SlideShare une entreprise Scribd logo
1  sur  67
1
Fever in Infants and Children:
Mohamed Abunada, MD
Department of pediatric Neurology
Al Rantisi Specialized pediatric Hospital
2
Fever
• Fever is the most common pediatric complaint,
second only to routine care for clinic visits, and
the most common reason kids are brought to the
ER.
• 5-20% have no localizing signs on PE with no
history to explain the fever.
• The majority of kids with fever do not have a
serious illness, although a small percentage
harbor or may develop a serious bacterial
infection.
3
‘True’ Fever
• Occurs when IL-1, IL-6 or other cytokines are
released from monocytes and macrophages in
response to infection, tissue injury, drugs, and
other inflammatory processes, increasing the
body’s set point. The anterior hypothalamus
maintains an inherent set point near 36ºC(98.6ºF).
• Normal circadian rhythm, which is highest(up to
2ºC) ~6pm and lowest at 6am. This accounts for
increased volume of ER visits that peaks in the
evening. Most true fevers follow this diurnal
pattern.
4
‘False’ fever
• Does not directly increase the body’s set point.
• CNS disease that directly affects the hypothalamus--ICH,
infection.
• Diseases that increase the body’s production of heat--
hyperthyroidism, malignant hyperthermia,
salicylate overdose.
• Excess heat load--child left in a car or left next to a
heater for too long.
• Defective heat loss mechanisms--burns, heat stroke,
drugs that compromise blood flow and sweating
mechanisms.
• Normal causes of temperature elevation include physical
activity, ovulation, and environmental temperature.
5
Malignant hyperthermia
• can follow intense muscle contraction
(cocaine overdose) or muscle metabolism
altered by drugs (neuroleptic agents) or
anesthetics.
6
Heatstroke,
• Heatstroke, a potentially fatal febrile
illness, is caused by excessively high
environmental temperatures and failure of
physiologic body heat-losing mechanisms
7
Fever
• does not always represent infection.
• Rheumatologic disease, inflammatory bowel
disease, Kawasaki disease, poisoning, and
malignancy also may present with fever.
• The varied manifestations of infectious
diseases frequently mimic rheumatoid
arthritis, lupus erythematosus, inflammatory
bowel disease, leukemia, and lymphoma
8
Reliable Temperature
Measurement
• All measurements are estimates of the body’s
true core temp—central
• RECTAL—gold standard
• Esophageal—accurate but impractical
• Tactile and axillary—inaccurate, varies
considerably with environmental temperature
• Tympanic—inaccurate in age <3 years
9
Categories
• Fever of short Duration
accompanied by localizing signs and symptoms, in
which a diagnosis can be established by clinical
history and physical examination
• Fever without localizing signs (without a Source or
Focus)
frequently in a child younger than 3 years old, in which
a history and PE fail to establish a cause, although a
diagnosis of occult bacteremia may be suggested by
laboratory studies
• Fever with unknown origin (FUO)
which defines fever for more than 14 days without an
identified etiology despite history, physical
examination, and routine laboratory tests or after 1
week of hospitalization and evaluation
10
Fever of short Duration
• Initial complaints of infection may be
nonspecific, especially in infants who present
with fever, lethargy, irritability, excessive
sleeping, or poor feeding. Certain individual
physical findings, such as unique rashes, may be
diagnostic .
• Because of the varied presentations of infectious
diseases, it is important to investigate
thoroughly every objective finding from the
history and physical examination
11
URTI Rhinorrhea, sore throat,
cough, drooling, stridor,
sinus pain, tooth pain,
hoarse voice
Nasal congestion,
pharyngeal erythema,
enlarged tonsils with
exudate, swollen red
epiglottis, regional
lymphadenopathy
Ear Ear pain or drainage Red bulging tympanic
membrane, drainage from
ear canal
LRTI Cough, chest pain, dyspnea,
sputum production, cyanosis
Tachypnea,
crackles, wheezing, localized
diminished breath sounds,
intercostal retractions
Localizing Manifestations of Infection
12
GIT Nausea, vomiting, diarrhea,
abdominal pain, anorexia
Hypoactive or hyperactive bowel
sounds, abdominal tenderness
(generalized or focal).
Liver Anorexia, vomiting, dark urine,
light stools
Jaundice, hepatomegaly, hepatic
tenderness, bleeding diatheses, coma
Genitourinary tract Dysuria, frequency, urgency,
flank or suprapubic pain, vaginal
discharge
Costovertebral angle or suprapubic
tenderness, cervical motion and
adnexal tenderness
CNS Lethargy, irritability, headache,
neck stiffness, seizures
Nuchal rigidity, Kernig sign,
Brudzinski sign, bulging fontanel,
altered mental status, focal
neurologic deficits, coma
Cardiovascular Dyspnea, palpitations, fatigue,
exercise intolerance, chest pain
Tachycardia, hypotension,
cardiomegaly, hepatomegaly,
splenomegaly, crackles, petechiae,
Osler nodes, new or change in
murmur, distended neck veins,
pericardial friction rub, muffled
heart sounds
Skeletal Limp, bone pain, limited
function (pseudoparalysis)
Local swelling, erythema, warmth,
limited range of motion, point bone
tenderness, joint line tenderness
13
The acute phase response
• nonspecific inflammatory response to infection,
trauma, autoimmune disease, and malignancies.
• such as erythrocyte sedimentation rate (ESR) and
C-reactive protein (CRP), are commonly elevated
during an infection, but are not specific for
infection and do not identify any specific
infection.
• These tests are often useful to show response to
therapy (e.g., osteomyelitis).
14
complete blood count CBC
• obtained to identify evidence of bone marrow response to
infection.
• The initial response to infection, especially in children, is
usually a leukocytosis, with a neutrophilic response to
bacterial and viral infections.
• With most viral infections, the initial neutrophilic response
is transient and is followed quickly by the characteristic
mononuclear response.
• In general, bacterial infections are associated with greater
neutrophilia than are viral infections.
15
• A shift to the left is an increase in the
numbers of circulating immature cells of the
neutrophil series (band forms, myelocytes) .
• A shift to the left indicates the rapid release of
cells from the bone marrow and characteristically is
seen in the early stages of infection and with
bacterial infections.
• Transient lymphopenia at the beginning of illness
and lasting 24 to 48 hours has been described with
many viral infections.
16
• Atypical lymphocytes are mature T
lymphocytes that classically are seen with
infectious mononucleosis caused by Epstein-
Barr virus (EBV).
• Other infections associated with atypical
lymphocytosis include cytomegalovirus
(CMV) infection, toxoplasmosis, viral
hepatitis, rubella, roseola, mumps, and some
drug reactions.
17
Other common screening tests include
• Urinalysis for (UTIs),
• Transaminases for liver function, and
• Lumbar puncture for evaluation of the CSF if
there is concern for meningitis or encephalitis .
• A grouping of various tests may help distinguish
viral versus bacterial infection, but definitive
diagnosis requires culture or PCR.
18
Differentiating Viral from Bacterial Infections
Variable Viral Bacterial
Leukocytosis Uncommon Common
Shift to left (↑ bands) Uncommon Common
Neutropenia Possible Suggests overwhelming infection
↑ ESR Unusual Common
↑ CRP Unusual Common
IL-1 Uncommon Common
Meningitis (pleocytosis) Lymphocytic Neutrophilic
19
Cultures are the mainstay of diagnosis.
• Blood cultures are sensitive and specific for bacteremia that may
be primary or secondary to a focus (osteomyelitis, GE, UTI,
endocarditis).
• Urine cultures confirm UTI, which may be occult in young
infants.
• CSF cultures should be obtained with any lumbar puncture.
• Other cultures are determined by the presence of fluid collections
or masses that are suspected to be infectious.
• Serologic tests, using enzyme-linked immunosorbent assay
(ELISA) showing an IgM response, high IgG, or seroconversion
between acute and convalescent sera can be used for diagnosis.
• Molecular detection methods, such as PCR for DNA or RNA,
offer the specificity of culture, high sensitivity, and rapid results.
20
DIAGNOSTIC IMAGING
• Plain x-rays are useful for the middle and lower respiratory tract.
• Ultrasonography is a noninvasive, nonirradiating technique,
useful to identify soft tissue abscesses with lymphadenitis and
to diagnose suppurative arthritis of the hip.
• A voiding cystourethrogram (VCUG) is used to
evaluate for ureteral reflux, which is a predisposing factor for
upper UTIs.
• Radionuclide scans, such as technetium-99m for
osteomyelitis and dimercaptosuccinic acid (DMSA) for acute
pyelonephritis or chronic renal scarring, are often informative.
21
• CT (with contrast enhancement) and MRI (with
gadolinium enhancement) allow characterization of
lesions and precise anatomic localization and are the
modalities of choice for the brain.
• CT shows greater bone detail
• MRI shows greater tissue detail. MRI is especially useful
for diagnosis of osteomyelitis, myositis, and necrotizing
fasciitis.
• High-resolution CT is useful for complicated chest
infections.
• Contrast studies (upper gastrointestinal series, barium
enema) are used to identify mucosal lesions of the
gastrointestinal tract.
22
INITIAL DIAGNOSTIC
EVALUATION
• requires accurately recognizing the site of the infection ,
• recognizing all of the manifestations that are present,
• knowing all of the risk factors,
• recognizing exposure to potential infectious agents, and
• knowing the most likely organisms causing each infection .
• Obtaining a thorough history identifies most of these risk factors.
23
• Season of year
• Age , Weight , Place of residence
• General health
• Change Fever-presence, duration, and pattern
• Previous similar symptoms
• Previous infections and other illnesses
• Previous surgeries Preceding trauma
• Presence of outbreaks or epidemics in the community
• Similar illness in close contacts
• Exposures to infected individuals
• Exposures to farm or feral animals ,Exposures to ticks and mosquitoes.
• Travel history
• Daycare or school attendance
• Sources of water
• Food and ingestion history, especially of undercooked meat or unpasteurized dairy
products
• Home sanitary facilities and hygiene
• Presence of foreign bodies (e.g., indwelling catheters, shunt, grafts)
• Immunization history
• Current medications
Risk factors
24
Fever without a source (FWS)
• 5 to 20% of febrile children have no localizing
signs on PE and nothing in the history to explain
the fever. By definition, less than 7 days.
• FWS (like fever) is most common in children
younger than age 5, with a peak prevalence
between 6 and 24 months of age.
• Those <6 months retain protective maternal antibodies
against common organisms, while those 18-24 months
old are more immune competent, and are at a lower risk
of developing bacteremia
25
Diagnostic Assessment in
Children
1) Age is important as etiologic pathogens,
2) clinical exam
3) immune system capacity changes as the newborn
ages.
• Most break them into the
1. Neonatal
2. 1-3 months
3. 3 to 36 months.
26
Neonatal
• PE is felt to be unreliable in detecting many serious bacterial infections.
• Meningitis should always be considered—
up to 10% appear well,
15% have a bulging fontanelle, and
10-15% have nuchal rigidity.
So, a high index of suspicion is important!!! ~20% will not have
fever initially.
• Hyperthermia or hypothermia
• Lethargy or irritability or Seizures
• Poor feeding or vomiting
• Apnea, Dyspnea
• Jaundice
• Hypotension
• Diarrhea or abdominal distension
• Bulging fontanelle
27
Neonates
• The majority of febrile neonates presenting to the
ED have a nonspecific viral illness
• 12% have serious bacterial infections (SBI)
• Infected by more virulent bacteria.
• The most common bacterial infections are UTI
and occult bacteremia
28
Neonatal
Early Onset<7 Days
Group B Strep
E. Coli
Listeria Monocytogenes
Enterococcus
Strep viridans
Strep Pneumoniae
Hemophilus influenza nt
Herpes simplex
Later Onset>7 Days
Group B Strep
Listeria Monocytogenes
Strep Pneumoniae
Neisseria meningitidis
Herpes simplex
29
Neonatal
• Risk Factors
• Preterm
• Membrane rupture: prolonged>12 hours
• Chorioamnionitis or maternal peripartum fever
• UTI
• Multiple pregnancy
• Hypoxia or Apgar score <6
• Poverty or age <20
• 1/3-1/2 neonatal sepsis will have no risk factors!
30
Neonatal
• Screening tests:
WBC<5000 or >20,000,
PMN <4000,
Plt<100,000,
CRP>1,
LFTs elevated(suggest HSV)
• So, if <28 days of age and rectal temp> 38ºC
• Admit
• Blood Culture
• Urine Culture —cath specimen
• Lumbar Puncture
• Cell count, protein, glucose, culture, PCR
• Parenteral Antibiotics
• Ampicillin + Gentamicin (Cefotaxime), consider Acyclovir (primary
maternal infxn, esp if delivered vaginally, PROM, fetal scalp electrodes,
skin eye or mouth lesions, seizures, CSF pleocytosis)
31
Infants 1 to 3 months
• Causes
• HSV (17% are 15 days to 6 weeks of age)
• Bacterial sepsis/meningitis
• Group B Strep, S. Pneumoniae, H. influenza, N. meningitidis.
• Bone and joint infections
• UTI
• Bacterial enteritis (esp Salmonella)
• Pneumonia
• Enterovirus sepsis/meningitis(July-October)
• The risk of bacteremia/meningitis is 3.3%, pneumonia,
bone/joint infections and bacterial enteritis is 13.7%
• 30-50% of those who are ultimately diagnosed with bacterial
meningitis have been seen by a physician within the prior
week(usually 1-2 days before) and were diagnosed as having a
trivial illness and discharged on oral antibiotics.
32
Infants 1 to 3 months
Infants who are toxic and febrile have a much higher
risk of serious bacterial infection. They should be
admitted, have a full sepsis workup, and given
antibiotics/antiviralsAmpicillin and Cefotaxime.
Infants who are nontoxic and febrile who meet all
Rochester criteria can ‘safely’ be treated as an
outpatient. Generally, 1-3% of children
meeting these criteria will develop a serious
bacterial infection, 0.7% bacteremia, 0.14%
meningitis.
33
Infants 1 to 3 months
• Rochester Criteria/Low Risk Criteria
• Nontoxic—most critical and difficult
• Previously healthy, not low birth weight
• No focal bacterial infection on PE except Otitis
Media
• WBC 5,000-15,000/mm3
(normal)
• Bands<1500/mm3
(normal)
• Normal urinalysis, including gram stain
• If diarrhea, must be non-bloody and WBC<5/hpf.
• If respiratory symptoms present, normal CXR
34
Infants 1 to 3 months
• If all of the criteria are met, then there are 2 options
for outpatient management:
• 1) Blood, Urine Cultures, LP, Ceftriaxone 50mg/kg IM
(to 1g), and return for reevaluation within 24 hours.
• 2) Blood, Urine Cultures and careful observation.
• Parents should have mature judgment, can return
within 30 minutes and have a thermometer and a
phone.
• IF NO LP IS DONE, DO NOT GIVE
CEFTRIAXONE
35
Infants 1 to 3 months
• Follow-up of low risk infants
• If all cultures negative: afebrile, well
appearingCareful observation
• Blood cultures negative: well appearing,
febrileCareful observation, may consider second
dose of Ceftriaxone
• Blood culture positiveadmit for sepsis workup and
parenteral antibiotics pending results
• Urine culture positive: if persistent feveradmit for
sepsis workup, parenteral antibiotics pending results.
If afebrile and welloutpatient antibiotics
36
Infants 3 to 36 months
• Infant sepsis syndrome:
• Age 3-36 months
• Fever>39ºC
• ANC>10,000
• If a child meets all 3 criteria, he has a 3% risk for
pneumococcemia. If untreated, 3% will progress to
meningitis.
• Other causes: HHV6(15%), UTI(girls 3%, boys 0.6%),
menigococcemia(0.1%), Salmonella(0.2%), H. influenza
(0.05%), Enterovirus (JulyOctober).
37
Infants 3 to 36 months
• UA with micro, CBC with differential, Blood
Cultures
• LP if meningeal signs, petechiae, purpura or toxic.
• Antimicrobials:
• OM or pneumonia: cover for pneumococcus, non-typable
H. flu and Moraxella: amoxicillin+augmentin, ceftriaxone
• URI or no focus: cover for pneumococcus and
menigococcus: amoxicillin(80-100mg/dg/day),
ceftriaxone
• Pneumococcemia: promptly reassess, if well, should at
least treat with 1 dose ceftriaxone.
38
Occult Bacteremia
5% of children with FWS have OCCULT
BACTEREMIA
• The presence of a positive blood culture in kids
who look well enough to be treated as
outpatients .
39
Occult Bacteremia
• Streptococcus pneumonia is responsible for 2/3 to
¾ of all cases.
• Peak prevalence between 6 and 24 months
• Association with high fever(39.4ºC)
• High WBC count(>15,000)
• Absence of evident focal soft tissue infection.
• Neisseria meningitidis, Haemophilus influenzae
type b, and salmonellae account for most of the
remaining cases.
40
Risk of Occult Bacteremia
Blood culture is the gold standardstill has a high
number of false positives, take 24-48hrs, and most
cases of occult pneumococcal bacteremia clear
without treatment.
Low Risk
Age >3yr
Temp <39.4ºC
WBC >5000 and
<15,000
High Risk
<2yr
>40ºC
<5000 or >15,000
Hx of contact with H. Flu
or N. meningitidis
41
Occult Bacteremia
• Empiric antibiotics should be targeted against S.
pneumoniae, N. meningitidis, and H. influenza
• Amoxicillin
• Augmentin, Bactrim, 2nd
or 3rd
gen Cephalosporins
• Single dose Ceftriaxone 50-75mg/kg
• Follow up is essential !
42
Definition of FUO?
•Optimal definition of FUO:
Fever greater than 38.3C for two
weeks or longer
Fever of Unknown Origin FUO
43
Etiology of FUO
• “A fever of unknown origin is more likely to
be the unusual presentation of a common
disorder than the common presentation of
a rare disorder”
44
Etiology of FUO
• Infections 30-40%
• Autoimmune 7-10%
• Malignancy 2-5%
• Other (incl.. factitious fever, drug fever) 2%
• Never determined: In up to 50%
45
Infectious Causes of FUO in children
• n= 454 children from several studies
• Infectious mononucleosis: (EBV or CMV)
• Infection of the upper or lower respiratory tract
• Urinary tract infection
• Osteomyelitis
• Cat scratch disease
• CNS viral or bacterial infection
• Tuberculosis
46
Infectious Causes of FUO in children:
less common pathogens
• HIV,
• brucellosis
• Q fever
• dengue fever
• malaria
• leptospirosis
• toxocara canis and toxocara cati
• histoplasmosis
• coccidioidomycosis
• blastomycosis
• psittacosis
• Lyme disease
• salmonellosis (typhoid fever)
47
Other considerations for infectious
causes of FUO
• Intraabominal abscess
• Liver abscess
• Occult dental infection
• Endocarditis
48
Non-infectious etiologies of FUO
• Collagen vascular and immune mediated
disease:
• JRA
• SLE
• ARF
• AKD (atypical Kawasaki Disease)
49
Noninfectious Etiologies of FUO
• Inflammatory bowel disease
• Malignancy
• Drug Fever
• Munchausen syndrome by proxy
• Dysautonomia
• Central thermoregulatory disorder
• Immune disorder
50
Periodic Fever Syndromes
• Idiopathic
• Cyclic neutropenia
• Hyper IgD Syndrome
• Familial Mediterranean Fever
51
Approach to the evaluation of the child with
an FUO
• “The tempo of the evaluation should match
the clinical appearance of the child!”
• Document the existence of fever
• Note the general well being of the child
• School absenteeism
• Changes in social behavior
52
Diagnosis: History
• Leave no stone unturned.
• May need to repeat the history
• Remember to include: PH, Allergies, Medics,
FH, Social History, Immunizations, Travel and
Animal exposure
53
Animals and bugs
• Rabbits, squirrels: tularemia
• Cats: cat scratch disease (Bartonella henselae),
tularemia, rabies, toxoplasmosis
• Birds: Psitticosis
• Sheep: Q fever
• Goats: Brucellosis
• Ticks: Lyme disease, relapsing fever, ehrlichiosis.
• Mosquitoes: Malaria, dengue fever, yellow fever,
arboviral encephalitis
• Fleas: Cat scratch disease (also need the cat).
• Dogs, skunks, raccoons, bats: Rabies
54
Travel History
• Foreign: Consider calling the CDC to check
for illnesses endemic to area visited. Think
about malaria, dengue, typhoid, hepatitis A
and tuberculosis, parasites, HIV
55
Family and social history
• Drug abuse
• ?HIV
• Previous history of transfusions
• Ill family members (TB)
• Frequent childhood deaths (immune deficiency)
56
Clues on physical exam
• Pattern of fever
Intermittent fevers (hectic or spiking fever) suggest pyogenic infection
Remittent fevers, fluctuating peaks and a baseline that does not return
to normal. viral infections, bacterial infections, especially
endocarditis.
Persistent fevers with little or no fluctuation are sustained fevers;
typhoid fever and typhus
Relapsing fevers with periods during which patients are afebrile for one
or more days between febrile episodes malaria, infection with the
Borrelia and lymphomas.
Recurrent episodes of fever over periods of more than one year's
duration suggest metabolic defects, (CNS) dysregulation of
temperature control, periodic disorders (such as cyclic neutropenia,
hyper IgD syndrome, and immunodeficiency states.
• Sweating: Hyperthyroidism
• No sweating: ectodermal dysplasia
• Weight loss, growth curves
• ArthralgiaArthritis, myalgia: collagen disease, neoplasm,
57
Clues on physical exam
• Heart murmur or previous history of heart
disease: sub-acute bacterial endocarditis
• GI: IBD, celiac disease, ruptured appendix,
liver abscess, perinephric abscess
• Large spleen: malignancy, endocarditis,
infectious mononucleosis
• Do a good neurologic exam
58
Clues on physical exam
• Remember to do a rectal and GU exam
• Skin: eczema/seborrhea (histiocytosis,
immune deficiency)
• Palpate bones and extremities
59
Diagnostic evaluation
• *Adapted from Steele et. al
• Phase I (outpatient)
• Based on findings from the history and physical consider the
following tests:
• CBC
• ESR
• Urinalysis and culture
• Serum chemistries to include LFT’s
60
Diagnostic evaluation
• Phase 1 Outpatient: continued
• CXR, abdominal ultrasound
• PPD, thick and thin smear for malaria
• Monospot/EBV serology
• Cat scratch serology (B. henselae and quintana)
• HIV test (ELISA ab unless pt. <12 mos, then
HIV PCR)
• Blood culture, Stool, occult and culture
61
Diagnostic evaluation
• Phase 2
• Hospitalize for observation/Consider
referral to ID, Rheumatology or Heme Onc
• LP
• Sinus CT
• Repeat blood culture
• Bone scan
• Bone marrow
• Echocardiogram
62
Diagnostic evaluation
• Serologic tests (generally helpful only if acute
and convalescent titers are obtained or IgM is
positive)
• Gallium/Indium scans: Several studies have
shown these tests are only helpful if probable
focus of infection has been identified!
63
Therapy
• Try NOT to start empiric oral or
parenteral antibiotic therapy if you don’t
know what you are treating.
• Empiric antibiotics only if patient appears ill
(and remember to get cultures first)
• NSAID
• Never ever ever treat empirically with
steroids
64
Outcome
• Depends on underlying diagnosis
• Most patients in whom the source of fever
is never determined after a thorough and
comprehensive evaluation have resolution
of symptoms and do well
65
Antipyretics
• Acetaminophen, Ibuprofen
• Efficacy and safety of alternating
acetaminophen and ibuprofen not studied
66
Conclusion
• A careful and complete history, frequent re-
examination of the child and patience will
usually reveal the answer.
67
• Oski’s Pediatrics, 3rd
edition
• Harriet Lane, 16th
edition
• FWS in Children 0-36 months of age. TCNA 53(2006)167-194
• The Febrile Child. Emergency Medicine Reports. September 1995.
• Antibiotic Choices: The critical first hour. Pediatric Annals. June 1996.
• Evidence based approach to the febrile infant/child. Handout from Dr.
Michael Cooperstock, MD. May 2000.
• Advisory Committee on Immunization Practices. Preventing pneumococcal
disease among infants and young children: recommendations of the Advisory
Committee on Immunization Practices. MMWR Recomm Rep. 2000;49(RR-
9):1-35
• AAP; Committee on Infectious Disease. Policy statement: recommendations
for the prevention of pneumococcal infections, including the use of
pneumococcal conjugate vaccine, pneumococcal polysaccharide vaccine, and
antibiotic porphylaxis/ Pediatrics. 2000;106:362-366.
• Whitney CG, FarleyMM, Hadler J, et al. Decline in invasive pneumococcal
disease after the introduction of protein-polysaccharide vaccine. NEnglJMed.
2003;348:1737-1746.
• Poehling KA etal. Invasive Pneumococcal Disease Among Infants before and
after Introductions of Pneumococcal Conjugate Vaccine. JAMA Apr 12,
2006,295:1668-74.

Contenu connexe

Tendances

Seizure Disorders in Children
Seizure Disorders in ChildrenSeizure Disorders in Children
Seizure Disorders in ChildrenCSN Vittal
 
FEVER OF UNKNOWN ORIGIN - PEDIATRICS
FEVER OF UNKNOWN ORIGIN - PEDIATRICSFEVER OF UNKNOWN ORIGIN - PEDIATRICS
FEVER OF UNKNOWN ORIGIN - PEDIATRICSapoorvaerukulla
 
Malaria in children 2021
Malaria in children 2021Malaria in children 2021
Malaria in children 2021Imran Iqbal
 
Febrile seizures in children 2021
Febrile seizures in children 2021Febrile seizures in children 2021
Febrile seizures in children 2021Imran Iqbal
 
ACUTE PEDIATRIC GASTROENTERITIS
ACUTE  PEDIATRIC GASTROENTERITIS ACUTE  PEDIATRIC GASTROENTERITIS
ACUTE PEDIATRIC GASTROENTERITIS Sayed Ahmed
 
Pneumonia in children
Pneumonia in childrenPneumonia in children
Pneumonia in childrenAzad Haleem
 
Seizures - Febrile Seizures
Seizures - Febrile SeizuresSeizures - Febrile Seizures
Seizures - Febrile SeizuresThe Medical Post
 
bronchiolitis in paediatrics
bronchiolitis in paediatricsbronchiolitis in paediatrics
bronchiolitis in paediatricsmeducationdotnet
 
Febrile illness in children 2021
Febrile illness in children 2021Febrile illness in children 2021
Febrile illness in children 2021Imran Iqbal
 
Bronchiolitis in children
Bronchiolitis in childrenBronchiolitis in children
Bronchiolitis in childrenAzad Haleem
 
Seizures in children 2021
Seizures in children 2021Seizures in children 2021
Seizures in children 2021Imran Iqbal
 
Meningitis in children
Meningitis  in children Meningitis  in children
Meningitis in children Azad Haleem
 
Approach to a patient with fever of unknown origin
Approach to a patient with fever of unknown origin Approach to a patient with fever of unknown origin
Approach to a patient with fever of unknown origin sunil kumar daha
 
Febrile seizure / Pediatrics
Febrile seizure / PediatricsFebrile seizure / Pediatrics
Febrile seizure / PediatricsDiaa Srahin
 
Acute glomerulonephritis (agn)
Acute glomerulonephritis (agn)Acute glomerulonephritis (agn)
Acute glomerulonephritis (agn)Yogesh Dengale
 
Meningitis (Pediatrics Lecture)
Meningitis (Pediatrics Lecture)Meningitis (Pediatrics Lecture)
Meningitis (Pediatrics Lecture)Karunesh Kumar
 

Tendances (20)

Seizure Disorders in Children
Seizure Disorders in ChildrenSeizure Disorders in Children
Seizure Disorders in Children
 
FEVER OF UNKNOWN ORIGIN - PEDIATRICS
FEVER OF UNKNOWN ORIGIN - PEDIATRICSFEVER OF UNKNOWN ORIGIN - PEDIATRICS
FEVER OF UNKNOWN ORIGIN - PEDIATRICS
 
Febrile seizures
Febrile seizuresFebrile seizures
Febrile seizures
 
Malaria in children 2021
Malaria in children 2021Malaria in children 2021
Malaria in children 2021
 
Croup in children
Croup in childrenCroup in children
Croup in children
 
Febrile seizures in children 2021
Febrile seizures in children 2021Febrile seizures in children 2021
Febrile seizures in children 2021
 
ACUTE PEDIATRIC GASTROENTERITIS
ACUTE  PEDIATRIC GASTROENTERITIS ACUTE  PEDIATRIC GASTROENTERITIS
ACUTE PEDIATRIC GASTROENTERITIS
 
Pneumonia in children
Pneumonia in childrenPneumonia in children
Pneumonia in children
 
Seizures - Febrile Seizures
Seizures - Febrile SeizuresSeizures - Febrile Seizures
Seizures - Febrile Seizures
 
bronchiolitis in paediatrics
bronchiolitis in paediatricsbronchiolitis in paediatrics
bronchiolitis in paediatrics
 
Febrile illness in children 2021
Febrile illness in children 2021Febrile illness in children 2021
Febrile illness in children 2021
 
Bronchiolitis in children
Bronchiolitis in childrenBronchiolitis in children
Bronchiolitis in children
 
Seizures in children 2021
Seizures in children 2021Seizures in children 2021
Seizures in children 2021
 
Meningitis in children
Meningitis  in children Meningitis  in children
Meningitis in children
 
Pediatric tuberculosis
Pediatric tuberculosisPediatric tuberculosis
Pediatric tuberculosis
 
Approach to a patient with fever of unknown origin
Approach to a patient with fever of unknown origin Approach to a patient with fever of unknown origin
Approach to a patient with fever of unknown origin
 
Febrile seizure / Pediatrics
Febrile seizure / PediatricsFebrile seizure / Pediatrics
Febrile seizure / Pediatrics
 
Meningitis In Children
Meningitis  In ChildrenMeningitis  In Children
Meningitis In Children
 
Acute glomerulonephritis (agn)
Acute glomerulonephritis (agn)Acute glomerulonephritis (agn)
Acute glomerulonephritis (agn)
 
Meningitis (Pediatrics Lecture)
Meningitis (Pediatrics Lecture)Meningitis (Pediatrics Lecture)
Meningitis (Pediatrics Lecture)
 

En vedette (8)

Pyrexia
PyrexiaPyrexia
Pyrexia
 
Pediatric fever
Pediatric feverPediatric fever
Pediatric fever
 
Fever
FeverFever
Fever
 
Fever
FeverFever
Fever
 
Fever for 3rd year.
Fever for 3rd year.Fever for 3rd year.
Fever for 3rd year.
 
Fever lecture note
Fever lecture noteFever lecture note
Fever lecture note
 
Approach to history taking in a patient with fever
Approach  to  history  taking  in  a  patient  with  feverApproach  to  history  taking  in  a  patient  with  fever
Approach to history taking in a patient with fever
 
Fever
FeverFever
Fever
 

Similaire à Fever in infants and children

Fournier's gangrene
Fournier's gangreneFournier's gangrene
Fournier's gangrenesbcoomes
 
Rheumatic heart disease
Rheumatic heart diseaseRheumatic heart disease
Rheumatic heart diseaseGeorge Kariuki
 
Infective Endocarditis
Infective EndocarditisInfective Endocarditis
Infective EndocarditisDiya Saleh
 
Diagnosis and managment of Fever of Unknown Origin
Diagnosis and managment of Fever of Unknown OriginDiagnosis and managment of Fever of Unknown Origin
Diagnosis and managment of Fever of Unknown Originarahmanzai5
 
Pyrexia of unknown origin edited
Pyrexia of unknown origin editedPyrexia of unknown origin edited
Pyrexia of unknown origin editedAl Tarique
 
Pyrexia of unknown origin
Pyrexia of unknown originPyrexia of unknown origin
Pyrexia of unknown originAl Tarique
 
Acute encephalitis syndrome final shivaom
Acute encephalitis syndrome final shivaomAcute encephalitis syndrome final shivaom
Acute encephalitis syndrome final shivaomShivaom Chaurasia
 
PERSISTENT PYREXIAS IN “NON-TROPICAL” PATIENTS
PERSISTENT PYREXIAS IN “NON-TROPICAL” PATIENTSPERSISTENT PYREXIAS IN “NON-TROPICAL” PATIENTS
PERSISTENT PYREXIAS IN “NON-TROPICAL” PATIENTSmeducationdotnet
 
Fever of unkown origin
Fever of unkown originFever of unkown origin
Fever of unkown originikramdr01
 
enterovirus meningitis.pptx
enterovirus meningitis.pptxenterovirus meningitis.pptx
enterovirus meningitis.pptxseemneem
 
Pyrexia of unkown origin by Dr mohammed Hussien
Pyrexia of unkown origin by Dr mohammed HussienPyrexia of unkown origin by Dr mohammed Hussien
Pyrexia of unkown origin by Dr mohammed HussienKafrelsheiekh University
 
The-Febrile-Patient-Dr.-Serrao-9.5.13.pptx
The-Febrile-Patient-Dr.-Serrao-9.5.13.pptxThe-Febrile-Patient-Dr.-Serrao-9.5.13.pptx
The-Febrile-Patient-Dr.-Serrao-9.5.13.pptxBilalKhan91831
 
Pyrexia (Fever) of Unknown Origin by DR KD DELE
Pyrexia (Fever) of Unknown Origin by DR KD DELEPyrexia (Fever) of Unknown Origin by DR KD DELE
Pyrexia (Fever) of Unknown Origin by DR KD DELEKemi Dele-Ijagbulu
 
Sexually transmitted infections comp
Sexually transmitted infections compSexually transmitted infections comp
Sexually transmitted infections comppgijeff
 
Multisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in childrenMultisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in childrenEmmanuelNkrumah11
 

Similaire à Fever in infants and children (20)

Fournier's gangrene
Fournier's gangreneFournier's gangrene
Fournier's gangrene
 
Rheumatic heart disease
Rheumatic heart diseaseRheumatic heart disease
Rheumatic heart disease
 
TB Meningitis
TB MeningitisTB Meningitis
TB Meningitis
 
Infective Endocarditis
Infective EndocarditisInfective Endocarditis
Infective Endocarditis
 
Diagnosis and managment of Fever of Unknown Origin
Diagnosis and managment of Fever of Unknown OriginDiagnosis and managment of Fever of Unknown Origin
Diagnosis and managment of Fever of Unknown Origin
 
MENINGITIS.pptx
MENINGITIS.pptxMENINGITIS.pptx
MENINGITIS.pptx
 
Pyrexia of unknown origin edited
Pyrexia of unknown origin editedPyrexia of unknown origin edited
Pyrexia of unknown origin edited
 
Pyrexia of unknown origin
Pyrexia of unknown originPyrexia of unknown origin
Pyrexia of unknown origin
 
Fever of unknown origin
Fever of unknown originFever of unknown origin
Fever of unknown origin
 
Acute encephalitis syndrome final shivaom
Acute encephalitis syndrome final shivaomAcute encephalitis syndrome final shivaom
Acute encephalitis syndrome final shivaom
 
Pyrexia of unknown origin
Pyrexia of unknown originPyrexia of unknown origin
Pyrexia of unknown origin
 
PERSISTENT PYREXIAS IN “NON-TROPICAL” PATIENTS
PERSISTENT PYREXIAS IN “NON-TROPICAL” PATIENTSPERSISTENT PYREXIAS IN “NON-TROPICAL” PATIENTS
PERSISTENT PYREXIAS IN “NON-TROPICAL” PATIENTS
 
Fever of unkown origin
Fever of unkown originFever of unkown origin
Fever of unkown origin
 
enterovirus meningitis.pptx
enterovirus meningitis.pptxenterovirus meningitis.pptx
enterovirus meningitis.pptx
 
Pyrexia of unkown origin by Dr mohammed Hussien
Pyrexia of unkown origin by Dr mohammed HussienPyrexia of unkown origin by Dr mohammed Hussien
Pyrexia of unkown origin by Dr mohammed Hussien
 
The-Febrile-Patient-Dr.-Serrao-9.5.13.pptx
The-Febrile-Patient-Dr.-Serrao-9.5.13.pptxThe-Febrile-Patient-Dr.-Serrao-9.5.13.pptx
The-Febrile-Patient-Dr.-Serrao-9.5.13.pptx
 
Pyrexia (Fever) of Unknown Origin by DR KD DELE
Pyrexia (Fever) of Unknown Origin by DR KD DELEPyrexia (Fever) of Unknown Origin by DR KD DELE
Pyrexia (Fever) of Unknown Origin by DR KD DELE
 
NEONATAL SEPSIS
NEONATAL SEPSISNEONATAL SEPSIS
NEONATAL SEPSIS
 
Sexually transmitted infections comp
Sexually transmitted infections compSexually transmitted infections comp
Sexually transmitted infections comp
 
Multisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in childrenMultisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in children
 

Plus de Mohamed Abunada

Pediatric neurology emergencies dr abunada
Pediatric neurology emergencies dr abunadaPediatric neurology emergencies dr abunada
Pediatric neurology emergencies dr abunadaMohamed Abunada
 
Convulsion disorders dr Mohamed abunada
Convulsion disorders dr Mohamed abunadaConvulsion disorders dr Mohamed abunada
Convulsion disorders dr Mohamed abunadaMohamed Abunada
 
dr mohamed abunadaApproach of Ataxia
dr mohamed abunadaApproach of Ataxia dr mohamed abunadaApproach of Ataxia
dr mohamed abunadaApproach of Ataxia Mohamed Abunada
 
Cerebral palsy الشلل الدماغي
Cerebral palsy   الشلل الدماغيCerebral palsy   الشلل الدماغي
Cerebral palsy الشلل الدماغيMohamed Abunada
 
دمحمد ابوندىAcute flaccid paralysis afp ‫‬
دمحمد ابوندىAcute flaccid paralysis afp ‫‬دمحمد ابوندىAcute flaccid paralysis afp ‫‬
دمحمد ابوندىAcute flaccid paralysis afp ‫‬Mohamed Abunada
 
Acute flaccid paralysis afp ‫‬
Acute flaccid paralysis afp ‫‬Acute flaccid paralysis afp ‫‬
Acute flaccid paralysis afp ‫‬Mohamed Abunada
 
sudden infant death syndrome sids
 sudden infant death syndrome  sids sudden infant death syndrome  sids
sudden infant death syndrome sidsMohamed Abunada
 
Guillain barre syndrome (gbs)
Guillain barre syndrome (gbs) Guillain barre syndrome (gbs)
Guillain barre syndrome (gbs) Mohamed Abunada
 
(DMD)Duchenne muscular dystrophy-dr mohamed abunada
(DMD)Duchenne muscular dystrophy-dr mohamed abunada(DMD)Duchenne muscular dystrophy-dr mohamed abunada
(DMD)Duchenne muscular dystrophy-dr mohamed abunadaMohamed Abunada
 
pediatric status epilepticus (21-9-2015)
pediatric status epilepticus (21-9-2015)pediatric status epilepticus (21-9-2015)
pediatric status epilepticus (21-9-2015)Mohamed Abunada
 

Plus de Mohamed Abunada (12)

Pediatric neurology emergencies dr abunada
Pediatric neurology emergencies dr abunadaPediatric neurology emergencies dr abunada
Pediatric neurology emergencies dr abunada
 
Convulsion disorders dr Mohamed abunada
Convulsion disorders dr Mohamed abunadaConvulsion disorders dr Mohamed abunada
Convulsion disorders dr Mohamed abunada
 
Hypotonia in children
Hypotonia in childrenHypotonia in children
Hypotonia in children
 
dr mohamed abunadaApproach of Ataxia
dr mohamed abunadaApproach of Ataxia dr mohamed abunadaApproach of Ataxia
dr mohamed abunadaApproach of Ataxia
 
Cerebral palsy الشلل الدماغي
Cerebral palsy   الشلل الدماغيCerebral palsy   الشلل الدماغي
Cerebral palsy الشلل الدماغي
 
دمحمد ابوندىAcute flaccid paralysis afp ‫‬
دمحمد ابوندىAcute flaccid paralysis afp ‫‬دمحمد ابوندىAcute flaccid paralysis afp ‫‬
دمحمد ابوندىAcute flaccid paralysis afp ‫‬
 
Acute flaccid paralysis afp ‫‬
Acute flaccid paralysis afp ‫‬Acute flaccid paralysis afp ‫‬
Acute flaccid paralysis afp ‫‬
 
sudden infant death syndrome sids
 sudden infant death syndrome  sids sudden infant death syndrome  sids
sudden infant death syndrome sids
 
Guillain barre syndrome (gbs)
Guillain barre syndrome (gbs) Guillain barre syndrome (gbs)
Guillain barre syndrome (gbs)
 
(DMD)Duchenne muscular dystrophy-dr mohamed abunada
(DMD)Duchenne muscular dystrophy-dr mohamed abunada(DMD)Duchenne muscular dystrophy-dr mohamed abunada
(DMD)Duchenne muscular dystrophy-dr mohamed abunada
 
pediatric status epilepticus (21-9-2015)
pediatric status epilepticus (21-9-2015)pediatric status epilepticus (21-9-2015)
pediatric status epilepticus (21-9-2015)
 
coma
comacoma
coma
 

Dernier

mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 

Dernier (20)

mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 

Fever in infants and children

  • 1. 1 Fever in Infants and Children: Mohamed Abunada, MD Department of pediatric Neurology Al Rantisi Specialized pediatric Hospital
  • 2. 2 Fever • Fever is the most common pediatric complaint, second only to routine care for clinic visits, and the most common reason kids are brought to the ER. • 5-20% have no localizing signs on PE with no history to explain the fever. • The majority of kids with fever do not have a serious illness, although a small percentage harbor or may develop a serious bacterial infection.
  • 3. 3 ‘True’ Fever • Occurs when IL-1, IL-6 or other cytokines are released from monocytes and macrophages in response to infection, tissue injury, drugs, and other inflammatory processes, increasing the body’s set point. The anterior hypothalamus maintains an inherent set point near 36ºC(98.6ºF). • Normal circadian rhythm, which is highest(up to 2ºC) ~6pm and lowest at 6am. This accounts for increased volume of ER visits that peaks in the evening. Most true fevers follow this diurnal pattern.
  • 4. 4 ‘False’ fever • Does not directly increase the body’s set point. • CNS disease that directly affects the hypothalamus--ICH, infection. • Diseases that increase the body’s production of heat-- hyperthyroidism, malignant hyperthermia, salicylate overdose. • Excess heat load--child left in a car or left next to a heater for too long. • Defective heat loss mechanisms--burns, heat stroke, drugs that compromise blood flow and sweating mechanisms. • Normal causes of temperature elevation include physical activity, ovulation, and environmental temperature.
  • 5. 5 Malignant hyperthermia • can follow intense muscle contraction (cocaine overdose) or muscle metabolism altered by drugs (neuroleptic agents) or anesthetics.
  • 6. 6 Heatstroke, • Heatstroke, a potentially fatal febrile illness, is caused by excessively high environmental temperatures and failure of physiologic body heat-losing mechanisms
  • 7. 7 Fever • does not always represent infection. • Rheumatologic disease, inflammatory bowel disease, Kawasaki disease, poisoning, and malignancy also may present with fever. • The varied manifestations of infectious diseases frequently mimic rheumatoid arthritis, lupus erythematosus, inflammatory bowel disease, leukemia, and lymphoma
  • 8. 8 Reliable Temperature Measurement • All measurements are estimates of the body’s true core temp—central • RECTAL—gold standard • Esophageal—accurate but impractical • Tactile and axillary—inaccurate, varies considerably with environmental temperature • Tympanic—inaccurate in age <3 years
  • 9. 9 Categories • Fever of short Duration accompanied by localizing signs and symptoms, in which a diagnosis can be established by clinical history and physical examination • Fever without localizing signs (without a Source or Focus) frequently in a child younger than 3 years old, in which a history and PE fail to establish a cause, although a diagnosis of occult bacteremia may be suggested by laboratory studies • Fever with unknown origin (FUO) which defines fever for more than 14 days without an identified etiology despite history, physical examination, and routine laboratory tests or after 1 week of hospitalization and evaluation
  • 10. 10 Fever of short Duration • Initial complaints of infection may be nonspecific, especially in infants who present with fever, lethargy, irritability, excessive sleeping, or poor feeding. Certain individual physical findings, such as unique rashes, may be diagnostic . • Because of the varied presentations of infectious diseases, it is important to investigate thoroughly every objective finding from the history and physical examination
  • 11. 11 URTI Rhinorrhea, sore throat, cough, drooling, stridor, sinus pain, tooth pain, hoarse voice Nasal congestion, pharyngeal erythema, enlarged tonsils with exudate, swollen red epiglottis, regional lymphadenopathy Ear Ear pain or drainage Red bulging tympanic membrane, drainage from ear canal LRTI Cough, chest pain, dyspnea, sputum production, cyanosis Tachypnea, crackles, wheezing, localized diminished breath sounds, intercostal retractions Localizing Manifestations of Infection
  • 12. 12 GIT Nausea, vomiting, diarrhea, abdominal pain, anorexia Hypoactive or hyperactive bowel sounds, abdominal tenderness (generalized or focal). Liver Anorexia, vomiting, dark urine, light stools Jaundice, hepatomegaly, hepatic tenderness, bleeding diatheses, coma Genitourinary tract Dysuria, frequency, urgency, flank or suprapubic pain, vaginal discharge Costovertebral angle or suprapubic tenderness, cervical motion and adnexal tenderness CNS Lethargy, irritability, headache, neck stiffness, seizures Nuchal rigidity, Kernig sign, Brudzinski sign, bulging fontanel, altered mental status, focal neurologic deficits, coma Cardiovascular Dyspnea, palpitations, fatigue, exercise intolerance, chest pain Tachycardia, hypotension, cardiomegaly, hepatomegaly, splenomegaly, crackles, petechiae, Osler nodes, new or change in murmur, distended neck veins, pericardial friction rub, muffled heart sounds Skeletal Limp, bone pain, limited function (pseudoparalysis) Local swelling, erythema, warmth, limited range of motion, point bone tenderness, joint line tenderness
  • 13. 13 The acute phase response • nonspecific inflammatory response to infection, trauma, autoimmune disease, and malignancies. • such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), are commonly elevated during an infection, but are not specific for infection and do not identify any specific infection. • These tests are often useful to show response to therapy (e.g., osteomyelitis).
  • 14. 14 complete blood count CBC • obtained to identify evidence of bone marrow response to infection. • The initial response to infection, especially in children, is usually a leukocytosis, with a neutrophilic response to bacterial and viral infections. • With most viral infections, the initial neutrophilic response is transient and is followed quickly by the characteristic mononuclear response. • In general, bacterial infections are associated with greater neutrophilia than are viral infections.
  • 15. 15 • A shift to the left is an increase in the numbers of circulating immature cells of the neutrophil series (band forms, myelocytes) . • A shift to the left indicates the rapid release of cells from the bone marrow and characteristically is seen in the early stages of infection and with bacterial infections. • Transient lymphopenia at the beginning of illness and lasting 24 to 48 hours has been described with many viral infections.
  • 16. 16 • Atypical lymphocytes are mature T lymphocytes that classically are seen with infectious mononucleosis caused by Epstein- Barr virus (EBV). • Other infections associated with atypical lymphocytosis include cytomegalovirus (CMV) infection, toxoplasmosis, viral hepatitis, rubella, roseola, mumps, and some drug reactions.
  • 17. 17 Other common screening tests include • Urinalysis for (UTIs), • Transaminases for liver function, and • Lumbar puncture for evaluation of the CSF if there is concern for meningitis or encephalitis . • A grouping of various tests may help distinguish viral versus bacterial infection, but definitive diagnosis requires culture or PCR.
  • 18. 18 Differentiating Viral from Bacterial Infections Variable Viral Bacterial Leukocytosis Uncommon Common Shift to left (↑ bands) Uncommon Common Neutropenia Possible Suggests overwhelming infection ↑ ESR Unusual Common ↑ CRP Unusual Common IL-1 Uncommon Common Meningitis (pleocytosis) Lymphocytic Neutrophilic
  • 19. 19 Cultures are the mainstay of diagnosis. • Blood cultures are sensitive and specific for bacteremia that may be primary or secondary to a focus (osteomyelitis, GE, UTI, endocarditis). • Urine cultures confirm UTI, which may be occult in young infants. • CSF cultures should be obtained with any lumbar puncture. • Other cultures are determined by the presence of fluid collections or masses that are suspected to be infectious. • Serologic tests, using enzyme-linked immunosorbent assay (ELISA) showing an IgM response, high IgG, or seroconversion between acute and convalescent sera can be used for diagnosis. • Molecular detection methods, such as PCR for DNA or RNA, offer the specificity of culture, high sensitivity, and rapid results.
  • 20. 20 DIAGNOSTIC IMAGING • Plain x-rays are useful for the middle and lower respiratory tract. • Ultrasonography is a noninvasive, nonirradiating technique, useful to identify soft tissue abscesses with lymphadenitis and to diagnose suppurative arthritis of the hip. • A voiding cystourethrogram (VCUG) is used to evaluate for ureteral reflux, which is a predisposing factor for upper UTIs. • Radionuclide scans, such as technetium-99m for osteomyelitis and dimercaptosuccinic acid (DMSA) for acute pyelonephritis or chronic renal scarring, are often informative.
  • 21. 21 • CT (with contrast enhancement) and MRI (with gadolinium enhancement) allow characterization of lesions and precise anatomic localization and are the modalities of choice for the brain. • CT shows greater bone detail • MRI shows greater tissue detail. MRI is especially useful for diagnosis of osteomyelitis, myositis, and necrotizing fasciitis. • High-resolution CT is useful for complicated chest infections. • Contrast studies (upper gastrointestinal series, barium enema) are used to identify mucosal lesions of the gastrointestinal tract.
  • 22. 22 INITIAL DIAGNOSTIC EVALUATION • requires accurately recognizing the site of the infection , • recognizing all of the manifestations that are present, • knowing all of the risk factors, • recognizing exposure to potential infectious agents, and • knowing the most likely organisms causing each infection . • Obtaining a thorough history identifies most of these risk factors.
  • 23. 23 • Season of year • Age , Weight , Place of residence • General health • Change Fever-presence, duration, and pattern • Previous similar symptoms • Previous infections and other illnesses • Previous surgeries Preceding trauma • Presence of outbreaks or epidemics in the community • Similar illness in close contacts • Exposures to infected individuals • Exposures to farm or feral animals ,Exposures to ticks and mosquitoes. • Travel history • Daycare or school attendance • Sources of water • Food and ingestion history, especially of undercooked meat or unpasteurized dairy products • Home sanitary facilities and hygiene • Presence of foreign bodies (e.g., indwelling catheters, shunt, grafts) • Immunization history • Current medications Risk factors
  • 24. 24 Fever without a source (FWS) • 5 to 20% of febrile children have no localizing signs on PE and nothing in the history to explain the fever. By definition, less than 7 days. • FWS (like fever) is most common in children younger than age 5, with a peak prevalence between 6 and 24 months of age. • Those <6 months retain protective maternal antibodies against common organisms, while those 18-24 months old are more immune competent, and are at a lower risk of developing bacteremia
  • 25. 25 Diagnostic Assessment in Children 1) Age is important as etiologic pathogens, 2) clinical exam 3) immune system capacity changes as the newborn ages. • Most break them into the 1. Neonatal 2. 1-3 months 3. 3 to 36 months.
  • 26. 26 Neonatal • PE is felt to be unreliable in detecting many serious bacterial infections. • Meningitis should always be considered— up to 10% appear well, 15% have a bulging fontanelle, and 10-15% have nuchal rigidity. So, a high index of suspicion is important!!! ~20% will not have fever initially. • Hyperthermia or hypothermia • Lethargy or irritability or Seizures • Poor feeding or vomiting • Apnea, Dyspnea • Jaundice • Hypotension • Diarrhea or abdominal distension • Bulging fontanelle
  • 27. 27 Neonates • The majority of febrile neonates presenting to the ED have a nonspecific viral illness • 12% have serious bacterial infections (SBI) • Infected by more virulent bacteria. • The most common bacterial infections are UTI and occult bacteremia
  • 28. 28 Neonatal Early Onset<7 Days Group B Strep E. Coli Listeria Monocytogenes Enterococcus Strep viridans Strep Pneumoniae Hemophilus influenza nt Herpes simplex Later Onset>7 Days Group B Strep Listeria Monocytogenes Strep Pneumoniae Neisseria meningitidis Herpes simplex
  • 29. 29 Neonatal • Risk Factors • Preterm • Membrane rupture: prolonged>12 hours • Chorioamnionitis or maternal peripartum fever • UTI • Multiple pregnancy • Hypoxia or Apgar score <6 • Poverty or age <20 • 1/3-1/2 neonatal sepsis will have no risk factors!
  • 30. 30 Neonatal • Screening tests: WBC<5000 or >20,000, PMN <4000, Plt<100,000, CRP>1, LFTs elevated(suggest HSV) • So, if <28 days of age and rectal temp> 38ºC • Admit • Blood Culture • Urine Culture —cath specimen • Lumbar Puncture • Cell count, protein, glucose, culture, PCR • Parenteral Antibiotics • Ampicillin + Gentamicin (Cefotaxime), consider Acyclovir (primary maternal infxn, esp if delivered vaginally, PROM, fetal scalp electrodes, skin eye or mouth lesions, seizures, CSF pleocytosis)
  • 31. 31 Infants 1 to 3 months • Causes • HSV (17% are 15 days to 6 weeks of age) • Bacterial sepsis/meningitis • Group B Strep, S. Pneumoniae, H. influenza, N. meningitidis. • Bone and joint infections • UTI • Bacterial enteritis (esp Salmonella) • Pneumonia • Enterovirus sepsis/meningitis(July-October) • The risk of bacteremia/meningitis is 3.3%, pneumonia, bone/joint infections and bacterial enteritis is 13.7% • 30-50% of those who are ultimately diagnosed with bacterial meningitis have been seen by a physician within the prior week(usually 1-2 days before) and were diagnosed as having a trivial illness and discharged on oral antibiotics.
  • 32. 32 Infants 1 to 3 months Infants who are toxic and febrile have a much higher risk of serious bacterial infection. They should be admitted, have a full sepsis workup, and given antibiotics/antiviralsAmpicillin and Cefotaxime. Infants who are nontoxic and febrile who meet all Rochester criteria can ‘safely’ be treated as an outpatient. Generally, 1-3% of children meeting these criteria will develop a serious bacterial infection, 0.7% bacteremia, 0.14% meningitis.
  • 33. 33 Infants 1 to 3 months • Rochester Criteria/Low Risk Criteria • Nontoxic—most critical and difficult • Previously healthy, not low birth weight • No focal bacterial infection on PE except Otitis Media • WBC 5,000-15,000/mm3 (normal) • Bands<1500/mm3 (normal) • Normal urinalysis, including gram stain • If diarrhea, must be non-bloody and WBC<5/hpf. • If respiratory symptoms present, normal CXR
  • 34. 34 Infants 1 to 3 months • If all of the criteria are met, then there are 2 options for outpatient management: • 1) Blood, Urine Cultures, LP, Ceftriaxone 50mg/kg IM (to 1g), and return for reevaluation within 24 hours. • 2) Blood, Urine Cultures and careful observation. • Parents should have mature judgment, can return within 30 minutes and have a thermometer and a phone. • IF NO LP IS DONE, DO NOT GIVE CEFTRIAXONE
  • 35. 35 Infants 1 to 3 months • Follow-up of low risk infants • If all cultures negative: afebrile, well appearingCareful observation • Blood cultures negative: well appearing, febrileCareful observation, may consider second dose of Ceftriaxone • Blood culture positiveadmit for sepsis workup and parenteral antibiotics pending results • Urine culture positive: if persistent feveradmit for sepsis workup, parenteral antibiotics pending results. If afebrile and welloutpatient antibiotics
  • 36. 36 Infants 3 to 36 months • Infant sepsis syndrome: • Age 3-36 months • Fever>39ºC • ANC>10,000 • If a child meets all 3 criteria, he has a 3% risk for pneumococcemia. If untreated, 3% will progress to meningitis. • Other causes: HHV6(15%), UTI(girls 3%, boys 0.6%), menigococcemia(0.1%), Salmonella(0.2%), H. influenza (0.05%), Enterovirus (JulyOctober).
  • 37. 37 Infants 3 to 36 months • UA with micro, CBC with differential, Blood Cultures • LP if meningeal signs, petechiae, purpura or toxic. • Antimicrobials: • OM or pneumonia: cover for pneumococcus, non-typable H. flu and Moraxella: amoxicillin+augmentin, ceftriaxone • URI or no focus: cover for pneumococcus and menigococcus: amoxicillin(80-100mg/dg/day), ceftriaxone • Pneumococcemia: promptly reassess, if well, should at least treat with 1 dose ceftriaxone.
  • 38. 38 Occult Bacteremia 5% of children with FWS have OCCULT BACTEREMIA • The presence of a positive blood culture in kids who look well enough to be treated as outpatients .
  • 39. 39 Occult Bacteremia • Streptococcus pneumonia is responsible for 2/3 to ¾ of all cases. • Peak prevalence between 6 and 24 months • Association with high fever(39.4ºC) • High WBC count(>15,000) • Absence of evident focal soft tissue infection. • Neisseria meningitidis, Haemophilus influenzae type b, and salmonellae account for most of the remaining cases.
  • 40. 40 Risk of Occult Bacteremia Blood culture is the gold standardstill has a high number of false positives, take 24-48hrs, and most cases of occult pneumococcal bacteremia clear without treatment. Low Risk Age >3yr Temp <39.4ºC WBC >5000 and <15,000 High Risk <2yr >40ºC <5000 or >15,000 Hx of contact with H. Flu or N. meningitidis
  • 41. 41 Occult Bacteremia • Empiric antibiotics should be targeted against S. pneumoniae, N. meningitidis, and H. influenza • Amoxicillin • Augmentin, Bactrim, 2nd or 3rd gen Cephalosporins • Single dose Ceftriaxone 50-75mg/kg • Follow up is essential !
  • 42. 42 Definition of FUO? •Optimal definition of FUO: Fever greater than 38.3C for two weeks or longer Fever of Unknown Origin FUO
  • 43. 43 Etiology of FUO • “A fever of unknown origin is more likely to be the unusual presentation of a common disorder than the common presentation of a rare disorder”
  • 44. 44 Etiology of FUO • Infections 30-40% • Autoimmune 7-10% • Malignancy 2-5% • Other (incl.. factitious fever, drug fever) 2% • Never determined: In up to 50%
  • 45. 45 Infectious Causes of FUO in children • n= 454 children from several studies • Infectious mononucleosis: (EBV or CMV) • Infection of the upper or lower respiratory tract • Urinary tract infection • Osteomyelitis • Cat scratch disease • CNS viral or bacterial infection • Tuberculosis
  • 46. 46 Infectious Causes of FUO in children: less common pathogens • HIV, • brucellosis • Q fever • dengue fever • malaria • leptospirosis • toxocara canis and toxocara cati • histoplasmosis • coccidioidomycosis • blastomycosis • psittacosis • Lyme disease • salmonellosis (typhoid fever)
  • 47. 47 Other considerations for infectious causes of FUO • Intraabominal abscess • Liver abscess • Occult dental infection • Endocarditis
  • 48. 48 Non-infectious etiologies of FUO • Collagen vascular and immune mediated disease: • JRA • SLE • ARF • AKD (atypical Kawasaki Disease)
  • 49. 49 Noninfectious Etiologies of FUO • Inflammatory bowel disease • Malignancy • Drug Fever • Munchausen syndrome by proxy • Dysautonomia • Central thermoregulatory disorder • Immune disorder
  • 50. 50 Periodic Fever Syndromes • Idiopathic • Cyclic neutropenia • Hyper IgD Syndrome • Familial Mediterranean Fever
  • 51. 51 Approach to the evaluation of the child with an FUO • “The tempo of the evaluation should match the clinical appearance of the child!” • Document the existence of fever • Note the general well being of the child • School absenteeism • Changes in social behavior
  • 52. 52 Diagnosis: History • Leave no stone unturned. • May need to repeat the history • Remember to include: PH, Allergies, Medics, FH, Social History, Immunizations, Travel and Animal exposure
  • 53. 53 Animals and bugs • Rabbits, squirrels: tularemia • Cats: cat scratch disease (Bartonella henselae), tularemia, rabies, toxoplasmosis • Birds: Psitticosis • Sheep: Q fever • Goats: Brucellosis • Ticks: Lyme disease, relapsing fever, ehrlichiosis. • Mosquitoes: Malaria, dengue fever, yellow fever, arboviral encephalitis • Fleas: Cat scratch disease (also need the cat). • Dogs, skunks, raccoons, bats: Rabies
  • 54. 54 Travel History • Foreign: Consider calling the CDC to check for illnesses endemic to area visited. Think about malaria, dengue, typhoid, hepatitis A and tuberculosis, parasites, HIV
  • 55. 55 Family and social history • Drug abuse • ?HIV • Previous history of transfusions • Ill family members (TB) • Frequent childhood deaths (immune deficiency)
  • 56. 56 Clues on physical exam • Pattern of fever Intermittent fevers (hectic or spiking fever) suggest pyogenic infection Remittent fevers, fluctuating peaks and a baseline that does not return to normal. viral infections, bacterial infections, especially endocarditis. Persistent fevers with little or no fluctuation are sustained fevers; typhoid fever and typhus Relapsing fevers with periods during which patients are afebrile for one or more days between febrile episodes malaria, infection with the Borrelia and lymphomas. Recurrent episodes of fever over periods of more than one year's duration suggest metabolic defects, (CNS) dysregulation of temperature control, periodic disorders (such as cyclic neutropenia, hyper IgD syndrome, and immunodeficiency states. • Sweating: Hyperthyroidism • No sweating: ectodermal dysplasia • Weight loss, growth curves • ArthralgiaArthritis, myalgia: collagen disease, neoplasm,
  • 57. 57 Clues on physical exam • Heart murmur or previous history of heart disease: sub-acute bacterial endocarditis • GI: IBD, celiac disease, ruptured appendix, liver abscess, perinephric abscess • Large spleen: malignancy, endocarditis, infectious mononucleosis • Do a good neurologic exam
  • 58. 58 Clues on physical exam • Remember to do a rectal and GU exam • Skin: eczema/seborrhea (histiocytosis, immune deficiency) • Palpate bones and extremities
  • 59. 59 Diagnostic evaluation • *Adapted from Steele et. al • Phase I (outpatient) • Based on findings from the history and physical consider the following tests: • CBC • ESR • Urinalysis and culture • Serum chemistries to include LFT’s
  • 60. 60 Diagnostic evaluation • Phase 1 Outpatient: continued • CXR, abdominal ultrasound • PPD, thick and thin smear for malaria • Monospot/EBV serology • Cat scratch serology (B. henselae and quintana) • HIV test (ELISA ab unless pt. <12 mos, then HIV PCR) • Blood culture, Stool, occult and culture
  • 61. 61 Diagnostic evaluation • Phase 2 • Hospitalize for observation/Consider referral to ID, Rheumatology or Heme Onc • LP • Sinus CT • Repeat blood culture • Bone scan • Bone marrow • Echocardiogram
  • 62. 62 Diagnostic evaluation • Serologic tests (generally helpful only if acute and convalescent titers are obtained or IgM is positive) • Gallium/Indium scans: Several studies have shown these tests are only helpful if probable focus of infection has been identified!
  • 63. 63 Therapy • Try NOT to start empiric oral or parenteral antibiotic therapy if you don’t know what you are treating. • Empiric antibiotics only if patient appears ill (and remember to get cultures first) • NSAID • Never ever ever treat empirically with steroids
  • 64. 64 Outcome • Depends on underlying diagnosis • Most patients in whom the source of fever is never determined after a thorough and comprehensive evaluation have resolution of symptoms and do well
  • 65. 65 Antipyretics • Acetaminophen, Ibuprofen • Efficacy and safety of alternating acetaminophen and ibuprofen not studied
  • 66. 66 Conclusion • A careful and complete history, frequent re- examination of the child and patience will usually reveal the answer.
  • 67. 67 • Oski’s Pediatrics, 3rd edition • Harriet Lane, 16th edition • FWS in Children 0-36 months of age. TCNA 53(2006)167-194 • The Febrile Child. Emergency Medicine Reports. September 1995. • Antibiotic Choices: The critical first hour. Pediatric Annals. June 1996. • Evidence based approach to the febrile infant/child. Handout from Dr. Michael Cooperstock, MD. May 2000. • Advisory Committee on Immunization Practices. Preventing pneumococcal disease among infants and young children: recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep. 2000;49(RR- 9):1-35 • AAP; Committee on Infectious Disease. Policy statement: recommendations for the prevention of pneumococcal infections, including the use of pneumococcal conjugate vaccine, pneumococcal polysaccharide vaccine, and antibiotic porphylaxis/ Pediatrics. 2000;106:362-366. • Whitney CG, FarleyMM, Hadler J, et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide vaccine. NEnglJMed. 2003;348:1737-1746. • Poehling KA etal. Invasive Pneumococcal Disease Among Infants before and after Introductions of Pneumococcal Conjugate Vaccine. JAMA Apr 12, 2006,295:1668-74.

Notes de l'éditeur

  1. True fever is not harmful to a child if the fever is not due to a serious infection and the temperature elevation is not due to excess heat load, defective heat loss mechanism, CNS damage or disease, or excess heat production.
  2. These children may have had early meninigitis that was missed or occult bacteremia that progressed to meningitis.
  3. Toxicity assessment: loss of alertness, decreased activity, irritability, higher fever, sustained fever, anorexia, vomiting, pallor, grunting, and maternal worry.