SlideShare une entreprise Scribd logo
1  sur  10
International Journal of Engineering Inventions
e-ISSN: 2278-7461, p-ISBN: 2319-6491
Volume 2, Issue 3 (February 2013) PP: 49-58
www.ijeijournal.com P a g e | 49
Further Generalizations of Enestrom-Kakeya Theorem
M. H. Gulzar
Department of Mathematics, University of Kashmir, Srinagar 190006
Abstract:- Many generalizations of the Enestrom –Kakeya Theorem are available in the literature. In this paper
we prove some results which further generalize some known results.
Mathematics Subject Classification: 30C10,30C15
Keywords and phrases:- Complex number, Polynomial , Zero, Enestrom – Kakeya Theorem.
I. INTRODUCTION AND STATEMENT OF RESULTS
The Enestrom –Kakeya Theorem (see[6]) is well known in the theory of the distribution of zeros of
polynomials and is often stated as follows:
Theorem A: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n whose coefficients satisfy
0...... 011   aaaa nn .
Then P(z) has all its zeros in the closed unit disk 1z .
In the literature there exist several generalizations and extensions of this result. Joyal et al [5] extended
it to polynomials with general monotonic coefficients and proved the following result:
Theorem B: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n whose coefficients satisfy
011 ...... aaaa nn   .
Then P(z) has all its zeros in
n
n
a
aaa
z
00 
 .
Aziz and zargar [1] generalized the result of Joyal et al [6] as follows:
Theorem C: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n such that for some 1k
011 ...... aaaka nn   .
Then P(z) has all its zeros in
n
n
a
aaka
kz
00
1

 .
For polynomials ,whose coefficients are not necessarily real, Govil and Rahman [2] proved the following
generalization of Theorem A:
Theorem C: If 

n
j
j
j zazP
0
)( is a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n, such that
0...... 011    nn ,
where 0n , then P(z) has all its zeros in
))(
2
(1
0


n
j
j
n
z 

.
Govil and Mc-tume [3] proved the following generalisations of Theorems B and C:
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 50
Theorem D: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some 1k ,
011 ......   nnk ,
then P(z) has all its zeros in
n
n
j
jnk
kz

 


0
00 2
1 .
Theorem E: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some 1k ,
011 ......   nnk ,
then P(z) has all its zeros in
n
n
j
jnk
kz

 


0
00 2
1 .
M. H. Gulzar [4] proved the following generalizations of Theorems D and E:
Theorem F: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some real numbers 0 , ,10  
011 ......   nn ,
then P(z) has all its zeros in the disk
n
n
j
jn
n
z







0
000 2)(2
.
Theorem G: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some real number 0 ,
011 ......   nn ,
then P(z) has all its zeros in the disk
n
n
j
jn
n
z







0
000 2)(2
.
In this paper we give generalization of Theorems F and G. In fact, we prove the following:
Theorem 1: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1,2,……,n. If for some real numbers  , 0 , ,10,0,1   knank
01111 ......    knknknnn ,
and ,1 knkn    then P(z) has all its zeros in the disk
n
n
j
jknknn
n aa
z

 

0
000 2(21)1( 

,
and if ,1  knkn  then P(z) has all its zeros in the disk
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 51
n
n
j
jknknn
n aa
z

 

0
000 2(21)1( 

Remark 1: Taking 1 , Theorem 1 reduces to Theorem F.
If ja are real i.e. 0j for all j, we get the following result:
Corollary 1: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n. If for some real numbers  , 0 ,
,0,1  knank ,10  
01111 ...... aaaaaaa knknknnn    ,
and ,1 knkn aa   then P(z) has all its zeros in the disk
n
knknn
n a
aaaaaa
a
z
)(21)1( 000 

 
,,
and if ,1  knkn aa then P(z) has all its zeros in the disk
n
knknn
n a
aaaaaa
a
z
)(21)1( 000 

 
If we apply Theorem 1 to the polynomial –iP(z) , we easily get the following result:
Theorem 2: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n with jja )Re( and jja )Im( ,
j=0,1, 2,……,n. If for some real numbers  , 0 , ,0,1  knank ,10  
01111 ......    knknknnn ,
and ,1 knkn    then P(z) has all its zeros in the disk
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

,
and if ,1  knkn  then P(z) has all its zeros in the disk
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

Remark 2: Taking 1 , Theorem 2 reduces to Theorem G.
Theorem 3: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n such that for some real numbers  , 0 ,
,10,,0,1   knank ,
01111 ...... aaaaaaa knknknnn   
and
.,......,1,0,
2
arg nja j 


If knkn aa  1 (i.e. 1 ) , then P(z) has all its zeros in the disk
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 52
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



If 1  knkn aa (i.e. 1 ), then P(z) has all its zeros in the disk
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



Remark 3: Taking 1 in Theorem 3 , we get the following result:
Corollary 2: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n. If for some real numbers 0 , ,10  
011 ...... aaaa nn    ,
then P(z) has all its zeros in the disk
n
n
j
jn
n a
aaaa
a
z





1
,1
00 ]sin22)1cos(sin)sin(cos[ 

.
Remark 4: Taking 1,)1(  kak n in Cor.2, we get the following result:
Corollary 3: Let 

n
j
j
j zazP
0
)( be a polynomial of degree n. If for some real numbers 0 , ,10  
011 ...... aaaak nn   ,
then P(z) has all its zeros in the disk
n
n
j
jn
n a
aaaak
a
z





1
,1
00 ]sin22)1cos(sin)sin(cos[ 

Taking 1,)1(  kak n , and 1 in Cor. 3, we get a result of Shah and Liman [7,Theorem 1].
II. LEMMAS
For the proofs of the above results , we need the following results:
Lemma 1: . Let P(z)= 
n
j
j
j za
0
be a polynomial of degree n with complex coefficients such that
fornjaj ,,...1,0,
2
arg 

 some real . Then for some t>0,
    .sincos 111  
  j
aataatata jjjjj
The proof of lemma 1 follows from a lemma due to Govil and Rahman [2].
Lemma 2.If p(z) is regular ,p(0)  0 and Mzp )( in ,1z then the number of zeros of p(z)in
,10,  z does not exceed
)0(
log
1
log
1
p
M

(see[8],p171).
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 53
III. PROOFS OF THEOREMS
Proof of Theorem 1: Consider the polynomial
)()1()( zPzzF 
kn
knkn
kn
knkn
n
nn
n
n
n
n
n
n
zaazaazaaza
azazazaz









)()(......)(
)......)(1(
1
1
11
1
01
1
1
001
1
21 )(......)( azaazaa kn
knkn  

1
11
1
)(......)()( 


 kn
knkn
n
nn
n
nn zzzi 
0
1
100
01
1
211
)()1(
)(......)()(


iziz
zzz
n
j
j
jj
kn
knkn
kn
knkn








If ,1 knkn    then ,1 knkn    and we have
1
11
1
)(......)()()( 


 kn
knkn
n
nn
nn
nn zzzzizF 
......)()1()( 1
211  





kn
knkn
kn
kn
kn
knkn zzaz 
.)()1()( 0
1
10001  izizz
n
j
j
jj  

For 1z ,
1
1
1
211
1
)(......)()()( 




 kn
knkn
n
nn
n
nn
nn
n zzzzzazF 
0
1
10001
1
211
)()1()(
......)()1()(


izizz
zzaz
n
j
j
jj
kn
knkn
kn
kn
kn
knkn













  11211
1
)(......
1
)()( kknknnnnnn
n
zz
zaz 
n
n
j
jnjjnnn
knknkknkknkn
z
i
z
i
zzz
kzz
0
1
1
0
1
0
101
211
1
)()1(
1
)(
....
1
1
)(
1
)1(
1
)(












 knknnnnnn
n
zaz    1211 ......
 0
1
100
01211
1
......1







n
j
jj
knknknknkn
 11211 ......    knnknknnnnnn
n
kn
zaz 
 



n
j
j
knknkn
0
0
00121
2
)1(......1


Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 54





n
j
j
knknnn
n
zaz
0
000
2
2)(1)1({[


>0
if

 
n
j
jknknnn za
0
000 22)(1)1( 
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the
zeros of F(z) lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
If ,1  knkn  then ,1  knkn  and we have
1
11
1
)(......)()()( 


 kn
knkn
n
nn
nn
nn zzzzizF 
.)()1()(
......)()1()(
0
1
10001
1
21
1
1


izizz
zzz
n
j
j
jj
kn
knkn
kn
kn
kn
knkn










For 1z ,
1
1
1
211
1
)(......)()()( 




 kn
knkn
n
nn
n
nn
nn
n zzzzzazF 
0
1
10001
1
21
1
1
)()1()(
......)()1()(


izizz
zzz
n
j
j
jj
kn
knkn
kn
kn
kn
knkn













  11211
1
)(......
1
)()( kknknnnnnn
n
zz
zaz 
n
n
j
jnjjnnn
kknknkknkknkn
z
i
z
i
zzz
zzz
0
1
1
0
1
0
101
12111
1
)()1(
1
)(
....
1
)(
1
)1(
1
)(










 knknnnnnn
n
zaz    1211 ......
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 55
 0
1
100
01211
1
......1







n
j
jj
knknknknkn
 11211 ......    knnknknnnnnn
n
kn
zaz 
 



n
j
j
knknkn
0
0
00121
2
)1(......1

















n
j
j
knknnn
n
za
z
0
0
00
}22
)(1)1({


>0
if

 
n
j
jknknnn za
0
000 22)(1)1( 
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the
zeros of F(z) lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in
n
n
j
jknknn
n aa
z

 

0
000 2)(21)1( 

.
That proves Theorem 1.
Proof of Theorem 3: Consider the polynomial
)()1()( zPzzF 
kn
knkn
kn
knkn
n
nn
n
n
n
n
n
n
zaazaazaaza
azazazaz









)()(......)(
)......)(1(
1
1
11
1
01
1
1
001
1
21 )(......)( azaazaa kn
knkn  
 .
If knkn aa  1 , then knkn aa  1 , 1 and we have, for 1z , by using Lemma1,
1
1
1
211
1
)(......)()()( 




 kn
knkn
n
nn
n
nn
nn
n zaazaazaazzazF 
0001
1
211
)1()(
......)()1()(
azazaa
zaazazaa kn
knkn
kn
kn
kn
knkn

 







Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 56



  11211
1
)(......
1
)()( kknknnnnnn
n
z
aa
z
aaaazaz 
nnn
kknknkknkknkn
z
a
z
a
z
aa
z
aa
z
a
z
aa
0
1
0
101
1211
)1(
1
)(
....
1
)(
1
)1(
1
)(






 knknnnnnn
n
aaaaaazaz   1211 ......
 00
01211
1
......1
aa
aaaaaaa knknknknkn

 


  sin)(cos){( 11   nnnnn
n
aaaazaz
 cos)(......sin)(cos)( 12121 knknnnnn aaaaaa  
(  sin)(cos)(sin) 111   knknknknknkn aaaaaa
 sin)(cos)(1 2121   knknknknkn aaaaa
})1(sin)(cos)(...... 000101 aaaaaa  
  sincossin(cos)sin(cos{  knnn
n
aazaz
}sin22)1cos(sin)1
1
,1
00 



n
knjj
jaaa 
0
if
  sincossin(cos)sin(cos  knnn aaza




1
,1
00 sin22)1cos(sin)1
n
knjj
jaaa 
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



. .
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the
zeros of F(z) lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



.
Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 57
If 1  knkn aa , then 1  knkn aa , 1 and we have, for 1z , by using Lemma 1,
1
1
1
211
1
)(......)()()( 




 kn
knkn
n
nn
n
nn
nn
n zaazaazaazzazF 
0001
1
21
1
1
)1()(
......)()1()(
azazaa
zaazazaa kn
knkn
kn
kn
kn
knkn

 










  11211
1
)(......
1
)()( kknknnnnnn
n
z
aa
z
aaaazaz 
nnn
kknknkknkknkn
z
a
z
a
z
aa
z
aa
z
a
z
aa
0
1
0
101
12111
)1(
1
)(
....
1
)(
1
)1(
1
)(






 knknnnnnn
n
aaaaaazaz    1211 ......
 00
01211
1
......1
aa
aaaaaaa knknknknkn

 


  sin)(cos){( 11   nnnnn
n
aaaazaz
 cos)(......sin)(cos)( 12121 knknnnnn aaaaaa  
(  sin)(cos)(sin) 111   knknknknknkn aaaaaa
 sin)(cos)(1 2121   knknknknkn aaaaa
})1(sin)(cos)(...... 000101 aaaaaa  
  sincossin(cos)sin(cos{  knnn
n
aazaz
}sin22)1cos(sin)1
1
,1
00 



n
knjj
jaaa 
0
if
  sincossin(cos)sin(cos  knnn aaza




1
,1
00 sin22)1cos(sin)1
n
knjj
jaaa 
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the
zeros of F(z) and therefore P(z) lie in
n
n
knjj
j
knn
n a
aaa
aa
a
z







1
,1
00 ]sin22)1cos(sin
)1sincossin(cos)sin(cos[



That proves Theorem 3.
Further Generalizations of Enestrom-Kakeya Theorem
www.ijeijournal.com P a g e | 58
REFERENCES
1) A.Aziz and B.A.Zargar, Some extensions of the Enestrom-Kakeya Theorem , Glasnik Mathematiki,
31(1996) , 239-244.
2) N.K.Govil and Q.I.Rehman, On the Enestrom-Kakeya Theorem, Tohoku Math. J.,20(1968) , 126-136.
3) N.K.Govil and G.N.Mc-tume, Some extensions of the Enestrom- Kakeya Theorem , Int.J.Appl.Math.
Vol.11,No.3,2002, 246-253.
4) M. H. Gulzar, On the Zeros of polynomials, International Journal of Modern Engineering Research,
Vol.2,Issue 6, Nov-Dec. 2012, 4318- 4322.
5) A. Joyal, G. Labelle, Q.I. Rahman, On the location of zeros of polynomials, Canadian Math.
Bull.,10(1967) , 55-63.
6) M. Marden , Geometry of Polynomials, IInd Ed.Math. Surveys, No. 3, Amer. Math. Soc. Providence,R.
I,1996.
7) W. M. Shah and A.Liman, On Enestrom-Kakeya Theorem and related Analytic Functions, Proc.
Indian Acad. Sci. (Math. Sci.), 117(2007), 359-370.
8) E C. Titchmarsh,The Theory of Functions,2nd
edition,Oxford University Press,London,1939.

Contenu connexe

Tendances

Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
JamesMa54
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
JamesMa54
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
andreslahe
 
Hw5sol
Hw5solHw5sol
Hw5sol
uxxdqq
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
Tomonari Masada
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
Krzysztof Pomorski
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
Amir Rafati
 

Tendances (20)

Vcla - Inner Products
Vcla - Inner ProductsVcla - Inner Products
Vcla - Inner Products
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
 
MA8353 TPDE
MA8353 TPDEMA8353 TPDE
MA8353 TPDE
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
 
P1 . norm vector space
P1 . norm vector spaceP1 . norm vector space
P1 . norm vector space
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...
QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...
QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...
 
Hw5sol
Hw5solHw5sol
Hw5sol
 
D02402033039
D02402033039D02402033039
D02402033039
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
 
41-50
41-5041-50
41-50
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
 

Similaire à Further Generalizations of Enestrom-Kakeya Theorem

Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed space
Komal Goyal
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 

Similaire à Further Generalizations of Enestrom-Kakeya Theorem (20)

Location of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a PolynomialLocation of Regions Containing all or Some Zeros of a Polynomial
Location of Regions Containing all or Some Zeros of a Polynomial
 
Zeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given CircleZeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given Circle
 
B02606010
B02606010B02606010
B02606010
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
On the Zeros of Complex Polynomials
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Ak03102250234
Ak03102250234Ak03102250234
Ak03102250234
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed space
 
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
 
B02806010
B02806010B02806010
B02806010
 
E041046051
E041046051E041046051
E041046051
 
Nokton theory-en
Nokton theory-enNokton theory-en
Nokton theory-en
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
Ae03401720180
Ae03401720180Ae03401720180
Ae03401720180
 
On the Zeros of Analytic Functions inside the Unit Disk
On the Zeros of Analytic Functions inside the Unit DiskOn the Zeros of Analytic Functions inside the Unit Disk
On the Zeros of Analytic Functions inside the Unit Disk
 

Plus de International Journal of Engineering Inventions www.ijeijournal.com

Plus de International Journal of Engineering Inventions www.ijeijournal.com (20)

H04124548
H04124548H04124548
H04124548
 
G04123844
G04123844G04123844
G04123844
 
F04123137
F04123137F04123137
F04123137
 
E04122330
E04122330E04122330
E04122330
 
C04121115
C04121115C04121115
C04121115
 
B04120610
B04120610B04120610
B04120610
 
A04120105
A04120105A04120105
A04120105
 
F04113640
F04113640F04113640
F04113640
 
E04112135
E04112135E04112135
E04112135
 
D04111520
D04111520D04111520
D04111520
 
C04111114
C04111114C04111114
C04111114
 
B04110710
B04110710B04110710
B04110710
 
A04110106
A04110106A04110106
A04110106
 
I04105358
I04105358I04105358
I04105358
 
H04104952
H04104952H04104952
H04104952
 
G04103948
G04103948G04103948
G04103948
 
F04103138
F04103138F04103138
F04103138
 
E04102330
E04102330E04102330
E04102330
 
D04101822
D04101822D04101822
D04101822
 
C04101217
C04101217C04101217
C04101217
 

Dernier

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Dernier (20)

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 

Further Generalizations of Enestrom-Kakeya Theorem

  • 1. International Journal of Engineering Inventions e-ISSN: 2278-7461, p-ISBN: 2319-6491 Volume 2, Issue 3 (February 2013) PP: 49-58 www.ijeijournal.com P a g e | 49 Further Generalizations of Enestrom-Kakeya Theorem M. H. Gulzar Department of Mathematics, University of Kashmir, Srinagar 190006 Abstract:- Many generalizations of the Enestrom –Kakeya Theorem are available in the literature. In this paper we prove some results which further generalize some known results. Mathematics Subject Classification: 30C10,30C15 Keywords and phrases:- Complex number, Polynomial , Zero, Enestrom – Kakeya Theorem. I. INTRODUCTION AND STATEMENT OF RESULTS The Enestrom –Kakeya Theorem (see[6]) is well known in the theory of the distribution of zeros of polynomials and is often stated as follows: Theorem A: Let   n j j j zazP 0 )( be a polynomial of degree n whose coefficients satisfy 0...... 011   aaaa nn . Then P(z) has all its zeros in the closed unit disk 1z . In the literature there exist several generalizations and extensions of this result. Joyal et al [5] extended it to polynomials with general monotonic coefficients and proved the following result: Theorem B: Let   n j j j zazP 0 )( be a polynomial of degree n whose coefficients satisfy 011 ...... aaaa nn   . Then P(z) has all its zeros in n n a aaa z 00   . Aziz and zargar [1] generalized the result of Joyal et al [6] as follows: Theorem C: Let   n j j j zazP 0 )( be a polynomial of degree n such that for some 1k 011 ...... aaaka nn   . Then P(z) has all its zeros in n n a aaka kz 00 1   . For polynomials ,whose coefficients are not necessarily real, Govil and Rahman [2] proved the following generalization of Theorem A: Theorem C: If   n j j j zazP 0 )( is a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n, such that 0...... 011    nn , where 0n , then P(z) has all its zeros in ))( 2 (1 0   n j j n z   . Govil and Mc-tume [3] proved the following generalisations of Theorems B and C:
  • 2. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 50 Theorem D: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some 1k , 011 ......   nnk , then P(z) has all its zeros in n n j jnk kz      0 00 2 1 . Theorem E: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some 1k , 011 ......   nnk , then P(z) has all its zeros in n n j jnk kz      0 00 2 1 . M. H. Gulzar [4] proved the following generalizations of Theorems D and E: Theorem F: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some real numbers 0 , ,10   011 ......   nn , then P(z) has all its zeros in the disk n n j jn n z        0 000 2)(2 . Theorem G: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some real number 0 , 011 ......   nn , then P(z) has all its zeros in the disk n n j jn n z        0 000 2)(2 . In this paper we give generalization of Theorems F and G. In fact, we prove the following: Theorem 1: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1,2,……,n. If for some real numbers  , 0 , ,10,0,1   knank 01111 ......    knknknnn , and ,1 knkn    then P(z) has all its zeros in the disk n n j jknknn n aa z     0 000 2(21)1(   , and if ,1  knkn  then P(z) has all its zeros in the disk
  • 3. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 51 n n j jknknn n aa z     0 000 2(21)1(   Remark 1: Taking 1 , Theorem 1 reduces to Theorem F. If ja are real i.e. 0j for all j, we get the following result: Corollary 1: Let   n j j j zazP 0 )( be a polynomial of degree n. If for some real numbers  , 0 , ,0,1  knank ,10   01111 ...... aaaaaaa knknknnn    , and ,1 knkn aa   then P(z) has all its zeros in the disk n knknn n a aaaaaa a z )(21)1( 000     ,, and if ,1  knkn aa then P(z) has all its zeros in the disk n knknn n a aaaaaa a z )(21)1( 000     If we apply Theorem 1 to the polynomial –iP(z) , we easily get the following result: Theorem 2: Let   n j j j zazP 0 )( be a polynomial of degree n with jja )Re( and jja )Im( , j=0,1, 2,……,n. If for some real numbers  , 0 , ,0,1  knank ,10   01111 ......    knknknnn , and ,1 knkn    then P(z) has all its zeros in the disk n n j jknknn n aa z     0 000 2)(21)1(   , and if ,1  knkn  then P(z) has all its zeros in the disk n n j jknknn n aa z     0 000 2)(21)1(   Remark 2: Taking 1 , Theorem 2 reduces to Theorem G. Theorem 3: Let   n j j j zazP 0 )( be a polynomial of degree n such that for some real numbers  , 0 , ,10,,0,1   knank , 01111 ...... aaaaaaa knknknnn    and .,......,1,0, 2 arg nja j    If knkn aa  1 (i.e. 1 ) , then P(z) has all its zeros in the disk
  • 4. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 52 n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    If 1  knkn aa (i.e. 1 ), then P(z) has all its zeros in the disk n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    Remark 3: Taking 1 in Theorem 3 , we get the following result: Corollary 2: Let   n j j j zazP 0 )( be a polynomial of degree n. If for some real numbers 0 , ,10   011 ...... aaaa nn    , then P(z) has all its zeros in the disk n n j jn n a aaaa a z      1 ,1 00 ]sin22)1cos(sin)sin(cos[   . Remark 4: Taking 1,)1(  kak n in Cor.2, we get the following result: Corollary 3: Let   n j j j zazP 0 )( be a polynomial of degree n. If for some real numbers 0 , ,10   011 ...... aaaak nn   , then P(z) has all its zeros in the disk n n j jn n a aaaak a z      1 ,1 00 ]sin22)1cos(sin)sin(cos[   Taking 1,)1(  kak n , and 1 in Cor. 3, we get a result of Shah and Liman [7,Theorem 1]. II. LEMMAS For the proofs of the above results , we need the following results: Lemma 1: . Let P(z)=  n j j j za 0 be a polynomial of degree n with complex coefficients such that fornjaj ,,...1,0, 2 arg    some real . Then for some t>0,     .sincos 111     j aataatata jjjjj The proof of lemma 1 follows from a lemma due to Govil and Rahman [2]. Lemma 2.If p(z) is regular ,p(0)  0 and Mzp )( in ,1z then the number of zeros of p(z)in ,10,  z does not exceed )0( log 1 log 1 p M  (see[8],p171).
  • 5. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 53 III. PROOFS OF THEOREMS Proof of Theorem 1: Consider the polynomial )()1()( zPzzF  kn knkn kn knkn n nn n n n n n n zaazaazaaza azazazaz          )()(......)( )......)(1( 1 1 11 1 01 1 1 001 1 21 )(......)( azaazaa kn knkn    1 11 1 )(......)()(     kn knkn n nn n nn zzzi  0 1 100 01 1 211 )()1( )(......)()(   iziz zzz n j j jj kn knkn kn knkn         If ,1 knkn    then ,1 knkn    and we have 1 11 1 )(......)()()(     kn knkn n nn nn nn zzzzizF  ......)()1()( 1 211        kn knkn kn kn kn knkn zzaz  .)()1()( 0 1 10001  izizz n j j jj    For 1z , 1 1 1 211 1 )(......)()()(       kn knkn n nn n nn nn n zzzzzazF  0 1 10001 1 211 )()1()( ......)()1()(   izizz zzaz n j j jj kn knkn kn kn kn knkn                11211 1 )(...... 1 )()( kknknnnnnn n zz zaz  n n j jnjjnnn knknkknkknkn z i z i zzz kzz 0 1 1 0 1 0 101 211 1 )()1( 1 )( .... 1 1 )( 1 )1( 1 )(              knknnnnnn n zaz    1211 ......  0 1 100 01211 1 ......1        n j jj knknknknkn  11211 ......    knnknknnnnnn n kn zaz       n j j knknkn 0 0 00121 2 )1(......1  
  • 6. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 54      n j j knknnn n zaz 0 000 2 2)(1)1({[   >0 if    n j jknknnn za 0 000 22)(1)1(  This shows that the zeros of F(z) whose modulus is greater than 1 lie in n n j jknknn n aa z     0 000 2)(21)1(   . But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n n j jknknn n aa z     0 000 2)(21)1(   . Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in n n j jknknn n aa z     0 000 2)(21)1(   . If ,1  knkn  then ,1  knkn  and we have 1 11 1 )(......)()()(     kn knkn n nn nn nn zzzzizF  .)()1()( ......)()1()( 0 1 10001 1 21 1 1   izizz zzz n j j jj kn knkn kn kn kn knkn           For 1z , 1 1 1 211 1 )(......)()()(       kn knkn n nn n nn nn n zzzzzazF  0 1 10001 1 21 1 1 )()1()( ......)()1()(   izizz zzz n j j jj kn knkn kn kn kn knkn                11211 1 )(...... 1 )()( kknknnnnnn n zz zaz  n n j jnjjnnn kknknkknkknkn z i z i zzz zzz 0 1 1 0 1 0 101 12111 1 )()1( 1 )( .... 1 )( 1 )1( 1 )(            knknnnnnn n zaz    1211 ......
  • 7. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 55  0 1 100 01211 1 ......1        n j jj knknknknkn  11211 ......    knnknknnnnnn n kn zaz       n j j knknkn 0 0 00121 2 )1(......1                  n j j knknnn n za z 0 0 00 }22 )(1)1({   >0 if    n j jknknnn za 0 000 22)(1)1(  This shows that the zeros of F(z) whose modulus is greater than 1 lie in n n j jknknn n aa z     0 000 2)(21)1(   . But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n n j jknknn n aa z     0 000 2)(21)1(   . Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in n n j jknknn n aa z     0 000 2)(21)1(   . That proves Theorem 1. Proof of Theorem 3: Consider the polynomial )()1()( zPzzF  kn knkn kn knkn n nn n n n n n n zaazaazaaza azazazaz          )()(......)( )......)(1( 1 1 11 1 01 1 1 001 1 21 )(......)( azaazaa kn knkn    . If knkn aa  1 , then knkn aa  1 , 1 and we have, for 1z , by using Lemma1, 1 1 1 211 1 )(......)()()(       kn knkn n nn n nn nn n zaazaazaazzazF  0001 1 211 )1()( ......)()1()( azazaa zaazazaa kn knkn kn kn kn knkn          
  • 8. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 56      11211 1 )(...... 1 )()( kknknnnnnn n z aa z aaaazaz  nnn kknknkknkknkn z a z a z aa z aa z a z aa 0 1 0 101 1211 )1( 1 )( .... 1 )( 1 )1( 1 )(        knknnnnnn n aaaaaazaz   1211 ......  00 01211 1 ......1 aa aaaaaaa knknknknkn        sin)(cos){( 11   nnnnn n aaaazaz  cos)(......sin)(cos)( 12121 knknnnnn aaaaaa   (  sin)(cos)(sin) 111   knknknknknkn aaaaaa  sin)(cos)(1 2121   knknknknkn aaaaa })1(sin)(cos)(...... 000101 aaaaaa     sincossin(cos)sin(cos{  knnn n aazaz }sin22)1cos(sin)1 1 ,1 00     n knjj jaaa  0 if   sincossin(cos)sin(cos  knnn aaza     1 ,1 00 sin22)1cos(sin)1 n knjj jaaa  This shows that the zeros of F(z) whose modulus is greater than 1 lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    . . But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    . Since the zeros of P(z) are also the zeros of F(z), it follows that all the zeros of P(z) lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[   
  • 9. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 57 If 1  knkn aa , then 1  knkn aa , 1 and we have, for 1z , by using Lemma 1, 1 1 1 211 1 )(......)()()(       kn knkn n nn n nn nn n zaazaazaazzazF  0001 1 21 1 1 )1()( ......)()1()( azazaa zaazazaa kn knkn kn kn kn knkn                11211 1 )(...... 1 )()( kknknnnnnn n z aa z aaaazaz  nnn kknknkknkknkn z a z a z aa z aa z a z aa 0 1 0 101 12111 )1( 1 )( .... 1 )( 1 )1( 1 )(        knknnnnnn n aaaaaazaz    1211 ......  00 01211 1 ......1 aa aaaaaaa knknknknkn        sin)(cos){( 11   nnnnn n aaaazaz  cos)(......sin)(cos)( 12121 knknnnnn aaaaaa   (  sin)(cos)(sin) 111   knknknknknkn aaaaaa  sin)(cos)(1 2121   knknknknkn aaaaa })1(sin)(cos)(...... 000101 aaaaaa     sincossin(cos)sin(cos{  knnn n aazaz }sin22)1cos(sin)1 1 ,1 00     n knjj jaaa  0 if   sincossin(cos)sin(cos  knnn aaza     1 ,1 00 sin22)1cos(sin)1 n knjj jaaa  This shows that the zeros of F(z) whose modulus is greater than 1 lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    . But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) and therefore P(z) lie in n n knjj j knn n a aaa aa a z        1 ,1 00 ]sin22)1cos(sin )1sincossin(cos)sin(cos[    That proves Theorem 3.
  • 10. Further Generalizations of Enestrom-Kakeya Theorem www.ijeijournal.com P a g e | 58 REFERENCES 1) A.Aziz and B.A.Zargar, Some extensions of the Enestrom-Kakeya Theorem , Glasnik Mathematiki, 31(1996) , 239-244. 2) N.K.Govil and Q.I.Rehman, On the Enestrom-Kakeya Theorem, Tohoku Math. J.,20(1968) , 126-136. 3) N.K.Govil and G.N.Mc-tume, Some extensions of the Enestrom- Kakeya Theorem , Int.J.Appl.Math. Vol.11,No.3,2002, 246-253. 4) M. H. Gulzar, On the Zeros of polynomials, International Journal of Modern Engineering Research, Vol.2,Issue 6, Nov-Dec. 2012, 4318- 4322. 5) A. Joyal, G. Labelle, Q.I. Rahman, On the location of zeros of polynomials, Canadian Math. Bull.,10(1967) , 55-63. 6) M. Marden , Geometry of Polynomials, IInd Ed.Math. Surveys, No. 3, Amer. Math. Soc. Providence,R. I,1996. 7) W. M. Shah and A.Liman, On Enestrom-Kakeya Theorem and related Analytic Functions, Proc. Indian Acad. Sci. (Math. Sci.), 117(2007), 359-370. 8) E C. Titchmarsh,The Theory of Functions,2nd edition,Oxford University Press,London,1939.