SlideShare une entreprise Scribd logo
1  sur  79
APPROACH TO BLOOD GAS
ANALYSIS
Dr. MANDAR HAVAL
D.C.H D.N.B
How does the kidney do it?
• The kidney does it in three ways:
– Total reabsorption of filtered bicarbonate (proximal).
– Controlled secretion of H+ into filtrate (distal).
– Judicious use of urinary buffers.
FILTRATE

TUBULAR CELL

BLOOD
FILTRATE

TUBULAR CELL

H2O + CO2
CA II

H2CO3
H+ + HCO3-

BLOOD
FILTRATE

TUBULAR CELL

H2O + CO2
CA II

H2CO3
H+ + HCO3-

BLOOD
FILTRATE

TUBULAR CELL

BLOOD

H2O + CO2
CA II

H2CO3

H+ + HCO3Na+

Na

+
Na

Na K
ATPase

K
TUBULAR CELL

FILTRATE

BLOOD

H2O + CO2
CA II

H2CO3
H+ATPase

Na+

Na+ / H+
Antiporter

+
HH+ + HCO33-HCO
Na
Na+

Na K
ATPase

K
TUBULAR CELL

FILTRATE

BLOOD

H2O + CO2
CA II

H2CO3
Na / K

H+

HCO3-

H+ATPase
Na+ / H+
Antiporter

Na+

Na
Na+

Na K
ATPase

K
TUBULAR CELL

FILTRATE

H2O + CO2

BLOOD

H2O + CO2
CA II

H2CO3
CA IV

H2CO3

HCO3-

Na / K

H+

HCO3-

H+ATPase
Na+ / H+
Antiporter

Na+

Na
Na+

Na K
ATPase

K
FILTRATE

H2O

TUBULAR CELL

BLOOD

H2O + CO2
CA II
CA IV

H+

HCO3-
COLLECTING
TUBULE CELL

BLOOD

FILTRATE

H2O + CO2
CA II

H2CO3

Cl- / HCO3-

Cl-

Exchanger

HCO3-

H+

H+
ATPase
COLLECTING
TUBULE CELL

BLOOD

FILTRATE

H2O + CO2
CA II

H2CO3

HCO3-

H+
ATPase
Cl- / HCO3-

Exchanger

Cl-

H+
COLLECTING
TUBULE CELL

FILTRATE

BLOOD

HPO4=

H+
ATPase

H+
COLLECTING
TUBULE CELL

FILTRATE

BLOOD

H+
ATPase

H+

HPO4= H2PO4
COLLECTING
TUBULE CELL

FILTRATE

BLOOD

SO4=

H+
ATPase

H+

HSO4-
COLLECTING
TUBULE CELL

FILTRATE

BLOOD

NH3

NH3
H+
ATPase

NH4+
H+
Evaluation of
Systemic Acid Base Disorders
1. Comprehensive history and physical examination.

2. Evaluate simultaneously performed ABG & serum
electrolytes.
3. Identification of the dominant disorder.

4. Calculation of compensation.
5. Calculate the anion gap and the Δ.
1. Anion Gap
2. Δ AG
3. Δ Bicarbonate
Step 3:

Identification of the dominant disorder
Primary
disorder
Metabolic
acidosis

pH

Initial
change

Compensatory
change

↓

↓ HCO3

↓ PCO2
Step 3:

Identification of the dominant disorder
pH

Initial
change

Compensatory
change

Metabolic
acidosis

↓

↓ HCO3

↓ PCO2

Metabolic
alkalosis

↑

↑ HCO3

↑ PCO2

Primary
disorder
Step 3:

Identification of the dominant disorder
pH

Initial
change

Compensatory
change

Metabolic
acidosis

↓

↓ HCO3

↓ PCO2

Metabolic
alkalosis

↑

↑ HCO3

↑ PCO2

Respiratory
acidosis

↓

↑ PCO2

↑ HCO3

Respiratory
alkalosis

↑

↓ PCO2

↓ HCO3

Primary
disorder
• WHERE THE PROBLEM START
Calculation of compensation
Mean "whole body" response equations for simple acid-base disturbances.

Disorder

pH

Primary
change

Compensatory
Response

Equation

Metabolic
Acidosis



 [HCO3-]

 PCO2

ΔPCO2  1.2  ΔHCO3

Metabolic
Alkalosis



 [HCO3-]

 PCO2

ΔPCO2  0.7  ΔHCO3

Respiratory
Acidosis



 PCO2

 [HCO3-]

Acute:
ΔHCO3-  0.1  ΔPCO2
Chronic:
ΔHCO3-  0.3  ΔPCO2

Respiratory
Alkalosis



 PCO2

 [HCO3-]

Acute:
ΔHCO3-  0.2  ΔPCO2
Chronic:
ΔHCO3-  0.5  ΔPCO2

Note: The formula calculates the change in the compensatory parameter.
Simple compensation
Disorder

pH

Primary problem

Compensation

Metabolic acidosis

↓

↓ in HCO3-

PaCO2
=1.5xHCO3+8(+/-2)

Metabolic alkalosis

↑

10↑ in HCO3-

7↑ in PaCO2

Respiratory acidosis

↓

ACUTE -10↑ in PaCO2
CHRONIC -10↑ in PaCO2

1↑ in [HCO3-]
3.5↑ in [HCO3-]

Respiratory alkalosis

↑

ACUTE-10↓ in PaCO2
CHRONIC-10↓ in PaCO2

2↓ in [HCO3-]
4↓ in [HCO3-]
Calculate the “gaps”
Anion gap

=

Na+ − [Cl− + HCO3−]

Δ AG

=

Anion gap − 12

Δ HCO3

=

24 − HCO3

Δ AG = Δ HCO3 −, then Pure high AG Met. Acidosis
Δ AG > Δ HCO3 −, then High AG Met Acidosis + Met. Alkalosis
Δ AG < Δ HCO3 −, then High AG Met Acidosis + Normal AG Met A
Note:

Add Δ AG to measured HCO3− to obtain bicarbonate level  Delta _ AG

  Pr e _ existing _ Bicarb

that would have existed IF the high AG metabolic acidosis
Current _ Bicarb


were to be absent, i.e., “Pre-existing Bicarbonate.”
SOME FORMULA

•THAT YOU SHOULD
KNOW
CALCULATION OF H+

H   24  HCO


PaCO2

3

20 – 7.70
30 – 7.50
40(H+) – 7.40 (PH)
50 – 7.30
65 – 7.20
pH

H+

pH

H+

6.70

200

7.40

40

6.75

178

7.45

35

6.80

158

7.50

32

6.85

141

7.55

28

6.90

126

7.60

25

6.95

112

7.65

22

7.00

100

7.70

20

7.05

89

7.75

18

7.10

79

7.80

16

7.15

71

7.85

14

7.20

63

7.90

13

7.25

56

7.95

11

7.30

50

8.00

10

7.35

45
CAO2= directly reflects the total
number of oxygen molecules in
arterial blood, both bound and
unbound to hemoglobin
• CaO2 = (1.34 x HB x SPO2) +(0.003 x PaO2)
Normal CaO2 ranges from 16 to 22 ml O2/dl
Which patient is more hypoxemic, and why?

• Patient A:
pH 7.48
PaCO2 34 mm Hg
PaO2 85 mm Hg
SaO2 95%
Hemoglobin 7 gm%

• Patient B:
pH 7.32
PaCO2 74 mm Hg
PaO255 mm Hg
SaO2 85%
Hemoglobin 15 gm%
www.dnbpediatrics.com
ANS CONT…..
• Patient A: Arterial oxygen content = .95 x 7 x
1.34 = 8.9 ml O2/dl
• Patient B: Arterial oxygen content = .85 x 15 x
1.34 = 17.1 ml O2/dl
• Patient A, with the higher PaO2 but the lower
hemoglobin content, is more hypoxemic

www.dnbpediatrics.com
PaO2

• Factors affecting the PaO2 include alveolar
ventilation, FIO2, altitude, age, and the
oxyhemoglobin dissociation curve
• Relation between PaO2 and SaO2:
PaO2
60mm Hg
50mm Hg
40mm Hg
30mm Hg

corresponds to SaO2
90%
80%
70%
60%
True or False:
The pO2 in a cup of water open to the
atmosphere is always higher than the arterial
pO2 in a healthy person (breathing room air)
who is holding the cup

www.dnbpediatrics.com
ANS
• The PO2 in the cup of water is always higher. This is for several
reasons. First, there is no barrier to oxygen diffusing into the
water; thus the PO2 in the cup will be the same as the
atmosphere, at sea level approximately 160 mm Hg.
• Second, there is no CO2 coming from the cup to dilute the
oxygen, as there is in people.
• Third, there is no V-Q inequality or shunt; even healthy
people have a difference between alveolar PO2 and arterial
PO2 for this reason. Thus a healthy person and a cup of water
exposed to the atmosphere at sea level would have PO2
values of about 100 mm Hg and 160 mm Hg, respectively.

www.dnbpediatrics.com
A-a Gradient
• Determines the degree of lung function
impairment
• The A-a gradient is the partial pressure of
alveolar oxygen minus the partial pressure of
arterial oxygen (PAO2-PaO2)
• Normal is 2-10mm Hg or 10 plus one tenth the
person’s age
A-a Gradient
• [(713*FIO2)-(PaCO2/0.8)] – PaO2

INTERPRETATION
NORMAL – 10-20
(>30 is SINGNIFICANT)
Seen in – Shunt
Low V/Q
Hypoventilation
A-a Gradient
• PAO2-PaO2 of 20-30mm Hg on room air
indicates mild pulmonary dysfunction, and
greater than 50mm Hg on room air indicates
severe pulmonary dysfunction
• The causes of increased gradient include
intrapulmonary shunt, intracardiac shunt, and
diffusion abnormalities
a/A Ratio
• Pao2/PAo2 NAORMAL LEVEL IS >0.75
• <0.60 IS INCOMPATIBLE WITH SPONTANIOUS
BREATHING
PaO2/FIO2 Ratio

• To estimate the impairment of oxygenation, calculate
the PaO2/FIO2 ratio
• Normally, this ratio is 500-600
• Below 300 is acute lung injury*
• Below 200 is ARDS*
*Along with diffuse infiltrates, normal PCWP, and
appropriate mechanism
OXYGEN INDEX

• OI =MAP X FIO2
POST DUCTAL
PAO2

x 100
INTERPRETATION
• OI >40 that is unresponsive to iNO predict a
high mortality rate (>80%) and are indications
for ECMO.
VENTILATORY INDEX

• VI =PIP X PCO2 X RR
1000

VI > 65% INDICATE
PREDICTIVE DEATH
IN ARDS
RELATION OF ALBUMIN IN ABG
 AG corrected = AG + 2.5[4 – albumin]
(AG= Anion gap)
DELTA GAP






Delta gap = (actual AG – 12) + HCO3
Adjusted HCO3 should be 24 (+_ 6) {18-30}
If delta gap > 30 -> additional metabolic alkalosis
If delta gap < 18 -> additional non-gap metabolic acidosis
If delta gap 18 – 30 -> no additional metabolic disorders
SOME CASE DISCUSSION
Case 1
• A 15 yr old juvenile diabetic presents with abdominal
pain, vomiting, fever & tiredness for 1 day. He had
stopped taking insulin 3 days ago. Examination
revealed tachycardia, BP- 100/60, signs of
dehydration. Abdominal examination was normal.
• ABG:
pH
PaCO2
HCO3
PaO2

7.31
26 mmHg
12 mEq/L
92 mm Hg

Serum Electrolytes:
Na
140 mEq/L
K
5.0 mEq/L
Cl
100 mEq/L

• Evaluate the acid-base disturbance(s)?
Case 1: Solution
• Dominant disorder is Metabolic Acidosis
• Compensation formula:
Δ PaCO2
= 1.2 × Δ HCO3
= 1.2 × 12
= 14.4
PaCO2
= 40 – 14 = 26
Compensation is appropriate.
• Anion Gap
= 140 – (100 + 12)
= 28
AG is high.

pH
PaCO2
HCO3
PaO2

7.31
26
12
92

Na
K
Cl

140
5.0
100
Case 1: Solution
• Δ AG

= 28 – 12
= 16

• Δ HCO3
• Δ AG > Δ

= 24 – 12
= 12
HCO3

pH
PaCO2
HCO3
PaO2

7.31
26
12
92

Na
K
Cl

140
5.0
100

• Final Diagnosis:
High AG Met. Acidosis + Met. Alkalosis
Case 2
• A 14 yr old boy presents with continuous vomiting of
3 days duration, mental confusion, giddiness, and
tiredness for 1 day.
• Examination revealed tachycardia, hypotension and
dehydration.
• ABG
pH
7.50
Serum Electrolytes:
PaCO2
48
Na
139
HCO3
32
K
3.9
PaO2
90
Cl
85
• Evaluate the acid-base disturbance(s)?
Case 2: Solution
• Dominant disorder is Metabolic Alkalosis
• Compensation formula:
Δ PaCO2
= 0.7 × Δ HCO3
= 0.7 × 8
= 5.6
PaCO2
= 40 + 6 = 46
Compensation is appropriate.
• Anion Gap
= 139 – (85 + 32)
= 22
AG is high.

pH
PaCO2
HCO3
PaO2

7.50
48
32
90

Na
K
Cl

139
3.9
85
Case 2: Solution
• Δ AG

= 22 – 12
= 10

• High AG metabolic acidosis
• Final Diagnosis:

pH
PaCO2
HCO3
PaO2

7.50
48
32
90

Na
K
Cl

139
3.9
85

Metabolic Alkalosis + High AG Met. Acidosis
Case 3: Varieties of Metabolic Acidosis
Patient
ECF volume
Glucose
pH
Na
Cl
HCO3
AG
Ketones

A
Low
600
7.20
140
103
10
27
4+

B
Low
120
7.20
140
118
10
12
0

C
Normal
120
7.20
140
118
10
12
0

High-AG
Met.
Acidosis

Non-AG
Met.
Acidosis

Non-AG
Met.
Acidosis
Renal handling of Hydrogen in
Metabolic Acidosis
• In the setting of metabolic acidosis, normal kidneys try to
increase H+ excretion by increasing titratable acidity and
ammonia. The latter is excreted as NH4+.
• When NH4+ is excreted, it also causes increased chloride
loss, to maintain electrical neutrality.
• Chloride loss, therefore, will be in excess of Na and K.
• Urine Anion-Gap

=

Na + K – Cl

• In metabolic acidosis, if Urine anion gap is negative, it
suggests that the kidneys are excreting H+ effectively.
Urine Electrolytes in Metabolic Acidosis
Patient
U. Na
U. K
U. Cl
Urine AG

A

Dx:

B
10
14
74
–50
Diarrhea

C
50
47
28
+69
RTA

Urine Anion Gap = (U. Na + U. K – U. Cl)
In Normal anion gap Metabolic Acidosis,
Positive Urine AG suggests distal Renal Tubular Acidosis
Negative Urine AG suggests non-renal cause for Metabolic Acidosis.
Case 4
• A 17 yr old boy presented with history of
progressive dyspnoea with wheezing for 4 days.
• He also had fever, cough with yellowish
expectoration.
• He had increased sleepiness for 1 day.
• On examination, he was tachypnoeic, pulse100/min bounding, BP-160/96, central cyanosis +,
drowsy, asterixis +, RS – B/L extensive wheezing +.
• CXR- hyperinflated lung fields with tubular heart.
Case 4: Laboratory data
• ABG:
pH
PaCO
HCO
PaO

2

3

2

7.30
60 mmHg
28 mEq/L
68 mm Hg

• Serum Electrolytes:
Na
136 mEq/L
K
4.5 mEq/L
Cl
98 mEq/L
• Evaluate the acid-base disturbance(s)?
Case 4: Solution
• Dominant disorder is Respiratory Acidosis
• Compensation formula:
Δ HCO3
= 0.3 × Δ PaCO2
= 0.3 × 20
=6
HCO3
= 24 + 6 = 30
Compensation is appropriate.
• Anion Gap
= 136 – (98 + 28)
= 10
AG is normal.

pH
PaCO2
HCO3
PaO2

7.30
60
28
68

Na
K
Cl

136
4.5
98
Case 5
• 12 year old girl presented with complaints of
difficulty in breathing and upper abdominal
discomfort for the past 1 hr.

• On examination, vitals normal, patient
hyperventilating, RS – normal, Abdomen – normal.
Case 5: Laboratory data
• ABG:
pH
PaCO
HCO
PaO

2

3

2

7.50
25 mmHg
21 mEq/L
100 mm Hg

• Serum Electrolytes:
Na
137 mEq/L
K
3.9 mEq/L
Cl
99 mEq/L
Calcium 9.0 mEq/L
• Evaluate the acid-base disturbance(s)?
Case 5: Solution
• Dominant disorder is Respiratory Alkalosis
• Compensation formula:
pH
7.50
Δ HCO3
= 0.2 × Δ PaCO2
PaCO2
25
HCO3
21
= 0.2 × 15
PaO2
100
=3
HCO3
= 24 – 3 = 21
Na
137
K
3.9
Compensation is appropriate.
Cl
99
Calcium 9.0
• Anion Gap
= 137 – (99 + 21)
= 17
AG is slightly high which can be seen in respiratory
alkalosis.
Case 7
• Explain the acid-base status of a 18-year-old boy
with history of chronic renal failure treated with high
dose diuretics admitted to hospital with pneumonia
and the following lab values:
ABG
pH 7.52
PaCO2 30 mm Hg
PaO2 62 mm Hg

Serum Electrolytes
Na+ 145 mEq/L
K+ 2.9 mEq/L
Cl 98 mEq/L
-

HCO3 21 mEq/L
Case 7: Solution
• Dominant disorder is Respiratory Alkalosis
• Compensation formula:
pH
Δ HCO3
= 0.2 × Δ PaCO2
PaCO2
HCO3
= 0.2 × 10
PaO2
=2
HCO3
= 24 – 2 = 22
Na
K
Compensation is appropriate.
Cl
• Anion Gap
= 145 – (98 + 21)
= 26
AG is very high suggestive of metabolic acidosis.

7.52
30
21
62

145
2.9
98
Case 7: Solution
• Δ AG

= 26 – 12
= 14

• Δ HCO3

= 24 – 21
=3

• Δ AG > Δ HCO3High AG Met Acidosis + Met. Alkalosis

• Final Diagnosis:
Respiratory Alkalosis +
High AG Metabolic Acidosis +
Metabolic Alkalosis

pH
PaCO2
HCO3
PaO2

7.52
30
21
62

Na
K
Cl

145
2.9
98
Case 8
• The following values are found in a 65-year-old
patient. Evaluate this patient's acid-base status?
ABG
pH 7.51

Serum Chemistry
Na + 155 mEq/L

PaCO2 50 mm Hg
HCO3- 40 mEq/L

K+ 5.5 mEq/L
Cl- 90 mEq/L
CO2 40 mEq/L
BUN 121 mg/dl
Glucose 77 mg/dl
Case 8: Solution
• Dominant disorder is Metabolic Alkalosis
• Compensation formula:
Δ PaCO2
= 0.7 × Δ HCO3
= 0.7 × 16
= 11.2
PaCO2
= 40 + 11 = 51
Compensation is appropriate.
• Anion Gap
AG is high.

= 155 – (90 + 40)
= 25

pH
PaCO2
HCO3
PaO2

7.51
50
40
62

Na
K
Cl
BUN

155
5.5
90
121
Case 8: Solution
• Δ AG

= 25 – 12
= 13

• High AG metabolic acidosis
• Final Diagnosis:
Metabolic Alkalosis +
High AG Metabolic Acidosis

pH
PaCO2
HCO3
PaO2

7.51
50
40
62

Na
K
Cl
BUN

155
5.5
90
121
Case 9
• A 52-year-old woman has been mechanically ventilated for
two days following a drug overdose. Her arterial blood gas
values and electrolytes, stable for the past 12 hours, show:
ABG
pH 7.45
PaCO2 25 mm Hg

Serum Chemistry
Na + 142 mEq/L
K+ 4.0 mEq/L
Cl- 100 mEq/L
HCO3- 18 mEq/L
Case 9: Solution
• Dominant disorder is Chronic Respiratory Alkalosis
• Compensation formula:
pH
7.45
Δ HCO3
= 0.5 × Δ PaCO2
PaCO2
25
= 0.5 × 15
HCO3
18
= 7.5
HCO3
= 24 – 8 = 16
Na
142
K
4.0
Compensation is appropriate.
Cl
100
• Anion Gap

= 142 – (100 + 18)
= 24
AG is very high suggestive of metabolic acidosis.
Case 9: Solution
• Δ AG

= 24 – 12
= 12

• Δ HCO3

= 24 –18
=6

• Δ AG > Δ HCO3High AG Met Acidosis + Met. Alkalosis

• Final Diagnosis:
Chronic Respiratory Alkalosis +
High AG Metabolic Acidosis +
? Metabolic Alkalosis
Case 11
• A 21 year old male with progressive renal insufficiency is
admitted with abdominal cramping. He had congenital
obstructive uropathy with creation of ileal loop for diversion.
On admission,

ABG
pH 7.20
PaCO2 24 mm Hg

Serum Chemistry
Na + 140 mEq/L
K+ 5.6 mEq/L
Cl- 110 mEq/L
HCO3- 10 mEq/L
Case 11: Solution
• Dominant disorder is Metabolic Acidosis
• Compensation formula:
Δ PaCO2
= 1.2 × Δ HCO3
= 1.2 × 14
= 16.8
PaCO2
= 40 – 17 = 23
Compensation is appropriate.
• Anion Gap

= 140 – (110 + 10)
= 20
High anion-gap metabolic acidosis.

pH
PaCO2
HCO3

7.20
24
10

Na
K
Cl

140
5.6
110
Case 11: Solution
• Δ AG

= 20 – 12
=8

• Δ HCO3

= 24 –10
= 14

• Δ AG < Δ HCO3-

pH
PaCO2
HCO3

7.20
24
10

Na
K
Cl

140
5.6
110

High AG Met Acidosis + Normal-AG Met. Acidosis

• Final Diagnosis:

Mixed Metabolic Acidosis
Case 12
• A 15 year old female with
hypertension was treated with
low salt diet and diuretics. BP
135/85.
Otherwise normal.
See initial lab values.

• She developed profound watery
diarrhea, nausea and weakness.
• On exam, HR = 96, T=100.6 F, BP
115/70. Abdominal tenderness
with guarding on palpation.

Parameter Initial

Subseq
uent

Na

137

138

K+

3.1

2.8

Cl-

90

102

HCO3

35

25

pH

7.51

7.42

PaCO2

47

39
Case 12: Solution
• Initally, dominant disorder is Metabolic Alkalosis

• Compensation formula:
Δ PaCO2
= 0.7 × Δ HCO3
= 0.7 × 11
= 7.7
PaCO2
= 40 + 8 = 48
Compensation is appropriate.
• Anion Gap
AG is normal.

= 137 – (90 + 35)
= 12

pH
PaCO2
HCO3

7.51
47
35

Na
K
Cl

137
3.1
90
Case 12: Solution
• Subsequently, she has developed
pH

HCO3

PaCO2

↓

↓

↓

pH
PaCO2
HCO3

7.51 
47 
35 

7.42
39
25

Na
K
Cl

137 
3.1 
90 

138
2.8
102
Case 12: Solution
• Subsequently, she has developed
pH

HCO3

PaCO2

↓

↓

↓

Metabolic acidosis

The decrease in bicarbonate is almost same as the
rise in chloride.
• Final Diagnosis:

Metabolic Alkalosis +
Hyperchloremic (non-AG) Metabolic Acidosis
Case 13
• A patient with salicylate overdose.
pH
=
7.45
PCO2
=
20 mmHg
HCO3
=
13 mEq/L

• Dominant disorder: Respiratory alkalosis
• Appropriate Compensation would have been HCO3 of
20 (24 – 4)
• Lower than expected HCO3 suggests presence of
metabolic acidosis as well.
Presentation1

Contenu connexe

Tendances

Acid-Base Disorders
Acid-Base DisordersAcid-Base Disorders
Acid-Base DisordersVitrag Shah
 
Arterial blood gas analysis in clinical practice (2)
Arterial blood gas analysis in clinical practice (2)Arterial blood gas analysis in clinical practice (2)
Arterial blood gas analysis in clinical practice (2)Mohit Aggarwal
 
Acid Base Balance and ABG by Dr.Tinku Joseph
Acid Base Balance and ABG by Dr.Tinku JosephAcid Base Balance and ABG by Dr.Tinku Joseph
Acid Base Balance and ABG by Dr.Tinku JosephDr.Tinku Joseph
 
step by step approach to arterial blood gas analysis
step by step approach to arterial blood gas analysisstep by step approach to arterial blood gas analysis
step by step approach to arterial blood gas analysisikramdr01
 
Goal directed fluid therapy
Goal directed fluid therapyGoal directed fluid therapy
Goal directed fluid therapythanigai arasu
 
Anesthetic considerations for endocrine diseases – an overview
Anesthetic considerations for endocrine diseases – an overviewAnesthetic considerations for endocrine diseases – an overview
Anesthetic considerations for endocrine diseases – an overviewrajkumarsrihari
 
Arterial Blood Gas (ABG) analysis
Arterial Blood Gas (ABG) analysisArterial Blood Gas (ABG) analysis
Arterial Blood Gas (ABG) analysisAbdullah Ansari
 
Periop management of diabetes
Periop management of diabetesPeriop management of diabetes
Periop management of diabetesdeepmbbs04
 
O2 cascade flux n odc
O2 cascade flux n odcO2 cascade flux n odc
O2 cascade flux n odcRony Mathew
 

Tendances (20)

Sravan abg ppt modified
Sravan abg ppt modifiedSravan abg ppt modified
Sravan abg ppt modified
 
ABG
ABGABG
ABG
 
Acid-Base Disorders
Acid-Base DisordersAcid-Base Disorders
Acid-Base Disorders
 
Arterial blood gas analysis in clinical practice (2)
Arterial blood gas analysis in clinical practice (2)Arterial blood gas analysis in clinical practice (2)
Arterial blood gas analysis in clinical practice (2)
 
Acid Base Balance and ABG by Dr.Tinku Joseph
Acid Base Balance and ABG by Dr.Tinku JosephAcid Base Balance and ABG by Dr.Tinku Joseph
Acid Base Balance and ABG by Dr.Tinku Joseph
 
step by step approach to arterial blood gas analysis
step by step approach to arterial blood gas analysisstep by step approach to arterial blood gas analysis
step by step approach to arterial blood gas analysis
 
Goal directed fluid therapy
Goal directed fluid therapyGoal directed fluid therapy
Goal directed fluid therapy
 
Sodium bicarbonate in acidosis
Sodium bicarbonate in acidosisSodium bicarbonate in acidosis
Sodium bicarbonate in acidosis
 
Perioperative fluid therapy
Perioperative fluid therapyPerioperative fluid therapy
Perioperative fluid therapy
 
Anesthetic considerations for endocrine diseases – an overview
Anesthetic considerations for endocrine diseases – an overviewAnesthetic considerations for endocrine diseases – an overview
Anesthetic considerations for endocrine diseases – an overview
 
ABG by a taecher
ABG by a taecherABG by a taecher
ABG by a taecher
 
Arterial Blood Gas (ABG) analysis
Arterial Blood Gas (ABG) analysisArterial Blood Gas (ABG) analysis
Arterial Blood Gas (ABG) analysis
 
A a gradient fin
A a gradient finA a gradient fin
A a gradient fin
 
ABG
ABGABG
ABG
 
Hypokalemia in ICU
Hypokalemia in ICUHypokalemia in ICU
Hypokalemia in ICU
 
ABG Interpretation
ABG InterpretationABG Interpretation
ABG Interpretation
 
Periop management of diabetes
Periop management of diabetesPeriop management of diabetes
Periop management of diabetes
 
ABG Analysis
ABG Analysis ABG Analysis
ABG Analysis
 
Oxygen cascade & therapy
Oxygen cascade & therapyOxygen cascade & therapy
Oxygen cascade & therapy
 
O2 cascade flux n odc
O2 cascade flux n odcO2 cascade flux n odc
O2 cascade flux n odc
 

En vedette (20)

Abg
AbgAbg
Abg
 
Precocious puberty
Precocious pubertyPrecocious puberty
Precocious puberty
 
AP
APAP
AP
 
AD
ADAD
AD
 
Arterial blood gases - OSCE guide
Arterial blood gases - OSCE guideArterial blood gases - OSCE guide
Arterial blood gases - OSCE guide
 
Ugibllding
UgiblldingUgibllding
Ugibllding
 
Pti
PtiPti
Pti
 
Precocious puberty ppt
Precocious puberty pptPrecocious puberty ppt
Precocious puberty ppt
 
Kawasaki disease
Kawasaki diseaseKawasaki disease
Kawasaki disease
 
Swine flu overview
Swine flu overviewSwine flu overview
Swine flu overview
 
Blts
BltsBlts
Blts
 
Shock
ShockShock
Shock
 
Pmx
PmxPmx
Pmx
 
Ag
AgAg
Ag
 
Pdd
PddPdd
Pdd
 
Hmatology
HmatologyHmatology
Hmatology
 
Gresp
GrespGresp
Gresp
 
NCS
NCSNCS
NCS
 
Pe
PePe
Pe
 
A1
A1A1
A1
 

Similaire à Presentation1

balance acido base.pptx
balance acido base.pptxbalance acido base.pptx
balance acido base.pptxjavier
 
abg-151118185050-lva1-app68911111111.pdf
abg-151118185050-lva1-app68911111111.pdfabg-151118185050-lva1-app68911111111.pdf
abg-151118185050-lva1-app68911111111.pdfDivyanshJoshi39
 
Acid base (A.B.G)
Acid base (A.B.G)Acid base (A.B.G)
Acid base (A.B.G)Manu Jacob
 
STEP_BY_STEP_ABG_INTERPRETATION_SULEKHA_FINAL.pptx
STEP_BY_STEP_ABG_INTERPRETATION_SULEKHA_FINAL.pptxSTEP_BY_STEP_ABG_INTERPRETATION_SULEKHA_FINAL.pptx
STEP_BY_STEP_ABG_INTERPRETATION_SULEKHA_FINAL.pptxekramy abdo
 
Arterial Blood Gas Interpretation By Dr. Prashant Kumar
Arterial Blood Gas Interpretation By Dr. Prashant KumarArterial Blood Gas Interpretation By Dr. Prashant Kumar
Arterial Blood Gas Interpretation By Dr. Prashant KumarDr. Prashant Kumar
 
ABG intreptretation on clinical setup-1.pptx
ABG intreptretation on clinical setup-1.pptxABG intreptretation on clinical setup-1.pptx
ABG intreptretation on clinical setup-1.pptxpugalrockzz1
 
ABG intreptretation.pptx important topic
ABG intreptretation.pptx important topicABG intreptretation.pptx important topic
ABG intreptretation.pptx important topicRajender Singh Lodhi
 
Arterial Blood Gas Interpretation
Arterial Blood Gas InterpretationArterial Blood Gas Interpretation
Arterial Blood Gas InterpretationTauhid Iqbali
 
abg objetives.pptx
abg objetives.pptxabg objetives.pptx
abg objetives.pptxjavier
 
abg-121230031055-phpapp02.pdf
abg-121230031055-phpapp02.pdfabg-121230031055-phpapp02.pdf
abg-121230031055-phpapp02.pdfDivyanshJoshi39
 
Abg by dr girish
Abg by dr girishAbg by dr girish
Abg by dr girishGirish jain
 
Interpretation of arterial blood gases:Traditional versus Modern
Interpretation of arterial  blood gases:Traditional versus Modern Interpretation of arterial  blood gases:Traditional versus Modern
Interpretation of arterial blood gases:Traditional versus Modern Gamal Agmy
 
Abg interpretation keshav
Abg interpretation  keshav Abg interpretation  keshav
Abg interpretation keshav Keshav Chandra
 
abg content.pptx
abg content.pptxabg content.pptx
abg content.pptxjavier
 

Similaire à Presentation1 (20)

DNB OSCE ON ABG
DNB OSCE ON ABGDNB OSCE ON ABG
DNB OSCE ON ABG
 
balance acido base.pptx
balance acido base.pptxbalance acido base.pptx
balance acido base.pptx
 
abg-151118185050-lva1-app68911111111.pdf
abg-151118185050-lva1-app68911111111.pdfabg-151118185050-lva1-app68911111111.pdf
abg-151118185050-lva1-app68911111111.pdf
 
Acid base (A.B.G)
Acid base (A.B.G)Acid base (A.B.G)
Acid base (A.B.G)
 
STEP_BY_STEP_ABG_INTERPRETATION_SULEKHA_FINAL.pptx
STEP_BY_STEP_ABG_INTERPRETATION_SULEKHA_FINAL.pptxSTEP_BY_STEP_ABG_INTERPRETATION_SULEKHA_FINAL.pptx
STEP_BY_STEP_ABG_INTERPRETATION_SULEKHA_FINAL.pptx
 
Arterial Blood Gas Interpretation By Dr. Prashant Kumar
Arterial Blood Gas Interpretation By Dr. Prashant KumarArterial Blood Gas Interpretation By Dr. Prashant Kumar
Arterial Blood Gas Interpretation By Dr. Prashant Kumar
 
ABG intreptretation on clinical setup-1.pptx
ABG intreptretation on clinical setup-1.pptxABG intreptretation on clinical setup-1.pptx
ABG intreptretation on clinical setup-1.pptx
 
ABG intreptretation.pptx important topic
ABG intreptretation.pptx important topicABG intreptretation.pptx important topic
ABG intreptretation.pptx important topic
 
Arterial Blood Gas Interpretation
Arterial Blood Gas InterpretationArterial Blood Gas Interpretation
Arterial Blood Gas Interpretation
 
abg objetives.pptx
abg objetives.pptxabg objetives.pptx
abg objetives.pptx
 
abg-121230031055-phpapp02.pdf
abg-121230031055-phpapp02.pdfabg-121230031055-phpapp02.pdf
abg-121230031055-phpapp02.pdf
 
Abg by dr girish
Abg by dr girishAbg by dr girish
Abg by dr girish
 
Abg short seminar
Abg short seminarAbg short seminar
Abg short seminar
 
Abg
AbgAbg
Abg
 
Interpretation of arterial blood gases:Traditional versus Modern
Interpretation of arterial  blood gases:Traditional versus Modern Interpretation of arterial  blood gases:Traditional versus Modern
Interpretation of arterial blood gases:Traditional versus Modern
 
Abg interpretation keshav
Abg interpretation  keshav Abg interpretation  keshav
Abg interpretation keshav
 
MRCP-ABG.pptx
MRCP-ABG.pptxMRCP-ABG.pptx
MRCP-ABG.pptx
 
Acid base tut
Acid base tutAcid base tut
Acid base tut
 
abg content.pptx
abg content.pptxabg content.pptx
abg content.pptx
 
Abg may 2021
Abg may 2021Abg may 2021
Abg may 2021
 

Plus de Ajay Agade (20)

Ppt fl & el
Ppt fl & elPpt fl & el
Ppt fl & el
 
Cmp
CmpCmp
Cmp
 
Af
AfAf
Af
 
Macid and Malk
Macid and MalkMacid and Malk
Macid and Malk
 
Ebl
EblEbl
Ebl
 
Frsh
FrshFrsh
Frsh
 
Stat
StatStat
Stat
 
Ldp
LdpLdp
Ldp
 
Honc
HoncHonc
Honc
 
Pbs
PbsPbs
Pbs
 
05 peripheral blood smear examination
05 peripheral blood smear examination 05 peripheral blood smear examination
05 peripheral blood smear examination
 
Ren
RenRen
Ren
 
Cd
CdCd
Cd
 
Os grp
Os grpOs grp
Os grp
 
Nsi
NsiNsi
Nsi
 
Iems
IemsIems
Iems
 
Rdt
RdtRdt
Rdt
 
Cctrt
CctrtCctrt
Cctrt
 
Respi
RespiRespi
Respi
 
Lab
LabLab
Lab
 

Presentation1

  • 1. APPROACH TO BLOOD GAS ANALYSIS Dr. MANDAR HAVAL D.C.H D.N.B
  • 2.
  • 3. How does the kidney do it? • The kidney does it in three ways: – Total reabsorption of filtered bicarbonate (proximal). – Controlled secretion of H+ into filtrate (distal). – Judicious use of urinary buffers.
  • 5. FILTRATE TUBULAR CELL H2O + CO2 CA II H2CO3 H+ + HCO3- BLOOD
  • 6. FILTRATE TUBULAR CELL H2O + CO2 CA II H2CO3 H+ + HCO3- BLOOD
  • 7. FILTRATE TUBULAR CELL BLOOD H2O + CO2 CA II H2CO3 H+ + HCO3Na+ Na + Na Na K ATPase K
  • 8. TUBULAR CELL FILTRATE BLOOD H2O + CO2 CA II H2CO3 H+ATPase Na+ Na+ / H+ Antiporter + HH+ + HCO33-HCO Na Na+ Na K ATPase K
  • 9. TUBULAR CELL FILTRATE BLOOD H2O + CO2 CA II H2CO3 Na / K H+ HCO3- H+ATPase Na+ / H+ Antiporter Na+ Na Na+ Na K ATPase K
  • 10. TUBULAR CELL FILTRATE H2O + CO2 BLOOD H2O + CO2 CA II H2CO3 CA IV H2CO3 HCO3- Na / K H+ HCO3- H+ATPase Na+ / H+ Antiporter Na+ Na Na+ Na K ATPase K
  • 11. FILTRATE H2O TUBULAR CELL BLOOD H2O + CO2 CA II CA IV H+ HCO3-
  • 12. COLLECTING TUBULE CELL BLOOD FILTRATE H2O + CO2 CA II H2CO3 Cl- / HCO3- Cl- Exchanger HCO3- H+ H+ ATPase
  • 13. COLLECTING TUBULE CELL BLOOD FILTRATE H2O + CO2 CA II H2CO3 HCO3- H+ ATPase Cl- / HCO3- Exchanger Cl- H+
  • 18. Evaluation of Systemic Acid Base Disorders 1. Comprehensive history and physical examination. 2. Evaluate simultaneously performed ABG & serum electrolytes. 3. Identification of the dominant disorder. 4. Calculation of compensation. 5. Calculate the anion gap and the Δ. 1. Anion Gap 2. Δ AG 3. Δ Bicarbonate
  • 19. Step 3: Identification of the dominant disorder Primary disorder Metabolic acidosis pH Initial change Compensatory change ↓ ↓ HCO3 ↓ PCO2
  • 20. Step 3: Identification of the dominant disorder pH Initial change Compensatory change Metabolic acidosis ↓ ↓ HCO3 ↓ PCO2 Metabolic alkalosis ↑ ↑ HCO3 ↑ PCO2 Primary disorder
  • 21. Step 3: Identification of the dominant disorder pH Initial change Compensatory change Metabolic acidosis ↓ ↓ HCO3 ↓ PCO2 Metabolic alkalosis ↑ ↑ HCO3 ↑ PCO2 Respiratory acidosis ↓ ↑ PCO2 ↑ HCO3 Respiratory alkalosis ↑ ↓ PCO2 ↓ HCO3 Primary disorder
  • 22. • WHERE THE PROBLEM START
  • 23. Calculation of compensation Mean "whole body" response equations for simple acid-base disturbances. Disorder pH Primary change Compensatory Response Equation Metabolic Acidosis   [HCO3-]  PCO2 ΔPCO2  1.2  ΔHCO3 Metabolic Alkalosis   [HCO3-]  PCO2 ΔPCO2  0.7  ΔHCO3 Respiratory Acidosis   PCO2  [HCO3-] Acute: ΔHCO3-  0.1  ΔPCO2 Chronic: ΔHCO3-  0.3  ΔPCO2 Respiratory Alkalosis   PCO2  [HCO3-] Acute: ΔHCO3-  0.2  ΔPCO2 Chronic: ΔHCO3-  0.5  ΔPCO2 Note: The formula calculates the change in the compensatory parameter.
  • 24. Simple compensation Disorder pH Primary problem Compensation Metabolic acidosis ↓ ↓ in HCO3- PaCO2 =1.5xHCO3+8(+/-2) Metabolic alkalosis ↑ 10↑ in HCO3- 7↑ in PaCO2 Respiratory acidosis ↓ ACUTE -10↑ in PaCO2 CHRONIC -10↑ in PaCO2 1↑ in [HCO3-] 3.5↑ in [HCO3-] Respiratory alkalosis ↑ ACUTE-10↓ in PaCO2 CHRONIC-10↓ in PaCO2 2↓ in [HCO3-] 4↓ in [HCO3-]
  • 25. Calculate the “gaps” Anion gap = Na+ − [Cl− + HCO3−] Δ AG = Anion gap − 12 Δ HCO3 = 24 − HCO3 Δ AG = Δ HCO3 −, then Pure high AG Met. Acidosis Δ AG > Δ HCO3 −, then High AG Met Acidosis + Met. Alkalosis Δ AG < Δ HCO3 −, then High AG Met Acidosis + Normal AG Met A Note:  Add Δ AG to measured HCO3− to obtain bicarbonate level  Delta _ AG    Pr e _ existing _ Bicarb  that would have existed IF the high AG metabolic acidosis Current _ Bicarb   were to be absent, i.e., “Pre-existing Bicarbonate.”
  • 27. CALCULATION OF H+ H   24  HCO  PaCO2  3 20 – 7.70 30 – 7.50 40(H+) – 7.40 (PH) 50 – 7.30 65 – 7.20
  • 29. CAO2= directly reflects the total number of oxygen molecules in arterial blood, both bound and unbound to hemoglobin • CaO2 = (1.34 x HB x SPO2) +(0.003 x PaO2) Normal CaO2 ranges from 16 to 22 ml O2/dl
  • 30. Which patient is more hypoxemic, and why? • Patient A: pH 7.48 PaCO2 34 mm Hg PaO2 85 mm Hg SaO2 95% Hemoglobin 7 gm% • Patient B: pH 7.32 PaCO2 74 mm Hg PaO255 mm Hg SaO2 85% Hemoglobin 15 gm% www.dnbpediatrics.com
  • 31. ANS CONT….. • Patient A: Arterial oxygen content = .95 x 7 x 1.34 = 8.9 ml O2/dl • Patient B: Arterial oxygen content = .85 x 15 x 1.34 = 17.1 ml O2/dl • Patient A, with the higher PaO2 but the lower hemoglobin content, is more hypoxemic www.dnbpediatrics.com
  • 32. PaO2 • Factors affecting the PaO2 include alveolar ventilation, FIO2, altitude, age, and the oxyhemoglobin dissociation curve • Relation between PaO2 and SaO2: PaO2 60mm Hg 50mm Hg 40mm Hg 30mm Hg corresponds to SaO2 90% 80% 70% 60%
  • 33. True or False: The pO2 in a cup of water open to the atmosphere is always higher than the arterial pO2 in a healthy person (breathing room air) who is holding the cup www.dnbpediatrics.com
  • 34. ANS • The PO2 in the cup of water is always higher. This is for several reasons. First, there is no barrier to oxygen diffusing into the water; thus the PO2 in the cup will be the same as the atmosphere, at sea level approximately 160 mm Hg. • Second, there is no CO2 coming from the cup to dilute the oxygen, as there is in people. • Third, there is no V-Q inequality or shunt; even healthy people have a difference between alveolar PO2 and arterial PO2 for this reason. Thus a healthy person and a cup of water exposed to the atmosphere at sea level would have PO2 values of about 100 mm Hg and 160 mm Hg, respectively. www.dnbpediatrics.com
  • 35. A-a Gradient • Determines the degree of lung function impairment • The A-a gradient is the partial pressure of alveolar oxygen minus the partial pressure of arterial oxygen (PAO2-PaO2) • Normal is 2-10mm Hg or 10 plus one tenth the person’s age
  • 36. A-a Gradient • [(713*FIO2)-(PaCO2/0.8)] – PaO2 INTERPRETATION NORMAL – 10-20 (>30 is SINGNIFICANT) Seen in – Shunt Low V/Q Hypoventilation
  • 37. A-a Gradient • PAO2-PaO2 of 20-30mm Hg on room air indicates mild pulmonary dysfunction, and greater than 50mm Hg on room air indicates severe pulmonary dysfunction • The causes of increased gradient include intrapulmonary shunt, intracardiac shunt, and diffusion abnormalities
  • 38.
  • 39. a/A Ratio • Pao2/PAo2 NAORMAL LEVEL IS >0.75 • <0.60 IS INCOMPATIBLE WITH SPONTANIOUS BREATHING
  • 40. PaO2/FIO2 Ratio • To estimate the impairment of oxygenation, calculate the PaO2/FIO2 ratio • Normally, this ratio is 500-600 • Below 300 is acute lung injury* • Below 200 is ARDS* *Along with diffuse infiltrates, normal PCWP, and appropriate mechanism
  • 41. OXYGEN INDEX • OI =MAP X FIO2 POST DUCTAL PAO2 x 100
  • 42. INTERPRETATION • OI >40 that is unresponsive to iNO predict a high mortality rate (>80%) and are indications for ECMO.
  • 43. VENTILATORY INDEX • VI =PIP X PCO2 X RR 1000 VI > 65% INDICATE PREDICTIVE DEATH IN ARDS
  • 44. RELATION OF ALBUMIN IN ABG  AG corrected = AG + 2.5[4 – albumin] (AG= Anion gap)
  • 45. DELTA GAP      Delta gap = (actual AG – 12) + HCO3 Adjusted HCO3 should be 24 (+_ 6) {18-30} If delta gap > 30 -> additional metabolic alkalosis If delta gap < 18 -> additional non-gap metabolic acidosis If delta gap 18 – 30 -> no additional metabolic disorders
  • 47. Case 1 • A 15 yr old juvenile diabetic presents with abdominal pain, vomiting, fever & tiredness for 1 day. He had stopped taking insulin 3 days ago. Examination revealed tachycardia, BP- 100/60, signs of dehydration. Abdominal examination was normal. • ABG: pH PaCO2 HCO3 PaO2 7.31 26 mmHg 12 mEq/L 92 mm Hg Serum Electrolytes: Na 140 mEq/L K 5.0 mEq/L Cl 100 mEq/L • Evaluate the acid-base disturbance(s)?
  • 48. Case 1: Solution • Dominant disorder is Metabolic Acidosis • Compensation formula: Δ PaCO2 = 1.2 × Δ HCO3 = 1.2 × 12 = 14.4 PaCO2 = 40 – 14 = 26 Compensation is appropriate. • Anion Gap = 140 – (100 + 12) = 28 AG is high. pH PaCO2 HCO3 PaO2 7.31 26 12 92 Na K Cl 140 5.0 100
  • 49. Case 1: Solution • Δ AG = 28 – 12 = 16 • Δ HCO3 • Δ AG > Δ = 24 – 12 = 12 HCO3 pH PaCO2 HCO3 PaO2 7.31 26 12 92 Na K Cl 140 5.0 100 • Final Diagnosis: High AG Met. Acidosis + Met. Alkalosis
  • 50. Case 2 • A 14 yr old boy presents with continuous vomiting of 3 days duration, mental confusion, giddiness, and tiredness for 1 day. • Examination revealed tachycardia, hypotension and dehydration. • ABG pH 7.50 Serum Electrolytes: PaCO2 48 Na 139 HCO3 32 K 3.9 PaO2 90 Cl 85 • Evaluate the acid-base disturbance(s)?
  • 51. Case 2: Solution • Dominant disorder is Metabolic Alkalosis • Compensation formula: Δ PaCO2 = 0.7 × Δ HCO3 = 0.7 × 8 = 5.6 PaCO2 = 40 + 6 = 46 Compensation is appropriate. • Anion Gap = 139 – (85 + 32) = 22 AG is high. pH PaCO2 HCO3 PaO2 7.50 48 32 90 Na K Cl 139 3.9 85
  • 52. Case 2: Solution • Δ AG = 22 – 12 = 10 • High AG metabolic acidosis • Final Diagnosis: pH PaCO2 HCO3 PaO2 7.50 48 32 90 Na K Cl 139 3.9 85 Metabolic Alkalosis + High AG Met. Acidosis
  • 53. Case 3: Varieties of Metabolic Acidosis Patient ECF volume Glucose pH Na Cl HCO3 AG Ketones A Low 600 7.20 140 103 10 27 4+ B Low 120 7.20 140 118 10 12 0 C Normal 120 7.20 140 118 10 12 0 High-AG Met. Acidosis Non-AG Met. Acidosis Non-AG Met. Acidosis
  • 54. Renal handling of Hydrogen in Metabolic Acidosis • In the setting of metabolic acidosis, normal kidneys try to increase H+ excretion by increasing titratable acidity and ammonia. The latter is excreted as NH4+. • When NH4+ is excreted, it also causes increased chloride loss, to maintain electrical neutrality. • Chloride loss, therefore, will be in excess of Na and K. • Urine Anion-Gap = Na + K – Cl • In metabolic acidosis, if Urine anion gap is negative, it suggests that the kidneys are excreting H+ effectively.
  • 55. Urine Electrolytes in Metabolic Acidosis Patient U. Na U. K U. Cl Urine AG A Dx: B 10 14 74 –50 Diarrhea C 50 47 28 +69 RTA Urine Anion Gap = (U. Na + U. K – U. Cl) In Normal anion gap Metabolic Acidosis, Positive Urine AG suggests distal Renal Tubular Acidosis Negative Urine AG suggests non-renal cause for Metabolic Acidosis.
  • 56. Case 4 • A 17 yr old boy presented with history of progressive dyspnoea with wheezing for 4 days. • He also had fever, cough with yellowish expectoration. • He had increased sleepiness for 1 day. • On examination, he was tachypnoeic, pulse100/min bounding, BP-160/96, central cyanosis +, drowsy, asterixis +, RS – B/L extensive wheezing +. • CXR- hyperinflated lung fields with tubular heart.
  • 57. Case 4: Laboratory data • ABG: pH PaCO HCO PaO 2 3 2 7.30 60 mmHg 28 mEq/L 68 mm Hg • Serum Electrolytes: Na 136 mEq/L K 4.5 mEq/L Cl 98 mEq/L • Evaluate the acid-base disturbance(s)?
  • 58. Case 4: Solution • Dominant disorder is Respiratory Acidosis • Compensation formula: Δ HCO3 = 0.3 × Δ PaCO2 = 0.3 × 20 =6 HCO3 = 24 + 6 = 30 Compensation is appropriate. • Anion Gap = 136 – (98 + 28) = 10 AG is normal. pH PaCO2 HCO3 PaO2 7.30 60 28 68 Na K Cl 136 4.5 98
  • 59. Case 5 • 12 year old girl presented with complaints of difficulty in breathing and upper abdominal discomfort for the past 1 hr. • On examination, vitals normal, patient hyperventilating, RS – normal, Abdomen – normal.
  • 60. Case 5: Laboratory data • ABG: pH PaCO HCO PaO 2 3 2 7.50 25 mmHg 21 mEq/L 100 mm Hg • Serum Electrolytes: Na 137 mEq/L K 3.9 mEq/L Cl 99 mEq/L Calcium 9.0 mEq/L • Evaluate the acid-base disturbance(s)?
  • 61. Case 5: Solution • Dominant disorder is Respiratory Alkalosis • Compensation formula: pH 7.50 Δ HCO3 = 0.2 × Δ PaCO2 PaCO2 25 HCO3 21 = 0.2 × 15 PaO2 100 =3 HCO3 = 24 – 3 = 21 Na 137 K 3.9 Compensation is appropriate. Cl 99 Calcium 9.0 • Anion Gap = 137 – (99 + 21) = 17 AG is slightly high which can be seen in respiratory alkalosis.
  • 62. Case 7 • Explain the acid-base status of a 18-year-old boy with history of chronic renal failure treated with high dose diuretics admitted to hospital with pneumonia and the following lab values: ABG pH 7.52 PaCO2 30 mm Hg PaO2 62 mm Hg Serum Electrolytes Na+ 145 mEq/L K+ 2.9 mEq/L Cl 98 mEq/L - HCO3 21 mEq/L
  • 63. Case 7: Solution • Dominant disorder is Respiratory Alkalosis • Compensation formula: pH Δ HCO3 = 0.2 × Δ PaCO2 PaCO2 HCO3 = 0.2 × 10 PaO2 =2 HCO3 = 24 – 2 = 22 Na K Compensation is appropriate. Cl • Anion Gap = 145 – (98 + 21) = 26 AG is very high suggestive of metabolic acidosis. 7.52 30 21 62 145 2.9 98
  • 64. Case 7: Solution • Δ AG = 26 – 12 = 14 • Δ HCO3 = 24 – 21 =3 • Δ AG > Δ HCO3High AG Met Acidosis + Met. Alkalosis • Final Diagnosis: Respiratory Alkalosis + High AG Metabolic Acidosis + Metabolic Alkalosis pH PaCO2 HCO3 PaO2 7.52 30 21 62 Na K Cl 145 2.9 98
  • 65. Case 8 • The following values are found in a 65-year-old patient. Evaluate this patient's acid-base status? ABG pH 7.51 Serum Chemistry Na + 155 mEq/L PaCO2 50 mm Hg HCO3- 40 mEq/L K+ 5.5 mEq/L Cl- 90 mEq/L CO2 40 mEq/L BUN 121 mg/dl Glucose 77 mg/dl
  • 66. Case 8: Solution • Dominant disorder is Metabolic Alkalosis • Compensation formula: Δ PaCO2 = 0.7 × Δ HCO3 = 0.7 × 16 = 11.2 PaCO2 = 40 + 11 = 51 Compensation is appropriate. • Anion Gap AG is high. = 155 – (90 + 40) = 25 pH PaCO2 HCO3 PaO2 7.51 50 40 62 Na K Cl BUN 155 5.5 90 121
  • 67. Case 8: Solution • Δ AG = 25 – 12 = 13 • High AG metabolic acidosis • Final Diagnosis: Metabolic Alkalosis + High AG Metabolic Acidosis pH PaCO2 HCO3 PaO2 7.51 50 40 62 Na K Cl BUN 155 5.5 90 121
  • 68. Case 9 • A 52-year-old woman has been mechanically ventilated for two days following a drug overdose. Her arterial blood gas values and electrolytes, stable for the past 12 hours, show: ABG pH 7.45 PaCO2 25 mm Hg Serum Chemistry Na + 142 mEq/L K+ 4.0 mEq/L Cl- 100 mEq/L HCO3- 18 mEq/L
  • 69. Case 9: Solution • Dominant disorder is Chronic Respiratory Alkalosis • Compensation formula: pH 7.45 Δ HCO3 = 0.5 × Δ PaCO2 PaCO2 25 = 0.5 × 15 HCO3 18 = 7.5 HCO3 = 24 – 8 = 16 Na 142 K 4.0 Compensation is appropriate. Cl 100 • Anion Gap = 142 – (100 + 18) = 24 AG is very high suggestive of metabolic acidosis.
  • 70. Case 9: Solution • Δ AG = 24 – 12 = 12 • Δ HCO3 = 24 –18 =6 • Δ AG > Δ HCO3High AG Met Acidosis + Met. Alkalosis • Final Diagnosis: Chronic Respiratory Alkalosis + High AG Metabolic Acidosis + ? Metabolic Alkalosis
  • 71. Case 11 • A 21 year old male with progressive renal insufficiency is admitted with abdominal cramping. He had congenital obstructive uropathy with creation of ileal loop for diversion. On admission, ABG pH 7.20 PaCO2 24 mm Hg Serum Chemistry Na + 140 mEq/L K+ 5.6 mEq/L Cl- 110 mEq/L HCO3- 10 mEq/L
  • 72. Case 11: Solution • Dominant disorder is Metabolic Acidosis • Compensation formula: Δ PaCO2 = 1.2 × Δ HCO3 = 1.2 × 14 = 16.8 PaCO2 = 40 – 17 = 23 Compensation is appropriate. • Anion Gap = 140 – (110 + 10) = 20 High anion-gap metabolic acidosis. pH PaCO2 HCO3 7.20 24 10 Na K Cl 140 5.6 110
  • 73. Case 11: Solution • Δ AG = 20 – 12 =8 • Δ HCO3 = 24 –10 = 14 • Δ AG < Δ HCO3- pH PaCO2 HCO3 7.20 24 10 Na K Cl 140 5.6 110 High AG Met Acidosis + Normal-AG Met. Acidosis • Final Diagnosis: Mixed Metabolic Acidosis
  • 74. Case 12 • A 15 year old female with hypertension was treated with low salt diet and diuretics. BP 135/85. Otherwise normal. See initial lab values. • She developed profound watery diarrhea, nausea and weakness. • On exam, HR = 96, T=100.6 F, BP 115/70. Abdominal tenderness with guarding on palpation. Parameter Initial Subseq uent Na 137 138 K+ 3.1 2.8 Cl- 90 102 HCO3 35 25 pH 7.51 7.42 PaCO2 47 39
  • 75. Case 12: Solution • Initally, dominant disorder is Metabolic Alkalosis • Compensation formula: Δ PaCO2 = 0.7 × Δ HCO3 = 0.7 × 11 = 7.7 PaCO2 = 40 + 8 = 48 Compensation is appropriate. • Anion Gap AG is normal. = 137 – (90 + 35) = 12 pH PaCO2 HCO3 7.51 47 35 Na K Cl 137 3.1 90
  • 76. Case 12: Solution • Subsequently, she has developed pH HCO3 PaCO2 ↓ ↓ ↓ pH PaCO2 HCO3 7.51  47  35  7.42 39 25 Na K Cl 137  3.1  90  138 2.8 102
  • 77. Case 12: Solution • Subsequently, she has developed pH HCO3 PaCO2 ↓ ↓ ↓ Metabolic acidosis The decrease in bicarbonate is almost same as the rise in chloride. • Final Diagnosis: Metabolic Alkalosis + Hyperchloremic (non-AG) Metabolic Acidosis
  • 78. Case 13 • A patient with salicylate overdose. pH = 7.45 PCO2 = 20 mmHg HCO3 = 13 mEq/L • Dominant disorder: Respiratory alkalosis • Appropriate Compensation would have been HCO3 of 20 (24 – 4) • Lower than expected HCO3 suggests presence of metabolic acidosis as well.

Notes de l'éditeur

  1. Must memorize how to calculate the delta gapJust read off the slide