...Brijnandan Tripathi
 
Molybdenum-on-Chromium Dual Coating on Steel
Molybdenum-on-Chromium Dual Coating on SteelMolybdenum-on-Chromium Dual Coating on Steel
Molybdenum-on-Chromium Dual Coating on SteelDeepak Rajput
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Ryan Kim
 
Microstructure design of steel for high creep resistance
Microstructure design of steel for high creep resistanceMicrostructure design of steel for high creep resistance
Microstructure design of steel for high creep resistanceRajdeep Mondal
 
Nickel -Titanium alloys (NiTi) PPT.pptx
Nickel -Titanium alloys (NiTi) PPT.pptxNickel -Titanium alloys (NiTi) PPT.pptx
Nickel -Titanium alloys (NiTi) PPT.pptxMohammedgumaan1
 
Presentation for Jindal steels
Presentation for Jindal steelsPresentation for Jindal steels
Presentation for Jindal steelsDrRNaryanasamy
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Bostonbmazumder
 
Dierk Raabe D P Steel R X& G G 2010 Sheffield
Dierk  Raabe  D P  Steel  R X& G G 2010  SheffieldDierk  Raabe  D P  Steel  R X& G G 2010  Sheffield
Dierk Raabe D P Steel R X& G G 2010 SheffieldDierk Raabe
 
Vaneet Sharma Carbon Nanotubes
Vaneet Sharma  Carbon NanotubesVaneet Sharma  Carbon Nanotubes
Vaneet Sharma Carbon Nanotubesvsharma78
 
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Pawan Kumar
 
09f8706f3115125a5879c0d4cc9afed9
09f8706f3115125a5879c0d4cc9afed909f8706f3115125a5879c0d4cc9afed9
09f8706f3115125a5879c0d4cc9afed9IrascibleDemigod
 
CapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationCapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationEngenuitySC
 

Similaire à Ultrahigh strength maraging-TRIP steels (20)

2011 Acta Materialia A P T Steel Fe Mn
2011  Acta  Materialia  A P T  Steel  Fe  Mn2011  Acta  Materialia  A P T  Steel  Fe  Mn
2011 Acta Materialia A P T Steel Fe Mn
 
Effect of Nanophase on the Nucleation of Intragranular Ferrite in Microalloye...
Effect of Nanophase on the Nucleation of Intragranular Ferrite in Microalloye...Effect of Nanophase on the Nucleation of Intragranular Ferrite in Microalloye...
Effect of Nanophase on the Nucleation of Intragranular Ferrite in Microalloye...
 
Transition Metal Coatings on Graphite via Laser Processing
Transition Metal Coatings on Graphite via Laser ProcessingTransition Metal Coatings on Graphite via Laser Processing
Transition Metal Coatings on Graphite via Laser Processing
 
CHARACTERIZATION AND CORROSION BEHAVIOR OF DMR249A WITH IN-SITU.pptx
CHARACTERIZATION AND CORROSION BEHAVIOR OF DMR249A WITH IN-SITU.pptxCHARACTERIZATION AND CORROSION BEHAVIOR OF DMR249A WITH IN-SITU.pptx
CHARACTERIZATION AND CORROSION BEHAVIOR OF DMR249A WITH IN-SITU.pptx
 
HTC congress 2009
HTC congress  2009HTC congress  2009
HTC congress 2009
 
Fabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsFabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin films
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
Molecular dynamics simulation on the tribology properties of two hard nanopar...
Molecular dynamics simulation on the tribology properties of two hard nanopar...Molecular dynamics simulation on the tribology properties of two hard nanopar...
Molecular dynamics simulation on the tribology properties of two hard nanopar...
 
Molybdenum-on-Chromium Dual Coating on Steel
Molybdenum-on-Chromium Dual Coating on SteelMolybdenum-on-Chromium Dual Coating on Steel
Molybdenum-on-Chromium Dual Coating on Steel
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
 
Microstructure design of steel for high creep resistance
Microstructure design of steel for high creep resistanceMicrostructure design of steel for high creep resistance
Microstructure design of steel for high creep resistance
 
Nickel -Titanium alloys (NiTi) PPT.pptx
Nickel -Titanium alloys (NiTi) PPT.pptxNickel -Titanium alloys (NiTi) PPT.pptx
Nickel -Titanium alloys (NiTi) PPT.pptx
 
Presentation for Jindal steels
Presentation for Jindal steelsPresentation for Jindal steels
Presentation for Jindal steels
 
MPIF 2016 kmj
MPIF 2016 kmjMPIF 2016 kmj
MPIF 2016 kmj
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Boston
 
Dierk Raabe D P Steel R X& G G 2010 Sheffield
Dierk  Raabe  D P  Steel  R X& G G 2010  SheffieldDierk  Raabe  D P  Steel  R X& G G 2010  Sheffield
Dierk Raabe D P Steel R X& G G 2010 Sheffield
 
Vaneet Sharma Carbon Nanotubes
Vaneet Sharma  Carbon NanotubesVaneet Sharma  Carbon Nanotubes
Vaneet Sharma Carbon Nanotubes
 
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
 
09f8706f3115125a5879c0d4cc9afed9
09f8706f3115125a5879c0d4cc9afed909f8706f3115125a5879c0d4cc9afed9
09f8706f3115125a5879c0d4cc9afed9
 
CapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationCapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V Presentation
 

Plus de Dierk Raabe

High Manganese TWIP Steel Research at Max-Planck Institut
High Manganese TWIP Steel Research at Max-Planck InstitutHigh Manganese TWIP Steel Research at Max-Planck Institut
High Manganese TWIP Steel Research at Max-Planck InstitutDierk Raabe
 
Lecture Micromechanics texture SFB 761
Lecture Micromechanics texture SFB 761Lecture Micromechanics texture SFB 761
Lecture Micromechanics texture SFB 761Dierk Raabe
 
Overview combining ab initio with continuum theory
Overview combining ab initio with continuum theoryOverview combining ab initio with continuum theory
Overview combining ab initio with continuum theoryDierk Raabe
 
Acta 59 (2011) E C C I Fe Mn C
Acta 59 (2011)  E C C I  Fe  Mn  CActa 59 (2011)  E C C I  Fe  Mn  C
Acta 59 (2011) E C C I Fe Mn CDierk Raabe
 
Acta materialia 55 (2007) 4475–4487 ab initio titan
Acta materialia 55 (2007) 4475–4487 ab initio titanActa materialia 55 (2007) 4475–4487 ab initio titan
Acta materialia 55 (2007) 4475–4487 ab initio titanDierk Raabe
 
Acta materialia 57 (2009) 559 indent
Acta materialia 57 (2009) 559 indentActa materialia 57 (2009) 559 indent
Acta materialia 57 (2009) 559 indentDierk Raabe
 
Mater science engin_a 527 (2010) 2738
Mater science engin_a 527 (2010) 2738Mater science engin_a 527 (2010) 2738
Mater science engin_a 527 (2010) 2738Dierk Raabe
 
Mater science engin_a 527 (2010) 2738
Mater science engin_a 527 (2010) 2738Mater science engin_a 527 (2010) 2738
Mater science engin_a 527 (2010) 2738Dierk Raabe
 
High manganese conference Korea ECCI
High manganese conference Korea ECCI High manganese conference Korea ECCI
High manganese conference Korea ECCI Dierk Raabe
 
High manganese conference korea twip steel
High manganese conference korea twip steelHigh manganese conference korea twip steel
High manganese conference korea twip steelDierk Raabe
 
Dierk Raabe M R S Fall X Lecture The X Files Of Materials Science
Dierk  Raabe  M R S  Fall  X  Lecture   The X Files Of Materials ScienceDierk  Raabe  M R S  Fall  X  Lecture   The X Files Of Materials Science
Dierk Raabe M R S Fall X Lecture The X Files Of Materials ScienceDierk Raabe
 
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
Dierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  CrystalsDierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  Crystals
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of CrystalsDierk Raabe
 
2009 MRS Cu Based Composites
2009  MRS  Cu Based Composites2009  MRS  Cu Based Composites
2009 MRS Cu Based CompositesDierk Raabe
 
Dierk Raabe Ab Initio Simulations In Metallurgy
Dierk  Raabe Ab Initio Simulations In MetallurgyDierk  Raabe Ab Initio Simulations In Metallurgy
Dierk Raabe Ab Initio Simulations In MetallurgyDierk Raabe
 
Annu. Rev. Mater. Res. 2002 Vol 32 P 53 Overview Cellular Automa
Annu.  Rev.  Mater.  Res. 2002 Vol 32 P 53 Overview Cellular AutomaAnnu.  Rev.  Mater.  Res. 2002 Vol 32 P 53 Overview Cellular Automa
Annu. Rev. Mater. Res. 2002 Vol 32 P 53 Overview Cellular AutomaDierk Raabe
 
Modelling Simul. Mater. Sci. Eng. 8 (2000) 445 C A And C P F E M
Modelling  Simul.  Mater.  Sci.  Eng. 8 (2000) 445  C A And  C P  F E MModelling  Simul.  Mater.  Sci.  Eng. 8 (2000) 445  C A And  C P  F E M
Modelling Simul. Mater. Sci. Eng. 8 (2000) 445 C A And C P F E MDierk Raabe
 
Comput Mater Sc Vol 34 (2005) 299 Pinning In C A
Comput  Mater  Sc  Vol 34 (2005) 299 Pinning In  C AComput  Mater  Sc  Vol 34 (2005) 299 Pinning In  C A
Comput Mater Sc Vol 34 (2005) 299 Pinning In C ADierk Raabe
 
ultra fine grained steels
ultra fine grained steelsultra fine grained steels
ultra fine grained steelsDierk Raabe
 
MRS 2010 Bauschinger Effect Dierk Raabe
MRS  2010  Bauschinger Effect Dierk  Raabe  MRS  2010  Bauschinger Effect Dierk  Raabe
MRS 2010 Bauschinger Effect Dierk Raabe Dierk Raabe
 

Plus de Dierk Raabe (20)

High Manganese TWIP Steel Research at Max-Planck Institut
High Manganese TWIP Steel Research at Max-Planck InstitutHigh Manganese TWIP Steel Research at Max-Planck Institut
High Manganese TWIP Steel Research at Max-Planck Institut
 
Lecture Micromechanics texture SFB 761
Lecture Micromechanics texture SFB 761Lecture Micromechanics texture SFB 761
Lecture Micromechanics texture SFB 761
 
Overview combining ab initio with continuum theory
Overview combining ab initio with continuum theoryOverview combining ab initio with continuum theory
Overview combining ab initio with continuum theory
 
Acta 59 (2011) E C C I Fe Mn C
Acta 59 (2011)  E C C I  Fe  Mn  CActa 59 (2011)  E C C I  Fe  Mn  C
Acta 59 (2011) E C C I Fe Mn C
 
Acta materialia 55 (2007) 4475–4487 ab initio titan
Acta materialia 55 (2007) 4475–4487 ab initio titanActa materialia 55 (2007) 4475–4487 ab initio titan
Acta materialia 55 (2007) 4475–4487 ab initio titan
 
Acta materialia 57 (2009) 559 indent
Acta materialia 57 (2009) 559 indentActa materialia 57 (2009) 559 indent
Acta materialia 57 (2009) 559 indent
 
Mater science engin_a 527 (2010) 2738
Mater science engin_a 527 (2010) 2738Mater science engin_a 527 (2010) 2738
Mater science engin_a 527 (2010) 2738
 
Mater science engin_a 527 (2010) 2738
Mater science engin_a 527 (2010) 2738Mater science engin_a 527 (2010) 2738
Mater science engin_a 527 (2010) 2738
 
High manganese conference Korea ECCI
High manganese conference Korea ECCI High manganese conference Korea ECCI
High manganese conference Korea ECCI
 
High manganese conference korea twip steel
High manganese conference korea twip steelHigh manganese conference korea twip steel
High manganese conference korea twip steel
 
Dierk Raabe M R S Fall X Lecture The X Files Of Materials Science
Dierk  Raabe  M R S  Fall  X  Lecture   The X Files Of Materials ScienceDierk  Raabe  M R S  Fall  X  Lecture   The X Files Of Materials Science
Dierk Raabe M R S Fall X Lecture The X Files Of Materials Science
 
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
Dierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  CrystalsDierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  Crystals
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
 
2009 MRS Cu Based Composites
2009  MRS  Cu Based Composites2009  MRS  Cu Based Composites
2009 MRS Cu Based Composites
 
Dierk Raabe Ab Initio Simulations In Metallurgy
Dierk  Raabe Ab Initio Simulations In MetallurgyDierk  Raabe Ab Initio Simulations In Metallurgy
Dierk Raabe Ab Initio Simulations In Metallurgy
 
Monte Carlo RX
Monte Carlo RXMonte Carlo RX
Monte Carlo RX
 
Annu. Rev. Mater. Res. 2002 Vol 32 P 53 Overview Cellular Automa
Annu.  Rev.  Mater.  Res. 2002 Vol 32 P 53 Overview Cellular AutomaAnnu.  Rev.  Mater.  Res. 2002 Vol 32 P 53 Overview Cellular Automa
Annu. Rev. Mater. Res. 2002 Vol 32 P 53 Overview Cellular Automa
 
Modelling Simul. Mater. Sci. Eng. 8 (2000) 445 C A And C P F E M
Modelling  Simul.  Mater.  Sci.  Eng. 8 (2000) 445  C A And  C P  F E MModelling  Simul.  Mater.  Sci.  Eng. 8 (2000) 445  C A And  C P  F E M
Modelling Simul. Mater. Sci. Eng. 8 (2000) 445 C A And C P F E M
 
Comput Mater Sc Vol 34 (2005) 299 Pinning In C A
Comput  Mater  Sc  Vol 34 (2005) 299 Pinning In  C AComput  Mater  Sc  Vol 34 (2005) 299 Pinning In  C A
Comput Mater Sc Vol 34 (2005) 299 Pinning In C A
 
ultra fine grained steels
ultra fine grained steelsultra fine grained steels
ultra fine grained steels
 
MRS 2010 Bauschinger Effect Dierk Raabe
MRS  2010  Bauschinger Effect Dierk  Raabe  MRS  2010  Bauschinger Effect Dierk  Raabe
MRS 2010 Bauschinger Effect Dierk Raabe
 

Ultrahigh strength maraging-TRIP steels

  • 1. Düsseldorf, Germany WWW.MPIE.DE d.raabe@mpie.de MS&T‘10 Conference 18. Oct. 2010 Houston, USA D. Raabe, D. Ponge, O. Dmitrieva, J. Millán, P. Choi, G. Inden Ultrahigh strength maraging-TRIP steels
  • 3. 2 Motivation: Combine TRIP and maraging effects Mn is among the most important alloying elements for the design of advanced high strength steels It affects the stabilization of the austenite, the stacking fault energy, and the transformation kinetics Mn has very low diffusion rates in the austenite and a high segregation or respectively partitioning tendency at interfaces This context makes Mn a very interesting candidate for an atomic-scale study of compositional changes across austenite/martensite interfaces. Dierk Raabe (d.raabe@mpie.de)
  • 4. 3 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 0 10 20 30 40 50 60 70 80 totalelongationtofracture[%] ultimate tensile strength [MPa] TRIP and complex phase martensitic Maraging-TRIP and advanced QP dual phase ferritic Motivation: Combine TRIP and maraging effects austenitic stainless advanced TWIP and TRIP Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141 Dierk Raabe (d.raabe@mpie.de)
  • 5. 4 Motivation: Combine TRIP and maraging effects The material studied here is a precipitation-hardened alloy that is referred to as maraging TRIP steel It combines the TRIP mechanism with the maraging effect (maraging: martensite aging) The TRIP effect exploits the deformation-stimulated transformation of metastable austenite into martensite and the resulting plasticity required to accommodate the transformation misfit The maraging effect uses the hardening of the heavily strained martensite through the formation of nano-sized intermetallic precipitates during aging heat treatment The maraging TRIP steels used in this work reveal the surprising property that both strength and total elongation increase upon aging reaching an ultimate tensile strength of nearly 1.3 GPa at an elongation above 20% Dierk Raabe (d.raabe@mpie.de) Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141
  • 6. 5 Fe-Mn based maraging TRIP steel development  TRIP: deformation-stimulated transformation of instable austenite into martensite and accommodation plasticity (e.g. Mn, Ni, low C)  Maraging effect: hardening of heavily strained martensite via nano- sized (intermetallic) precipitates (Ni, Al, Ti, Mo) (see also conventional Maraging steels) * TRIP: transformation-induced plasticity * Maraging: martensite aging Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547 Quenched austenite: ductile low carbon martensite Retained austenite (TRIP) Controlled precipitation hardening What is maraging-TRIP ? Dierk Raabe (d.raabe@mpie.de)
  • 7. 6 Low carbon: ductile martensite Steel C Ni Co Mo Ti Al Mn Fe Maraging 0.01 18 12 4 1.6 0.15 0.05 Balance 09MnPH 0.01 2 - 1 1.0 0.15 9 Balance 12MnPH 0.01 2 - 1 1.0 0.15 12 Balance 15MnPH 0.01 2 - 1 1.0 0.15 15 Balance Precipitation Hardenable Mn (+Ni): austenite (TRIP) Compositions in mass% PH PH PH D. Raabe et al. Scripta Materialia 60 (2009) 1141 Martensite aging after quenching at 450°C Dierk Raabe (d.raabe@mpie.de)
  • 9. 0 5 10 15 20 25 0 300 600 900 1200 1500 1800 2100 2400 EngineeringStress(MPa) Engineering Strain (%) 0 5 10 15 20 25 0 300 600 900 1200 1500 1800 2100 2400 EngineeringStress(MPa) Engineering Strain (%) 8 0 5 10 15 20 25 0 300 600 900 1200 1500 1800 2100 2400 EngineeringStress(MPa) Engineering Strain (%) Maraging aged (450°C/48h) quenched maraging-TRIP, 12MnPH aged (450°C/48h) quenched Tensile tests (X3NiCoMoTi18-12-4) higher strength AND higher elongation Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141 Dierk Raabe (d.raabe@mpie.de)
  • 10. 9 Tensile tests, maraging TRIP FCC BCC e=0% e=15% Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141 Dierk Raabe (d.raabe@mpie.de)
  • 11. 10 Tensile tests, maraging TRIP Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009) 1141
  • 13. 12 Microstructure hierarchy Dmitrieva et al., Acta Mater, in press 2010 Dierk Raabe (d.raabe@mpie.de)
  • 14. Overview Calcagnotto et al. Mater. Sc. Engin. A 527 (2010) 2738 13 Dierk Raabe (d.raabe@mpie.de)
  • 15. 14 R. Kainuma, M. Ise, K. Ishikawa, I. Ohnuma, and K. Ishida, Phase Equilibria and Stability of the B2 Phase in the Ni-Mn-Al and Co-Mn-Al Systems, J. Alloys Compd., 1998, 269, p 173-180 Ni-Mn-Al isothermal section at 850 °C Ni Mn Al Dierk Raabe (d.raabe@mpie.de)
  • 16. Mn atoms Ni atoms Mn iso-concentration surfaces at 18 at.% APT results: Atomic map (12MnPH aged 450°C/48h) 70 million ions Laser mode (0.4nJ, 54K) Dmitrieva et al., Acta Mater, in press 2010 Martensite decorated by precipitations Austenite ? ? Dierk Raabe (d.raabe@mpie.de) 15
  • 17. M A Mn layer 1 Mn layer 2 Mn layer2 Mn layer 1 Mn iso-concentration surfaces at 18 at.% Thermo-Calc  Phase equilibrium Mn-contents: 27 at. % Mn in austenite (A) 3 at. % Mn in ferrite (martensite) (M) 1D profile: step size 0.5 nm M A M depletion zone nominal 12 at.% Mn APT results: chemical profiles Dmitrieva et al., Acta Mater, in press 2010 16 Dierk Raabe (d.raabe@mpie.de)
  • 18. 17 precipitates in a` no precipitates in 12MnPH after aging (48h 450°C) nmDtxDiff 302  nmxDiff 2 Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547
  • 19. Mean diffusion path of Mn in austenite (aging 450°C/48h)  2 nm M A Mn layer 1 Mn layer 2 nominal 12 at.% Thermo-Calc  Phase equilibrium Mn content: 27 at. % in austenite 3 at. % in ferrite (martensite) 10 nm Ti, Si, Mo Mn-rich layer AM PB migration Mn diffusion phase boundary aging New austenite (formed during aging) DICTRA AM original position phase boundary final position phase boundary APT results and simulation: DICTRA/ThermoCalc Dmitrieva et al., Acta Mater, in press 2010 18 Dierk Raabe (d.raabe@mpie.de)
  • 21. 20 20 2 nm 12 wt.% Mn maraging-aged (48 h, 450°C), TEM
  • 22. APT Characterization Iso-concentration surface at 14 at.% Ni 450°C/0.5h 10 nm Ni Fe 450°C/6h 10 nm Ni Fe www.mpie.de 21
  • 23. APT Characterization 10 nm 450°C/48h Iso-concentration surface at 14 at.% Ni 450°C/192h Ni Fe www.mpie.de Dierk Raabe (d.raabe@mpie.de) 22
  • 24. 48h 192h 0.5 hours 6 hours 48 hours 192 hours Volume fraction 0.06% 0.8% 1.5% 4.3% Number density of particles (m-3) 4.8x1022 7.8x1023 3.6x1024 1.9x1024 Mean diameter (nm) 2.7 ± 0.9 2.5 ± 0.7 4.7 ± 0.7 6.1 ± 2.2 6hAging time: 0.5h APT Characterization www.mpie.de Dierk Raabe (d.raabe@mpie.de) 23
  • 25. Overview 24Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547 Dierk Raabe (d.raabe@mpie.de)
  • 26. Conclusions 25 Mn atoms Ni atoms Mn iso-concentration surfaces at 18 at.% martensite with precipitates martensite with precipitates 70 million ions Laser mode (0.4nJ, 54K) martensite with precipitates austenit e Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547 Dierk Raabe (d.raabe@mpie.de)

Notes de l'éditeur

  1. Quantitative analysis of the chemical interfaces between austenite and martensite was performed using 1D concentration profiles computed over the region of interest (cylindrical units). We calculated the content of manganese averaged over the 0.5 nm thick cross sections of the cylinders (profile step size 0.5 nm). For both interfaces, strong increase of Mn content up to 26 at. % was observed. The content of the Mn on the austenitic side is about 12 at. %, whereas on the martensitic side a slight depletion of Mn down to  6 at. % can be observed. In order to avoid the contribution of the precipitates to the chemical profile within the martensitic area, we separately measured the 1D concentration profiles within the martensitic matrix after exclusion of the precipitates. These profiles are also plotted. In order to understand the reasons for the Mn accumulation on the phase boundary, we consider the measured Mn contents. Since the phase equilibrium concentration of Mn in the austenite is much higher than in the ferrite (martensite) as was calculated by using Thermo-Calc (26.7 vs. 3.3 at. %), we expect a redistribution of Mn atoms during aging: enrichment in the austenite and depletion in the martensite. However, the Mn content measured in the austenite remains the same as in the nominal alloy composition (about 12.2 at. %, see Table1). In the martensitic matrix, a slight Mn depletion down to 10.3 at. % was detected. The diffusion in the FCC lattice of austenite is widely suppressed. The martensitic matrix is depleted to 10.3 at. % which is mostly due to the enrichment of Mn in the precipitates. However, Mn content decreases continuously in the martensite toward the phase boundary and, just some nanometers before the Mn-rich layer starts, drops to about 5-6 at. %. The formation of such depletion zone indicates an enhanced diffusion behavior of Mn atoms from the martensite to the austenite. Due to the low diffusion in the austenite, Mn atoms accumulate in the phase boundary and built up a Mn-enriched layer. The Mn gradient obtained from the thermodynamic calculation using DICTRA provides nearly the same distribution of the Mn content on the austenite/martensite phase boundary (Fig. 4). Enrichment of Mn up to the content of 27 at. % is observed in the interface between austenite and ferrite. For the simulation of the diffusion of Mn in the martensite, we enhanced the mobility of the atoms given for ferrite by a factor of 45. (During time of annealing at given temperature in (α+γ) range, Mn moves from ferrite to austenite across interface surface between austenite and ferrite until equilibrium state of the chemical potentials of Mn in austenite and ferrite will be reached. The balance depends on temperature and time of annealing.)
  2. In order to understand the dynamics of the formation of the Mn-enriched layers on the phase boundaries, we consider the phase equilibrium contents of Mn. The averaged content of Mn measured for the Mn-enriched layers is about 26 at. %. This content corresponds to the phase equilibrium content of this element in the austenite which is 26.7 at. %. As known, local phase equilibrium can be easily reached on the grain/phase boundaries. Thus, right on the phase boundary, the equilibrium composition in austenite is reached, and a local phase transformation from martensite to austenite within the Mn-enriched layer can be expected. However, the With the growth of the Mn-enriched layer towards the martensitic grain, the material within the layer becomes austenitic and, thus, the phase boundary moves. The final thickness of the Mn-enriched layer is about 20 nm, thus, the phase boundary moved 20 nm during the aging treatment. The layer-to-austenite interface provides the information about the position of the original phase boundary between the retained austenite and the martensite before aging. Further diffusion of Mn into austenite during aging was suppressed just beyond the crystallographic BCC/FCC boundary. The martensite-to-layer interface, however, indicates the position of the final phase boundary when the Mn diffusion was stopped by the water quenching after the aging treatment. The Mn enriched area in-between these two layers therefore can be addressed as additional austenite formed during the aging. The growth of the austenite leads to an enhancement of austenite volume fraction during aging. This can be correlated to the growth of the existing austenite grains where the phase boundaries serve as nucleation seeds. We assumed an epitaxial formation of reverted austenite on the phase boundary of the retained austenite.