SlideShare a Scribd company logo
1 of 6
ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ             23/12/2012                                   ΣΕΛΙΔΑ      1


                                  ΔΙΑΓΩΝΙΣΜΑ Γ ΛΥΚΕΙΟΥ
                                ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΑΝΑΛΥΣΗΣ
                                    ΔΙΑΡΚΕΙΑ : 3 ώρες

ΘΕΜΑ 1 ο
Α.Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα[α, β]. Αν
• η f είναι συνεχής στο [α, β] και
• f(α) ≠ f(β)
δείξτε ότι για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένας, τουλάχιστον x0 ∈ (α, β)
τέτοιος, ώστε   f( x0 ) = η .
                                                               Μονάδες 9
Β.Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό
σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
πρόταση.

i) Αν η f είναι συνεχής στο [α, β] με f(α) < 0 και υπάρχει ξ ∈ (α, β) ώστε f(ξ) = 0, τότε κατ’
ανάγκη f(β) > 0.                                                 Μονάδες 2

ii) Αν η f έχει αντίστροφη συνάρτηση f −1 και η γραφική παράσταση της f έχει κοινό σημείο
Α με την ευθεία y = x, τότε το σημείο Α ανήκει και στη γραφική παράσταση της f −1 .
Μονάδες 2
                                                                1 
iii)Αν xlim ( f(x)) = 0 και f(x) > 0 κοντά στο x0 , τότε lim 
         → x0                                                         ÷ = +∞   Μονάδες 2
                                                        x → x0  f(x) 


                                                  lim f(x) = f(x 0 )
iv) Μια συνάρτηση f είναι συνεχής στο [α,β] όταν x → x               για κάθε x0 ∈ (α, β)
                                                       0
 Μονάδες 2

v) Δίνεται η συνάρτηση f:R→R η οποία είναι συνεχής και 1-1 . Αν f(x)>x τότε f −1(x) < x
Μονάδες 2

vi) Αν η συνάρτηση f:R→R η οποία είναι συνεχής και γνησίως αύξουσα στο R τότε η f −1
έχει πεδίο ορισμού διάστημα .                                             Μονάδες 2

Γ. Στις παρακάτω προτάσεις δίνονται περισσότερες από μία απαντήσεις .Να επιλέξετε τη
σωστή.
i). Αν η f έχει πεδίο ορισμού το Α=[0,3] τότε η f(x-2) έχει πεδίο ορισμού το
    α) Β=[2,5] β) Β=[-1,6] γ) Β=[2,3] δ)Β=[2,4]                             Μονάδες 2

ii). Δίνονται οι συναρτήσεις f,g:R→R και (fοg)(x)=x+2 , g(x)=x-1 . Τότε η f είναι :
    α) f(x)=x+2 β) f(x)=2x-3 γ) f(x)= x+3                                Μονάδες 2




ΘΕΜΑ 2
ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ             23/12/2012                                     ΣΕΛΙΔΑ    2


Αν η συνάρτηση f έχει τύπο f(x) = ln(x − 3) + x − 2 τότε :
α. Να αποδείξετε ότι υπάρχει η αντίστροφη συνάρτηση της f .                      Μονάδες 5

β) Να λύσετε την εξίσωση : f(x)=x                                                Μονάδες 4

γ) Να βρείτε τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων f και f −1 .
                                                                              Μονάδες 4
δ) Δίνεται η συνάρτηση     g με πεδίο ορισμού το (0, +∞) και σύνολο τιμών το ( 3, +∞ ) τέτοια
ώστε η fog να είναι γνησίως φθίνουσα στο (0, +∞) .
i) Να δείξετε ότι η g είναι γνησίως φθίνουσα στο (0, +∞) .                      Μονάδες 6
                                          g(8) − 3
                                                      >e
                                                                (     )
                                                             g ex − 1 − g(8)
ii) Να λύσετε στο (0, +∞) την ανίσωση
                                          (     )
                                        g ex −1 − 3
                                                                                  Μονάδες 6



ΘΕΜΑ 3 .
                                 ημ(3αx)
                                              ,    x<0
                                     x
                            
                           = 2
Δίνεται η συνάρτηση f(x)α  2 +            ,     x 0=       .
                                 3
                                        1 
                                  x .ημ 2 ÷ − β   , x> 0
                            
                                      x 
i) Να βρεθούν οι τιμές των α,β ∈ R ώστε η f να είναι συνεχής στο x0 = 0 .      Μονάδες 6
ii) Να βρείτε το όριο : lim f(x) .
                       x → +∞                                                  Μονάδες 6
                                                          g ( x)
iii) Δίνεται η συνάρτηση g : R → R , αν α=1 και lim                 = 1 τότε
                                                    x→0     x
                                                              g(x) + x
α) Να βρείτε τις τιμές του λ ∈ R για τις οποίες ισχύει : lim           = lim f(x) Μονάδες 5
                                                                  −
                                                       x → 0 g(x)λx      x →0
β) Αν η γραφική παράσταση της g δεν έχει κανένα κοινό σημείο με τον άξονα χ΄χ , να
αποδείξετε ότι η g δεν είναι συνεχής .                                           Μονάδες 4
γ) Αν για τη συνάρτηση h:R → R γνωρίζουμε ότι είναι συνεχής στο R , h(x) ≠ 0 για κάθε
                 g(x)
x ∈ R και h(x) >      για κάθε x ≠ 0 , να βρείτε το πρόσημο της h .      Μονάδες 4
                  x




ΘΕΜΑ 4.Δίνεται η συνάρτηση f η οποία είναι συνεχής και γνησίως αύξουσα στο R .
ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ                 23/12/2012                          ΣΕΛΙΔΑ    3


Αν είναι f(0)=2 και f(1)=4 να αποδείξετε ότι :

Ι) Η ευθεία ψ=-2x+3 τέμνει τη γραφική παράσταση της f σε ένα ακριβώς σημείο με
τετμημένη x0 ∈ (0,1).                                                Μονάδες 4
                                                       1      2
                                                     f  ÷ + 2f  ÷
ΙΙ) Υπάρχει μοναδικό  x0 ∈ (0,1) τέτοιο ώστε            2       5    Μονάδες 4
                                             f(x0 ) =  
                                                           3

III) Να λύσετε την εξίσωση f(x)+f(2x)=f(3x)+f(4x) , x ∈ [0,1]            Μονάδες 5

ΙV)Δίνεται ότι όταν x ∈ [x1 , x 2 ] τότε η f έχει σύνολο τιμών το [α+2,α+4] .
Να βρεθούν οι δυνατές τιμές του α ∈ R ώστε η f(x)=0 να έχει μια ακριβώς ρίζα
                                                    1
x0 στο [x1 , x 2 ] και να βρεθεί το όριο lim+
                                           x → x0 f(x) .             Μονάδες 6

                                                     1   1
v) Δίνεται η συνάρτηση g: ( 0,1 → R με g(x)=
                                                       − + 2 να βρείτε τα όρια
                                                    f(x) x
                              1       1
                             g ÷      g ÷
      lim g(x)              e x   + 2 x
α)   x → 0+
                 β) lim                                           Μονάδες 6
                   x → +∞       1
                               g ÷
                              e x   +1




                                           ΚΑΛΗ ΕΠΙΤΥΧΙΑ
ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ                 23/12/2012                          ΣΕΛΙΔΑ    3


Αν είναι f(0)=2 και f(1)=4 να αποδείξετε ότι :

Ι) Η ευθεία ψ=-2x+3 τέμνει τη γραφική παράσταση της f σε ένα ακριβώς σημείο με
τετμημένη x0 ∈ (0,1).                                                Μονάδες 4
                                                       1      2
                                                     f  ÷ + 2f  ÷
ΙΙ) Υπάρχει μοναδικό  x0 ∈ (0,1) τέτοιο ώστε            2       5    Μονάδες 4
                                             f(x0 ) =  
                                                           3

III) Να λύσετε την εξίσωση f(x)+f(2x)=f(3x)+f(4x) , x ∈ [0,1]            Μονάδες 5

ΙV)Δίνεται ότι όταν x ∈ [x1 , x 2 ] τότε η f έχει σύνολο τιμών το [α+2,α+4] .
Να βρεθούν οι δυνατές τιμές του α ∈ R ώστε η f(x)=0 να έχει μια ακριβώς ρίζα
                                                    1
x0 στο [x1 , x 2 ] και να βρεθεί το όριο lim+
                                           x → x0 f(x) .             Μονάδες 6

                                                     1   1
v) Δίνεται η συνάρτηση g: ( 0,1 → R με g(x)=
                                                       − + 2 να βρείτε τα όρια
                                                    f(x) x
                              1       1
                             g ÷      g ÷
      lim g(x)              e x   + 2 x
α)   x → 0+
                 β) lim                                           Μονάδες 6
                   x → +∞       1
                               g ÷
                              e x   +1




                                           ΚΑΛΗ ΕΠΙΤΥΧΙΑ
ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ                 23/12/2012                          ΣΕΛΙΔΑ    3


Αν είναι f(0)=2 και f(1)=4 να αποδείξετε ότι :

Ι) Η ευθεία ψ=-2x+3 τέμνει τη γραφική παράσταση της f σε ένα ακριβώς σημείο με
τετμημένη x0 ∈ (0,1).                                                Μονάδες 4
                                                       1      2
                                                     f  ÷ + 2f  ÷
ΙΙ) Υπάρχει μοναδικό  x0 ∈ (0,1) τέτοιο ώστε            2       5    Μονάδες 4
                                             f(x0 ) =  
                                                           3

III) Να λύσετε την εξίσωση f(x)+f(2x)=f(3x)+f(4x) , x ∈ [0,1]            Μονάδες 5

ΙV)Δίνεται ότι όταν x ∈ [x1 , x 2 ] τότε η f έχει σύνολο τιμών το [α+2,α+4] .
Να βρεθούν οι δυνατές τιμές του α ∈ R ώστε η f(x)=0 να έχει μια ακριβώς ρίζα
                                                    1
x0 στο [x1 , x 2 ] και να βρεθεί το όριο lim+
                                           x → x0 f(x) .             Μονάδες 6

                                                     1   1
v) Δίνεται η συνάρτηση g: ( 0,1 → R με g(x)=
                                                       − + 2 να βρείτε τα όρια
                                                    f(x) x
                              1       1
                             g ÷      g ÷
      lim g(x)              e x   + 2 x
α)   x → 0+
                 β) lim                                           Μονάδες 6
                   x → +∞       1
                               g ÷
                              e x   +1




                                           ΚΑΛΗ ΕΠΙΤΥΧΙΑ
ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ                 23/12/2012                          ΣΕΛΙΔΑ    3


Αν είναι f(0)=2 και f(1)=4 να αποδείξετε ότι :

Ι) Η ευθεία ψ=-2x+3 τέμνει τη γραφική παράσταση της f σε ένα ακριβώς σημείο με
τετμημένη x0 ∈ (0,1).                                                Μονάδες 4
                                                       1      2
                                                     f  ÷ + 2f  ÷
ΙΙ) Υπάρχει μοναδικό  x0 ∈ (0,1) τέτοιο ώστε            2       5    Μονάδες 4
                                             f(x0 ) =  
                                                           3

III) Να λύσετε την εξίσωση f(x)+f(2x)=f(3x)+f(4x) , x ∈ [0,1]            Μονάδες 5

ΙV)Δίνεται ότι όταν x ∈ [x1 , x 2 ] τότε η f έχει σύνολο τιμών το [α+2,α+4] .
Να βρεθούν οι δυνατές τιμές του α ∈ R ώστε η f(x)=0 να έχει μια ακριβώς ρίζα
                                                    1
x0 στο [x1 , x 2 ] και να βρεθεί το όριο lim+
                                           x → x0 f(x) .             Μονάδες 6

                                                     1   1
v) Δίνεται η συνάρτηση g: ( 0,1 → R με g(x)=
                                                       − + 2 να βρείτε τα όρια
                                                    f(x) x
                              1       1
                             g ÷      g ÷
      lim g(x)              e x   + 2 x
α)   x → 0+
                 β) lim                                           Μονάδες 6
                   x → +∞       1
                               g ÷
                              e x   +1




                                           ΚΑΛΗ ΕΠΙΤΥΧΙΑ

More Related Content

What's hot

Διαγωνίσματα 1ου τετραμήνου για το 1ο ΓΕΛ Αμαρουσίου
Διαγωνίσματα 1ου τετραμήνου για το 1ο ΓΕΛ ΑμαρουσίουΔιαγωνίσματα 1ου τετραμήνου για το 1ο ΓΕΛ Αμαρουσίου
Διαγωνίσματα 1ου τετραμήνου για το 1ο ΓΕΛ ΑμαρουσίουΜάκης Χατζόπουλος
 
γ' επαλ βοηθητικό κεφάλαιο σημειώσεων και ασκήσεων
γ' επαλ βοηθητικό κεφάλαιο σημειώσεων και ασκήσεωνγ' επαλ βοηθητικό κεφάλαιο σημειώσεων και ασκήσεων
γ' επαλ βοηθητικό κεφάλαιο σημειώσεων και ασκήσεωνΡεβέκα Θεοδωροπούλου
 
[Φυσική ΠΡΣ Β' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
[Φυσική ΠΡΣ Β' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης[Φυσική ΠΡΣ Β' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
[Φυσική ΠΡΣ Β' Λυκείου] Τελικό Διαγώνισμα ΠροσομοίωσηςDimitris Kontoudakis
 
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)Michael Magkos
 
Διαγώνισμα β τετραμήνου Β΄ Λυκείου για το 1ο ΓΕΛ Αμαρουσίου
Διαγώνισμα β τετραμήνου Β΄ Λυκείου για το 1ο ΓΕΛ ΑμαρουσίουΔιαγώνισμα β τετραμήνου Β΄ Λυκείου για το 1ο ΓΕΛ Αμαρουσίου
Διαγώνισμα β τετραμήνου Β΄ Λυκείου για το 1ο ΓΕΛ ΑμαρουσίουΜάκης Χατζόπουλος
 
Βασικά τριγωνομετρικά όρια - Εργασία μαθητών
Βασικά τριγωνομετρικά όρια - Εργασία μαθητώνΒασικά τριγωνομετρικά όρια - Εργασία μαθητών
Βασικά τριγωνομετρικά όρια - Εργασία μαθητώνΜάκης Χατζόπουλος
 
αντιδράσεις προσθήκης αλδεΰδες κετόνες νιτρίλια
αντιδράσεις προσθήκης αλδεΰδες κετόνες νιτρίλιααντιδράσεις προσθήκης αλδεΰδες κετόνες νιτρίλια
αντιδράσεις προσθήκης αλδεΰδες κετόνες νιτρίλιαDimPapadopoulos
 
τυπολογιο φυσικησ β΄λυκειου ηλεκτρικο πεδιο
τυπολογιο φυσικησ β΄λυκειου ηλεκτρικο πεδιοτυπολογιο φυσικησ β΄λυκειου ηλεκτρικο πεδιο
τυπολογιο φυσικησ β΄λυκειου ηλεκτρικο πεδιοfotisalexoglou
 
[Φυσική Α' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
[Φυσική Α' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης[Φυσική Α' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
[Φυσική Α' Λυκείου] Τελικό Διαγώνισμα ΠροσομοίωσηςDimitris Kontoudakis
 
2ο θέμα Μαθηματικών προσανατολισμού β΄ λυκείου
2ο θέμα Μαθηματικών προσανατολισμού β΄ λυκείου2ο θέμα Μαθηματικών προσανατολισμού β΄ λυκείου
2ο θέμα Μαθηματικών προσανατολισμού β΄ λυκείουKonstantinos Georgiou
 
1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων
1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων 1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων
1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων Μάκης Χατζόπουλος
 
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛΑσκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛΡεβέκα Θεοδωροπούλου
 
Αντιπαραδείγματα σχολικού βιβλίου [2019]
Αντιπαραδείγματα σχολικού βιβλίου [2019]Αντιπαραδείγματα σχολικού βιβλίου [2019]
Αντιπαραδείγματα σχολικού βιβλίου [2019]Μάκης Χατζόπουλος
 
Άλγεβρα Α Λυκείου - Εξισώσεις - Ανισώσεις 2020 [75 σελίδες]
Άλγεβρα Α Λυκείου - Εξισώσεις - Ανισώσεις 2020 [75 σελίδες]Άλγεβρα Α Λυκείου - Εξισώσεις - Ανισώσεις 2020 [75 σελίδες]
Άλγεβρα Α Λυκείου - Εξισώσεις - Ανισώσεις 2020 [75 σελίδες]Μάκης Χατζόπουλος
 
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΤεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΜάκης Χατζόπουλος
 
Διαγώνισμα Β Λυκείου Άλγεβρα Α΄ και Β΄ ομάδα [1/11/2017]
Διαγώνισμα Β Λυκείου Άλγεβρα Α΄ και Β΄ ομάδα [1/11/2017]Διαγώνισμα Β Λυκείου Άλγεβρα Α΄ και Β΄ ομάδα [1/11/2017]
Διαγώνισμα Β Λυκείου Άλγεβρα Α΄ και Β΄ ομάδα [1/11/2017]Μάκης Χατζόπουλος
 
Διαγωνισμα πολυωνυμα β λυκειου
Διαγωνισμα πολυωνυμα β λυκειουΔιαγωνισμα πολυωνυμα β λυκειου
Διαγωνισμα πολυωνυμα β λυκειουΘανάσης Δρούγας
 
Πολυμεσική Θεωρία Ορμής - Διατήρησης Ορμής – Κρούσεις Γ΄ Λυκείου
Πολυμεσική Θεωρία Ορμής - Διατήρησης Ορμής – Κρούσεις Γ΄ ΛυκείουΠολυμεσική Θεωρία Ορμής - Διατήρησης Ορμής – Κρούσεις Γ΄ Λυκείου
Πολυμεσική Θεωρία Ορμής - Διατήρησης Ορμής – Κρούσεις Γ΄ ΛυκείουHOME
 

What's hot (20)

Διαγωνίσματα 1ου τετραμήνου για το 1ο ΓΕΛ Αμαρουσίου
Διαγωνίσματα 1ου τετραμήνου για το 1ο ΓΕΛ ΑμαρουσίουΔιαγωνίσματα 1ου τετραμήνου για το 1ο ΓΕΛ Αμαρουσίου
Διαγωνίσματα 1ου τετραμήνου για το 1ο ΓΕΛ Αμαρουσίου
 
γ' επαλ βοηθητικό κεφάλαιο σημειώσεων και ασκήσεων
γ' επαλ βοηθητικό κεφάλαιο σημειώσεων και ασκήσεωνγ' επαλ βοηθητικό κεφάλαιο σημειώσεων και ασκήσεων
γ' επαλ βοηθητικό κεφάλαιο σημειώσεων και ασκήσεων
 
[Φυσική ΠΡΣ Β' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
[Φυσική ΠΡΣ Β' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης[Φυσική ΠΡΣ Β' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
[Φυσική ΠΡΣ Β' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
 
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
 
Διαγώνισμα β τετραμήνου Β΄ Λυκείου για το 1ο ΓΕΛ Αμαρουσίου
Διαγώνισμα β τετραμήνου Β΄ Λυκείου για το 1ο ΓΕΛ ΑμαρουσίουΔιαγώνισμα β τετραμήνου Β΄ Λυκείου για το 1ο ΓΕΛ Αμαρουσίου
Διαγώνισμα β τετραμήνου Β΄ Λυκείου για το 1ο ΓΕΛ Αμαρουσίου
 
Βασικά τριγωνομετρικά όρια - Εργασία μαθητών
Βασικά τριγωνομετρικά όρια - Εργασία μαθητώνΒασικά τριγωνομετρικά όρια - Εργασία μαθητών
Βασικά τριγωνομετρικά όρια - Εργασία μαθητών
 
αντιδράσεις προσθήκης αλδεΰδες κετόνες νιτρίλια
αντιδράσεις προσθήκης αλδεΰδες κετόνες νιτρίλιααντιδράσεις προσθήκης αλδεΰδες κετόνες νιτρίλια
αντιδράσεις προσθήκης αλδεΰδες κετόνες νιτρίλια
 
τυπολογιο φυσικησ β΄λυκειου ηλεκτρικο πεδιο
τυπολογιο φυσικησ β΄λυκειου ηλεκτρικο πεδιοτυπολογιο φυσικησ β΄λυκειου ηλεκτρικο πεδιο
τυπολογιο φυσικησ β΄λυκειου ηλεκτρικο πεδιο
 
[Φυσική Α' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
[Φυσική Α' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης[Φυσική Α' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
[Φυσική Α' Λυκείου] Τελικό Διαγώνισμα Προσομοίωσης
 
2ο θέμα Μαθηματικών προσανατολισμού β΄ λυκείου
2ο θέμα Μαθηματικών προσανατολισμού β΄ λυκείου2ο θέμα Μαθηματικών προσανατολισμού β΄ λυκείου
2ο θέμα Μαθηματικών προσανατολισμού β΄ λυκείου
 
Παραγώγιση απόλυτων τιμών...
Παραγώγιση απόλυτων τιμών... Παραγώγιση απόλυτων τιμών...
Παραγώγιση απόλυτων τιμών...
 
1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων
1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων 1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων
1.2: Ασκήσεις στην ισότητα και σύνθεση συναρτήσεων
 
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛΑσκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
Ασκήσεις στα Όρια-Συνέχεια Συνάρτησης Γ' Λυκείου ΕΠΑΛ
 
Αντιπαραδείγματα σχολικού βιβλίου [2019]
Αντιπαραδείγματα σχολικού βιβλίου [2019]Αντιπαραδείγματα σχολικού βιβλίου [2019]
Αντιπαραδείγματα σχολικού βιβλίου [2019]
 
Άλγεβρα Α Λυκείου - Εξισώσεις - Ανισώσεις 2020 [75 σελίδες]
Άλγεβρα Α Λυκείου - Εξισώσεις - Ανισώσεις 2020 [75 σελίδες]Άλγεβρα Α Λυκείου - Εξισώσεις - Ανισώσεις 2020 [75 σελίδες]
Άλγεβρα Α Λυκείου - Εξισώσεις - Ανισώσεις 2020 [75 σελίδες]
 
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΤεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
 
Διαγώνισμα Β Λυκείου Άλγεβρα Α΄ και Β΄ ομάδα [1/11/2017]
Διαγώνισμα Β Λυκείου Άλγεβρα Α΄ και Β΄ ομάδα [1/11/2017]Διαγώνισμα Β Λυκείου Άλγεβρα Α΄ και Β΄ ομάδα [1/11/2017]
Διαγώνισμα Β Λυκείου Άλγεβρα Α΄ και Β΄ ομάδα [1/11/2017]
 
Διαγωνισμα πολυωνυμα β λυκειου
Διαγωνισμα πολυωνυμα β λυκειουΔιαγωνισμα πολυωνυμα β λυκειου
Διαγωνισμα πολυωνυμα β λυκειου
 
Πολυμεσική Θεωρία Ορμής - Διατήρησης Ορμής – Κρούσεις Γ΄ Λυκείου
Πολυμεσική Θεωρία Ορμής - Διατήρησης Ορμής – Κρούσεις Γ΄ ΛυκείουΠολυμεσική Θεωρία Ορμής - Διατήρησης Ορμής – Κρούσεις Γ΄ Λυκείου
Πολυμεσική Θεωρία Ορμής - Διατήρησης Ορμής – Κρούσεις Γ΄ Λυκείου
 
μ.χ πολυωνυμα θεωρια-νεο
μ.χ πολυωνυμα   θεωρια-νεομ.χ πολυωνυμα   θεωρια-νεο
μ.χ πολυωνυμα θεωρια-νεο
 

Similar to ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

1 διαγωνισμα γ λυκειου 1κεφάλαιο αναλυση2012
1 διαγωνισμα γ λυκειου 1κεφάλαιο αναλυση20121 διαγωνισμα γ λυκειου 1κεφάλαιο αναλυση2012
1 διαγωνισμα γ λυκειου 1κεφάλαιο αναλυση2012Dimitris Ountzoudis
 
Διαγωνισμα Γ λυκειου Κατευθυνση Α κεφάλαιο αναλυση
Διαγωνισμα Γ λυκειου Κατευθυνση Α κεφάλαιο αναλυσηΔιαγωνισμα Γ λυκειου Κατευθυνση Α κεφάλαιο αναλυση
Διαγωνισμα Γ λυκειου Κατευθυνση Α κεφάλαιο αναλυσηDimitris Ountzoudis
 
27 επαναληπτικά θέματα (2017 2018)
27 επαναληπτικά θέματα (2017 2018)27 επαναληπτικά θέματα (2017 2018)
27 επαναληπτικά θέματα (2017 2018)Athanasios Kopadis
 
Them mat kat_c_hmer_no_1106
Them mat kat_c_hmer_no_1106Them mat kat_c_hmer_no_1106
Them mat kat_c_hmer_no_1106ireportergr
 
36 επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
36   επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)36   επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
36 επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)Παύλος Τρύφων
 
ΜΑΘΗΜΑΤΙΚΆ Γ ΛΥΚΕΊΟΥ
ΜΑΘΗΜΑΤΙΚΆ Γ ΛΥΚΕΊΟΥ ΜΑΘΗΜΑΤΙΚΆ Γ ΛΥΚΕΊΟΥ
ΜΑΘΗΜΑΤΙΚΆ Γ ΛΥΚΕΊΟΥ PETER638359
 
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό ΛογισμόΔιαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό ΛογισμόΜάκης Χατζόπουλος
 
44 aristaaaaa copy
44 aristaaaaa copy44 aristaaaaa copy
44 aristaaaaa copyXrimak Makis
 
Γιώργος Μιχαηλίδης-Επαναληπτικές ασκήσεις Γ Λυκείου
Γιώργος Μιχαηλίδης-Επαναληπτικές ασκήσεις Γ ΛυκείουΓιώργος Μιχαηλίδης-Επαναληπτικές ασκήσεις Γ Λυκείου
Γιώργος Μιχαηλίδης-Επαναληπτικές ασκήσεις Γ ΛυκείουΔημήτρης Μοσχόπουλος
 
36 επαναληπτικα θεματα γ λυκειου (εκφωνησεις+λυσεις!)
36   επαναληπτικα θεματα γ λυκειου (εκφωνησεις+λυσεις!)36   επαναληπτικα θεματα γ λυκειου (εκφωνησεις+λυσεις!)
36 επαναληπτικα θεματα γ λυκειου (εκφωνησεις+λυσεις!)Παύλος Τρύφων
 
μαθηματικά γενικής παιδείας γ επανάληψη νοε2003
μαθηματικά γενικής παιδείας γ επανάληψη νοε2003μαθηματικά γενικής παιδείας γ επανάληψη νοε2003
μαθηματικά γενικής παιδείας γ επανάληψη νοε2003Aris Chatzigrivas
 
θεματα προσομοίωσης πανελλαδικών D.α.τ. 2008 2013
θεματα προσομοίωσης πανελλαδικών D.α.τ. 2008 2013θεματα προσομοίωσης πανελλαδικών D.α.τ. 2008 2013
θεματα προσομοίωσης πανελλαδικών D.α.τ. 2008 2013tsekouras
 
Epanalipsi algebra b likioy
Epanalipsi algebra b likioyEpanalipsi algebra b likioy
Epanalipsi algebra b likioypanos lentas
 
100 επαναληπτικα θεματα στισ παραγωγουσ σε word
100 επαναληπτικα θεματα στισ παραγωγουσ σε word100 επαναληπτικα θεματα στισ παραγωγουσ σε word
100 επαναληπτικα θεματα στισ παραγωγουσ σε wordΜάκης Χατζόπουλος
 
100 επαναληπτικα θεματα στισ παραγωγουσ σε word
100 επαναληπτικα θεματα στισ παραγωγουσ σε word100 επαναληπτικα θεματα στισ παραγωγουσ σε word
100 επαναληπτικα θεματα στισ παραγωγουσ σε wordΜάκης Χατζόπουλος
 

Similar to ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (20)

1 διαγωνισμα γ λυκειου 1κεφάλαιο αναλυση2012
1 διαγωνισμα γ λυκειου 1κεφάλαιο αναλυση20121 διαγωνισμα γ λυκειου 1κεφάλαιο αναλυση2012
1 διαγωνισμα γ λυκειου 1κεφάλαιο αναλυση2012
 
Διαγωνισμα Γ λυκειου Κατευθυνση Α κεφάλαιο αναλυση
Διαγωνισμα Γ λυκειου Κατευθυνση Α κεφάλαιο αναλυσηΔιαγωνισμα Γ λυκειου Κατευθυνση Α κεφάλαιο αναλυση
Διαγωνισμα Γ λυκειου Κατευθυνση Α κεφάλαιο αναλυση
 
οεφε 2011 μαθηματικα κατευθυνσησ
οεφε 2011 μαθηματικα κατευθυνσησοεφε 2011 μαθηματικα κατευθυνσησ
οεφε 2011 μαθηματικα κατευθυνσησ
 
οεφε 2011 μαθηματικα κατευθυνσησ
οεφε 2011 μαθηματικα κατευθυνσησοεφε 2011 μαθηματικα κατευθυνσησ
οεφε 2011 μαθηματικα κατευθυνσησ
 
27 επαναληπτικά θέματα (2017 2018)
27 επαναληπτικά θέματα (2017 2018)27 επαναληπτικά θέματα (2017 2018)
27 επαναληπτικά θέματα (2017 2018)
 
Them mat kat_c_hmer_no_1106
Them mat kat_c_hmer_no_1106Them mat kat_c_hmer_no_1106
Them mat kat_c_hmer_no_1106
 
36 επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
36   επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)36   επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
36 επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
 
ΜΑΘΗΜΑΤΙΚΆ Γ ΛΥΚΕΊΟΥ
ΜΑΘΗΜΑΤΙΚΆ Γ ΛΥΚΕΊΟΥ ΜΑΘΗΜΑΤΙΚΆ Γ ΛΥΚΕΊΟΥ
ΜΑΘΗΜΑΤΙΚΆ Γ ΛΥΚΕΊΟΥ
 
Έλεγχος γνώσεων Γ λυκείου
Έλεγχος γνώσεων Γ λυκείουΈλεγχος γνώσεων Γ λυκείου
Έλεγχος γνώσεων Γ λυκείου
 
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό ΛογισμόΔιαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
 
44 aristaaaaa copy
44 aristaaaaa copy44 aristaaaaa copy
44 aristaaaaa copy
 
Γιώργος Μιχαηλίδης-Επαναληπτικές ασκήσεις Γ Λυκείου
Γιώργος Μιχαηλίδης-Επαναληπτικές ασκήσεις Γ ΛυκείουΓιώργος Μιχαηλίδης-Επαναληπτικές ασκήσεις Γ Λυκείου
Γιώργος Μιχαηλίδης-Επαναληπτικές ασκήσεις Γ Λυκείου
 
36 επαναληπτικα θεματα γ λυκειου (εκφωνησεις+λυσεις!)
36   επαναληπτικα θεματα γ λυκειου (εκφωνησεις+λυσεις!)36   επαναληπτικα θεματα γ λυκειου (εκφωνησεις+λυσεις!)
36 επαναληπτικα θεματα γ λυκειου (εκφωνησεις+λυσεις!)
 
μαθηματικά γενικής παιδείας γ επανάληψη νοε2003
μαθηματικά γενικής παιδείας γ επανάληψη νοε2003μαθηματικά γενικής παιδείας γ επανάληψη νοε2003
μαθηματικά γενικής παιδείας γ επανάληψη νοε2003
 
θεματα προσομοίωσης πανελλαδικών D.α.τ. 2008 2013
θεματα προσομοίωσης πανελλαδικών D.α.τ. 2008 2013θεματα προσομοίωσης πανελλαδικών D.α.τ. 2008 2013
θεματα προσομοίωσης πανελλαδικών D.α.τ. 2008 2013
 
Epanalipsi algebra b likioy
Epanalipsi algebra b likioyEpanalipsi algebra b likioy
Epanalipsi algebra b likioy
 
Ekfoniseis 1 200
Ekfoniseis 1 200Ekfoniseis 1 200
Ekfoniseis 1 200
 
Ekfoniseis 1 200
Ekfoniseis 1 200Ekfoniseis 1 200
Ekfoniseis 1 200
 
100 επαναληπτικα θεματα στισ παραγωγουσ σε word
100 επαναληπτικα θεματα στισ παραγωγουσ σε word100 επαναληπτικα θεματα στισ παραγωγουσ σε word
100 επαναληπτικα θεματα στισ παραγωγουσ σε word
 
100 επαναληπτικα θεματα στισ παραγωγουσ σε word
100 επαναληπτικα θεματα στισ παραγωγουσ σε word100 επαναληπτικα θεματα στισ παραγωγουσ σε word
100 επαναληπτικα θεματα στισ παραγωγουσ σε word
 

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

  • 1. ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ 23/12/2012 ΣΕΛΙΔΑ 1 ΔΙΑΓΩΝΙΣΜΑ Γ ΛΥΚΕΙΟΥ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΑΝΑΛΥΣΗΣ ΔΙΑΡΚΕΙΑ : 3 ώρες ΘΕΜΑ 1 ο Α.Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα[α, β]. Αν • η f είναι συνεχής στο [α, β] και • f(α) ≠ f(β) δείξτε ότι για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένας, τουλάχιστον x0 ∈ (α, β) τέτοιος, ώστε f( x0 ) = η . Μονάδες 9 Β.Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. i) Αν η f είναι συνεχής στο [α, β] με f(α) < 0 και υπάρχει ξ ∈ (α, β) ώστε f(ξ) = 0, τότε κατ’ ανάγκη f(β) > 0. Μονάδες 2 ii) Αν η f έχει αντίστροφη συνάρτηση f −1 και η γραφική παράσταση της f έχει κοινό σημείο Α με την ευθεία y = x, τότε το σημείο Α ανήκει και στη γραφική παράσταση της f −1 . Μονάδες 2  1  iii)Αν xlim ( f(x)) = 0 και f(x) > 0 κοντά στο x0 , τότε lim  → x0 ÷ = +∞ Μονάδες 2 x → x0  f(x)  lim f(x) = f(x 0 ) iv) Μια συνάρτηση f είναι συνεχής στο [α,β] όταν x → x για κάθε x0 ∈ (α, β) 0 Μονάδες 2 v) Δίνεται η συνάρτηση f:R→R η οποία είναι συνεχής και 1-1 . Αν f(x)>x τότε f −1(x) < x Μονάδες 2 vi) Αν η συνάρτηση f:R→R η οποία είναι συνεχής και γνησίως αύξουσα στο R τότε η f −1 έχει πεδίο ορισμού διάστημα . Μονάδες 2 Γ. Στις παρακάτω προτάσεις δίνονται περισσότερες από μία απαντήσεις .Να επιλέξετε τη σωστή. i). Αν η f έχει πεδίο ορισμού το Α=[0,3] τότε η f(x-2) έχει πεδίο ορισμού το α) Β=[2,5] β) Β=[-1,6] γ) Β=[2,3] δ)Β=[2,4] Μονάδες 2 ii). Δίνονται οι συναρτήσεις f,g:R→R και (fοg)(x)=x+2 , g(x)=x-1 . Τότε η f είναι : α) f(x)=x+2 β) f(x)=2x-3 γ) f(x)= x+3 Μονάδες 2 ΘΕΜΑ 2
  • 2. ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ 23/12/2012 ΣΕΛΙΔΑ 2 Αν η συνάρτηση f έχει τύπο f(x) = ln(x − 3) + x − 2 τότε : α. Να αποδείξετε ότι υπάρχει η αντίστροφη συνάρτηση της f . Μονάδες 5 β) Να λύσετε την εξίσωση : f(x)=x Μονάδες 4 γ) Να βρείτε τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων f και f −1 . Μονάδες 4 δ) Δίνεται η συνάρτηση g με πεδίο ορισμού το (0, +∞) και σύνολο τιμών το ( 3, +∞ ) τέτοια ώστε η fog να είναι γνησίως φθίνουσα στο (0, +∞) . i) Να δείξετε ότι η g είναι γνησίως φθίνουσα στο (0, +∞) . Μονάδες 6 g(8) − 3 >e ( ) g ex − 1 − g(8) ii) Να λύσετε στο (0, +∞) την ανίσωση ( ) g ex −1 − 3 Μονάδες 6 ΘΕΜΑ 3 .  ημ(3αx)  , x<0  x  = 2 Δίνεται η συνάρτηση f(x)α  2 + , x 0= .   3  1   x .ημ 2 ÷ − β , x> 0    x  i) Να βρεθούν οι τιμές των α,β ∈ R ώστε η f να είναι συνεχής στο x0 = 0 . Μονάδες 6 ii) Να βρείτε το όριο : lim f(x) . x → +∞ Μονάδες 6 g ( x) iii) Δίνεται η συνάρτηση g : R → R , αν α=1 και lim = 1 τότε x→0 x g(x) + x α) Να βρείτε τις τιμές του λ ∈ R για τις οποίες ισχύει : lim = lim f(x) Μονάδες 5 − x → 0 g(x)λx x →0 β) Αν η γραφική παράσταση της g δεν έχει κανένα κοινό σημείο με τον άξονα χ΄χ , να αποδείξετε ότι η g δεν είναι συνεχής . Μονάδες 4 γ) Αν για τη συνάρτηση h:R → R γνωρίζουμε ότι είναι συνεχής στο R , h(x) ≠ 0 για κάθε g(x) x ∈ R και h(x) > για κάθε x ≠ 0 , να βρείτε το πρόσημο της h . Μονάδες 4 x ΘΕΜΑ 4.Δίνεται η συνάρτηση f η οποία είναι συνεχής και γνησίως αύξουσα στο R .
  • 3. ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ 23/12/2012 ΣΕΛΙΔΑ 3 Αν είναι f(0)=2 και f(1)=4 να αποδείξετε ότι : Ι) Η ευθεία ψ=-2x+3 τέμνει τη γραφική παράσταση της f σε ένα ακριβώς σημείο με τετμημένη x0 ∈ (0,1). Μονάδες 4 1 2 f  ÷ + 2f  ÷ ΙΙ) Υπάρχει μοναδικό x0 ∈ (0,1) τέτοιο ώστε 2 5 Μονάδες 4 f(x0 ) =   3 III) Να λύσετε την εξίσωση f(x)+f(2x)=f(3x)+f(4x) , x ∈ [0,1] Μονάδες 5 ΙV)Δίνεται ότι όταν x ∈ [x1 , x 2 ] τότε η f έχει σύνολο τιμών το [α+2,α+4] . Να βρεθούν οι δυνατές τιμές του α ∈ R ώστε η f(x)=0 να έχει μια ακριβώς ρίζα 1 x0 στο [x1 , x 2 ] και να βρεθεί το όριο lim+ x → x0 f(x) . Μονάδες 6 1 1 v) Δίνεται η συνάρτηση g: ( 0,1 → R με g(x)=  − + 2 να βρείτε τα όρια f(x) x 1 1 g ÷ g ÷ lim g(x) e x + 2 x α) x → 0+ β) lim Μονάδες 6 x → +∞ 1 g ÷ e x +1 ΚΑΛΗ ΕΠΙΤΥΧΙΑ
  • 4. ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ 23/12/2012 ΣΕΛΙΔΑ 3 Αν είναι f(0)=2 και f(1)=4 να αποδείξετε ότι : Ι) Η ευθεία ψ=-2x+3 τέμνει τη γραφική παράσταση της f σε ένα ακριβώς σημείο με τετμημένη x0 ∈ (0,1). Μονάδες 4 1 2 f  ÷ + 2f  ÷ ΙΙ) Υπάρχει μοναδικό x0 ∈ (0,1) τέτοιο ώστε 2 5 Μονάδες 4 f(x0 ) =   3 III) Να λύσετε την εξίσωση f(x)+f(2x)=f(3x)+f(4x) , x ∈ [0,1] Μονάδες 5 ΙV)Δίνεται ότι όταν x ∈ [x1 , x 2 ] τότε η f έχει σύνολο τιμών το [α+2,α+4] . Να βρεθούν οι δυνατές τιμές του α ∈ R ώστε η f(x)=0 να έχει μια ακριβώς ρίζα 1 x0 στο [x1 , x 2 ] και να βρεθεί το όριο lim+ x → x0 f(x) . Μονάδες 6 1 1 v) Δίνεται η συνάρτηση g: ( 0,1 → R με g(x)=  − + 2 να βρείτε τα όρια f(x) x 1 1 g ÷ g ÷ lim g(x) e x + 2 x α) x → 0+ β) lim Μονάδες 6 x → +∞ 1 g ÷ e x +1 ΚΑΛΗ ΕΠΙΤΥΧΙΑ
  • 5. ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ 23/12/2012 ΣΕΛΙΔΑ 3 Αν είναι f(0)=2 και f(1)=4 να αποδείξετε ότι : Ι) Η ευθεία ψ=-2x+3 τέμνει τη γραφική παράσταση της f σε ένα ακριβώς σημείο με τετμημένη x0 ∈ (0,1). Μονάδες 4 1 2 f  ÷ + 2f  ÷ ΙΙ) Υπάρχει μοναδικό x0 ∈ (0,1) τέτοιο ώστε 2 5 Μονάδες 4 f(x0 ) =   3 III) Να λύσετε την εξίσωση f(x)+f(2x)=f(3x)+f(4x) , x ∈ [0,1] Μονάδες 5 ΙV)Δίνεται ότι όταν x ∈ [x1 , x 2 ] τότε η f έχει σύνολο τιμών το [α+2,α+4] . Να βρεθούν οι δυνατές τιμές του α ∈ R ώστε η f(x)=0 να έχει μια ακριβώς ρίζα 1 x0 στο [x1 , x 2 ] και να βρεθεί το όριο lim+ x → x0 f(x) . Μονάδες 6 1 1 v) Δίνεται η συνάρτηση g: ( 0,1 → R με g(x)=  − + 2 να βρείτε τα όρια f(x) x 1 1 g ÷ g ÷ lim g(x) e x + 2 x α) x → 0+ β) lim Μονάδες 6 x → +∞ 1 g ÷ e x +1 ΚΑΛΗ ΕΠΙΤΥΧΙΑ
  • 6. ΟΥΝΤΖΟΥΔΗΣ ΔΗΜΗΤΡΗΣ 23/12/2012 ΣΕΛΙΔΑ 3 Αν είναι f(0)=2 και f(1)=4 να αποδείξετε ότι : Ι) Η ευθεία ψ=-2x+3 τέμνει τη γραφική παράσταση της f σε ένα ακριβώς σημείο με τετμημένη x0 ∈ (0,1). Μονάδες 4 1 2 f  ÷ + 2f  ÷ ΙΙ) Υπάρχει μοναδικό x0 ∈ (0,1) τέτοιο ώστε 2 5 Μονάδες 4 f(x0 ) =   3 III) Να λύσετε την εξίσωση f(x)+f(2x)=f(3x)+f(4x) , x ∈ [0,1] Μονάδες 5 ΙV)Δίνεται ότι όταν x ∈ [x1 , x 2 ] τότε η f έχει σύνολο τιμών το [α+2,α+4] . Να βρεθούν οι δυνατές τιμές του α ∈ R ώστε η f(x)=0 να έχει μια ακριβώς ρίζα 1 x0 στο [x1 , x 2 ] και να βρεθεί το όριο lim+ x → x0 f(x) . Μονάδες 6 1 1 v) Δίνεται η συνάρτηση g: ( 0,1 → R με g(x)=  − + 2 να βρείτε τα όρια f(x) x 1 1 g ÷ g ÷ lim g(x) e x + 2 x α) x → 0+ β) lim Μονάδες 6 x → +∞ 1 g ÷ e x +1 ΚΑΛΗ ΕΠΙΤΥΧΙΑ