SlideShare une entreprise Scribd logo
1  sur  6
UNIVERSIDADE FEDERAL DO CEARÁ
CENTRO DE CIÊNCIAS
DEPARTAMENTO DE FÍSICA
LICENCIATURA PLENA EM FÍSICA

Prática 5: Efeito fotoelétrico

Elissandro Aquino Mendes(343766)
Disciplina: Princípios de Física Moderna
Professor: José Alves

Fortaleza
2013
Objetivos
-

Observar o efeito fotoelétrico;
Estudar a característica Corrente-Voltagem, para uma frequência de luz
com diferentes intensidades;
Estudar a característica Corrente-Voltagem, para uma intensidade de luz
com diferentes frequências;
Determinar experimentalmente a constante de Planck a partir do efeito
fotoelétrico;

Material
-

Caixa com lâmpada de mercúrio;
Caixa com fotocélula;
Base metálica;
Aparelho para o efeito fotolétrico;
Fonte de alimentação para a lâmpada de mercúrio e aparelho para efeito
fotoelétrico;
Conjunto com cinco filtros de interferência e três janela com diferentes
aberturas;
Cabos com terminais DIN;
Cabo BNC;
Cabos (02);

Fundamentos
Já sabemos de estudos anteriores que para explicar o espectros atômicos
de emissão e absorção, foram propostos alguns modelos, dentro os quais o que
teve sucesso, em determinadas condições, definitivo, foi o modelo atômico de
Niels Bohr (1885-1962), proposto no ano de 1913, que tinha alguns postulados
que apesar de parcialmente compreensível ao pensamento clássico da época, teve
uma grande pitada de coragem e genialidade, ao perceber que deveria-se romper
com algumas características clássica e adotar para a matéria características
quantizadas que foram propostas nos trabalhos de Max Planck sobre a radiação
do corpo negro e por Einstein nos seus trabalhos sobre o efeito fotoelétrico.
A teoria de Bohr baseava-se nos seguinte postulados:
1) Os elétrons move-se em órbitas circulares e com raios determinados
(estado estacionário);
2) Quando nessas órbitas os elétrons não emitem radiação;
3) Essa órbitas são tais que temos a seguinte expressão para o momento
angular do eletrón:

;
4) Ao mudar de um estado estacionário (órbita) para outro, tem-se a
emissão de um fóton, cuja frequencia é dada pela expressão:
, tendo-se Ep> Eq;
De posse desses postulados, Bohr pode tecer sua teoria e predizer com
grande precisão o espectro atômico para o Hidrogênio e também para átomos
hidrogenóides. Suas bases eram incertas, mas tinha a precisão experimental para
serem, de fato, considerada como válidas. A cerca disso Einstein falou:
“Que essas bases incertas e contraditórias tenham permitido a Bohr descobrir as leis
que regem as linhas espectrais e as camadas eletrônicas dos átomos, bem como seu
significado para a química, pareceu-me como um milagre”
Bem, a certeza da precisão e validade da teoria de Bohr que tanto
assustava Einstein e tantos outros cientistas à época, só veio a aumentar quando
os cientistas James Franck e Gustav Hertz realizaram uma série de experimentos
que no ano de 1914, pelos quais foram lauraeados com o Nobel de 1925.
A importancia desses experimentos vem do fato de que até o momento o
caratér quantizado da transferência de energia se restringiam essencialmente a
emissão e absorção de radiação. Com os experimentos, viu-se pela primeira vez a
quantização da transferência de energia cinética, sendo a transmissão realizada
pelas colisões, como veremos na descrição qualitativa do experimento que
apresentamos abaixo. Segue um diagrama esquemático do dispositivo:

Figura 1. Desenho esquemático de uma válvula triodo usada no experimento de FranckHertz.(http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html)

Dentro dessa válvula, onde fez-se vácuo, temos vapor de mercúrio, de
forma que os elétrons ejetados pelo catodo aquecido poderão chocar-se com os
átomos de mercúrio no seu caminho até a placa coletora, essa placa é mantida em
um potencial levemente repulsivo. Portanto os elétrons são acelerados pelo
diferença de potencial entre o catodo e a grade, porém, somente os elétrons que
consigam vencer o potencial negativo do anodo irão ser coletados pela placa.
O que os cientistas perceberam foi que a corrente na placa coletora,
formada pelos elétrons que a atingiam, variava com o potencial de aceleração
aplicado à grade. Porém eles perceberam, também que para certas faixa de
valores dessadiferença de potencial aceleradora, a corrente se reduzia
apresentando o comportamento exibido abaixo (para o mercúrio):

Figura 1. Gráfico do comportamento da corrente com a tensão
aceleradora.(http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html)

Franck e Hertz, mediram a tensão onde iniciava-se a queda da corrente e
encontraram um valor próximo a 4.89 eV. Sendo que os demais picos ocorriam em
mútiplos desse valor, como pode ser visto no gráfico e como iremos comprovar na
presente prática.
Logo, Franck e Hertz identificaram esse comportamento com o descrito
pela teoria de Bohr, e assim comprovaram-na mais uma vez, identificando que os
átomos de mercúrio ao serem atingindos por elétrons com determinados valores
enérgeticos, se excitavam e acabavam por “roubar” a energia desse elétrons
fazendo com que os mesmo não atingissem a placa coletora, reduzindo assim a
corrente. Os demais picos podem ser explicado, extendendo-se esse
comportamento de forma que ao aumenta a energia dos elétrons, uma fração
significativa deles somente serão “parados” pelos átomos de mercúrio quando
tiverem uma valor de enérgia múltiplo de 4.89 eV.
Procedimento
Devido a problemas técnicos com os equipamentos relativos a prática, a
exibição da geração do gráfico relacionando a corrente na placa com a tensão
aceleradora não foi realizada. Nos foi dado um exemplar de uma plotagem
realizada em iguais condições, a partir dos quais serão respondidas as questões
relativas à prática.

Questionário (respostas)
1. A partir da diferença entre dois máximos consecutivos no gráfico da
corrente, obtenha a energia de excitação dos átomos de mercúrio e
compare com o resultado obtido usando a diferença entre dois mínimos.
Discuta os resultados encontrados;
R:

2. Veja na literatura qual é a energia de ionização do átomo de Hg.
A partir do experimento de Franck-Hertz você poderia determiná-la ?
Justifique.
R:

3. Considere que 4,88 eV é a energia necessária para o átomo de mercúrio
passar do estado fundamental para o primeiro estado excitado. Então, ao
passar do estado excitado para o fundamental, o mercúrio deveria
produzir uma linha no espectro com que comprimento de onda ? Esta linha
está em que faixa do espectro eletromagnético ?
R:
4. Em uma experiência tipo Franck-Hertz, bombardeia-se hidrogênio atômico
com elétrons e obtêm-se os potenciais de excitação em 10,21 V e 12,10 V.
(a) Explique a observação de que três linhas diferentes de emissão
espectral acompanham essas excitações. (b) Determine as frequências e
comprimento de onda das linha espectrais observadas. (Sugestão: trace um
diagrama de níveis de energia).
R:

Conclusão
Nessa prática conseguimos verificar a energia de excitação para átomos de
mercúrio. Entendemos que esse fato é essencial para mostra a validade do fato
central da teoria de Bohr, qual seja, a quantização da energia dos elétrons, mesmo
sendo essa energia transferida pela colisão dos mesmos com átomos mais
pesados, e esses últimos, mostrando também um comportamento quantizado
nessa absorção. Mesmo não podendo aplicar diretamente a teoria para átomos
mais pesados, vimos que a característica de quantização é universal e perceptível
em escala atômica.

Bibliografia
Fisica IV, Sears & Semansky 12ed;
Física Básica Vol 4, Moysés Nussenzveig;
http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html (Acessado em 28/11/2013);
http://pt.wikipedia.org/wiki/Experimento_de_Franck-Hertz (Acessado em 28/11/2013);

Contenu connexe

Tendances

Planck E A Radiacao Do Corpo Negro
Planck E A Radiacao Do Corpo NegroPlanck E A Radiacao Do Corpo Negro
Planck E A Radiacao Do Corpo NegroCristiane Tavolaro
 
Relatório Radiação de corpo negro
Relatório Radiação de corpo negro Relatório Radiação de corpo negro
Relatório Radiação de corpo negro Marcelo Alexandre
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2dalgo
 
Espectropia - Construção de um espectometro caseiro
Espectropia - Construção de um espectometro caseiroEspectropia - Construção de um espectometro caseiro
Espectropia - Construção de um espectometro caseiroFABEJA
 
Modelos teóricos para a compreensão da estrutura da matéria
Modelos teóricos para a compreensão da estrutura da matériaModelos teóricos para a compreensão da estrutura da matéria
Modelos teóricos para a compreensão da estrutura da matériaManoel Barrionuevo
 
Radiação de Corpo Negro
Radiação de Corpo NegroRadiação de Corpo Negro
Radiação de Corpo NegroPibid Física
 
Física - Física Quântica
Física - Física QuânticaFísica - Física Quântica
Física - Física QuânticaCarson Souza
 

Tendances (17)

Planck E A Radiacao Do Corpo Negro
Planck E A Radiacao Do Corpo NegroPlanck E A Radiacao Do Corpo Negro
Planck E A Radiacao Do Corpo Negro
 
Fisica Sec Xx
Fisica Sec XxFisica Sec Xx
Fisica Sec Xx
 
Fisica sec xx
Fisica sec xxFisica sec xx
Fisica sec xx
 
Fisica Sec Xx
Fisica Sec XxFisica Sec Xx
Fisica Sec Xx
 
Pratica 4 - Corpo Negro
Pratica 4 - Corpo NegroPratica 4 - Corpo Negro
Pratica 4 - Corpo Negro
 
Relatório Radiação de corpo negro
Relatório Radiação de corpo negro Relatório Radiação de corpo negro
Relatório Radiação de corpo negro
 
Pp 1ª Aula ÁTomo H
Pp 1ª Aula ÁTomo HPp 1ª Aula ÁTomo H
Pp 1ª Aula ÁTomo H
 
7 atomo hidrogénio
7   atomo hidrogénio7   atomo hidrogénio
7 atomo hidrogénio
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2
 
Física quântica gge
Física quântica ggeFísica quântica gge
Física quântica gge
 
Espectropia - Construção de um espectometro caseiro
Espectropia - Construção de um espectometro caseiroEspectropia - Construção de um espectometro caseiro
Espectropia - Construção de um espectometro caseiro
 
Moderna02
Moderna02Moderna02
Moderna02
 
Física quântica
Física quânticaFísica quântica
Física quântica
 
Modelos teóricos para a compreensão da estrutura da matéria
Modelos teóricos para a compreensão da estrutura da matériaModelos teóricos para a compreensão da estrutura da matéria
Modelos teóricos para a compreensão da estrutura da matéria
 
Radiação de Corpo Negro
Radiação de Corpo NegroRadiação de Corpo Negro
Radiação de Corpo Negro
 
Física Quântica
Física QuânticaFísica Quântica
Física Quântica
 
Física - Física Quântica
Física - Física QuânticaFísica - Física Quântica
Física - Física Quântica
 

En vedette

01 rad corpo_negro_-_exercicios
01 rad corpo_negro_-_exercicios01 rad corpo_negro_-_exercicios
01 rad corpo_negro_-_exerciciosRaquel Pereira
 
Física relatório - o efeito fotoelétrico
Física   relatório - o efeito fotoelétricoFísica   relatório - o efeito fotoelétrico
Física relatório - o efeito fotoelétricoeletrofisica
 
Efeito fotoelétrico
Efeito fotoelétricoEfeito fotoelétrico
Efeito fotoelétricoNilce Backes
 
Efeito fotoelétrico
Efeito fotoelétricoEfeito fotoelétrico
Efeito fotoelétricoNuno Santos
 
Efeito Fotoelétrico
Efeito FotoelétricoEfeito Fotoelétrico
Efeito FotoelétricoPibid Física
 
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...Rodrigo Penna
 

En vedette (11)

01 rad corpo_negro_-_exercicios
01 rad corpo_negro_-_exercicios01 rad corpo_negro_-_exercicios
01 rad corpo_negro_-_exercicios
 
Física relatório - o efeito fotoelétrico
Física   relatório - o efeito fotoelétricoFísica   relatório - o efeito fotoelétrico
Física relatório - o efeito fotoelétrico
 
5 Efeito Fotoeletrico1
5 Efeito Fotoeletrico15 Efeito Fotoeletrico1
5 Efeito Fotoeletrico1
 
Efeito fotoelétrico
Efeito fotoelétricoEfeito fotoelétrico
Efeito fotoelétrico
 
6 Efeito Fotoeletrico2
6 Efeito Fotoeletrico26 Efeito Fotoeletrico2
6 Efeito Fotoeletrico2
 
Efeito fotoeletrico
Efeito fotoeletricoEfeito fotoeletrico
Efeito fotoeletrico
 
Efeito fotoelétrico
Efeito fotoelétricoEfeito fotoelétrico
Efeito fotoelétrico
 
Efeito Fotoelétrico
Efeito FotoelétricoEfeito Fotoelétrico
Efeito Fotoelétrico
 
Max planck
Max planckMax planck
Max planck
 
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
Física Moderna para o Vestibular e o ENEM (Word) - Conteúdo vinculado ao blog...
 
Pp Da 1ª Aula 10º Ano
Pp Da 1ª Aula 10º AnoPp Da 1ª Aula 10º Ano
Pp Da 1ª Aula 10º Ano
 

Similaire à Pratica5

Fisica moderna
Fisica modernaFisica moderna
Fisica modernadalgo
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2dalgo
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2dalgo
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2dalgo
 
Física quântica gejdksnsjdjndndjdnnsnnsh
Física quântica gejdksnsjdjndndjdnnsnnshFísica quântica gejdksnsjdjndndjdnnsnnsh
Física quântica gejdksnsjdjndndjdnnsnnshMarcosOntonio
 
Relatório luana lima, maria júlia, ramom freitas e uendeo luz
Relatório   luana lima, maria júlia, ramom freitas e uendeo luzRelatório   luana lima, maria júlia, ramom freitas e uendeo luz
Relatório luana lima, maria júlia, ramom freitas e uendeo luzeletrofisica
 
aula 01.ppt Tudo sobre física quântica que você precisa
aula 01.ppt Tudo sobre física quântica que você precisaaula 01.ppt Tudo sobre física quântica que você precisa
aula 01.ppt Tudo sobre física quântica que você precisaMarcosOntonio
 
582459657.estrutura atomica(pafor)
582459657.estrutura atomica(pafor)582459657.estrutura atomica(pafor)
582459657.estrutura atomica(pafor)Ricardo França
 
Pratica 2 - Carga específica do Elétron
Pratica 2 - Carga específica do ElétronPratica 2 - Carga específica do Elétron
Pratica 2 - Carga específica do ElétronElissandro Mendes
 
A Fisica do seculo XX Nicolau Gilberto Ferrato
A Fisica do seculo XX Nicolau Gilberto FerratoA Fisica do seculo XX Nicolau Gilberto Ferrato
A Fisica do seculo XX Nicolau Gilberto Ferratolasvegas4
 
fisica_sec_xx (1).ppt
fisica_sec_xx (1).pptfisica_sec_xx (1).ppt
fisica_sec_xx (1).pptJordanyGomes
 
Ondas Eletromagnéticas-Noções
Ondas Eletromagnéticas-NoçõesOndas Eletromagnéticas-Noções
Ondas Eletromagnéticas-Noçõesluizamferreira
 
Efeito fotoelétrico.ppt
Efeito fotoelétrico.pptEfeito fotoelétrico.ppt
Efeito fotoelétrico.pptroosmrmemorial
 

Similaire à Pratica5 (20)

Fisica moderna
Fisica modernaFisica moderna
Fisica moderna
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2
 
Física quântica gejdksnsjdjndndjdnnsnnsh
Física quântica gejdksnsjdjndndjdnnsnnshFísica quântica gejdksnsjdjndndjdnnsnnsh
Física quântica gejdksnsjdjndndjdnnsnnsh
 
Relatório luana lima, maria júlia, ramom freitas e uendeo luz
Relatório   luana lima, maria júlia, ramom freitas e uendeo luzRelatório   luana lima, maria júlia, ramom freitas e uendeo luz
Relatório luana lima, maria júlia, ramom freitas e uendeo luz
 
aula 01.ppt Tudo sobre física quântica que você precisa
aula 01.ppt Tudo sobre física quântica que você precisaaula 01.ppt Tudo sobre física quântica que você precisa
aula 01.ppt Tudo sobre física quântica que você precisa
 
A Física do século XX
A Física do século XXA Física do século XX
A Física do século XX
 
Física moderna
Física modernaFísica moderna
Física moderna
 
Aula 2.pptx
Aula 2.pptxAula 2.pptx
Aula 2.pptx
 
582459657.estrutura atomica(pafor)
582459657.estrutura atomica(pafor)582459657.estrutura atomica(pafor)
582459657.estrutura atomica(pafor)
 
Pratica 2 - Carga específica do Elétron
Pratica 2 - Carga específica do ElétronPratica 2 - Carga específica do Elétron
Pratica 2 - Carga específica do Elétron
 
A Fisica do seculo XX Nicolau Gilberto Ferrato
A Fisica do seculo XX Nicolau Gilberto FerratoA Fisica do seculo XX Nicolau Gilberto Ferrato
A Fisica do seculo XX Nicolau Gilberto Ferrato
 
fisica_sec_xx (1).ppt
fisica_sec_xx (1).pptfisica_sec_xx (1).ppt
fisica_sec_xx (1).ppt
 
Fisica sec xx
Fisica sec xxFisica sec xx
Fisica sec xx
 
Fisica sec xx
Fisica sec xxFisica sec xx
Fisica sec xx
 
Ondas Eletromagnéticas-Noções
Ondas Eletromagnéticas-NoçõesOndas Eletromagnéticas-Noções
Ondas Eletromagnéticas-Noções
 
Efeito fotoelétrico.ppt
Efeito fotoelétrico.pptEfeito fotoelétrico.ppt
Efeito fotoelétrico.ppt
 
Ciências da natureza efeito fotoeletrico.ppt
Ciências da natureza efeito fotoeletrico.pptCiências da natureza efeito fotoeletrico.ppt
Ciências da natureza efeito fotoeletrico.ppt
 
Aula 03 - Estrutura dos átomos e moléculas
Aula 03 - Estrutura dos átomos e moléculasAula 03 - Estrutura dos átomos e moléculas
Aula 03 - Estrutura dos átomos e moléculas
 

Pratica5

  • 1. UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE FÍSICA LICENCIATURA PLENA EM FÍSICA Prática 5: Efeito fotoelétrico Elissandro Aquino Mendes(343766) Disciplina: Princípios de Física Moderna Professor: José Alves Fortaleza 2013
  • 2. Objetivos - Observar o efeito fotoelétrico; Estudar a característica Corrente-Voltagem, para uma frequência de luz com diferentes intensidades; Estudar a característica Corrente-Voltagem, para uma intensidade de luz com diferentes frequências; Determinar experimentalmente a constante de Planck a partir do efeito fotoelétrico; Material - Caixa com lâmpada de mercúrio; Caixa com fotocélula; Base metálica; Aparelho para o efeito fotolétrico; Fonte de alimentação para a lâmpada de mercúrio e aparelho para efeito fotoelétrico; Conjunto com cinco filtros de interferência e três janela com diferentes aberturas; Cabos com terminais DIN; Cabo BNC; Cabos (02); Fundamentos Já sabemos de estudos anteriores que para explicar o espectros atômicos de emissão e absorção, foram propostos alguns modelos, dentro os quais o que teve sucesso, em determinadas condições, definitivo, foi o modelo atômico de Niels Bohr (1885-1962), proposto no ano de 1913, que tinha alguns postulados que apesar de parcialmente compreensível ao pensamento clássico da época, teve uma grande pitada de coragem e genialidade, ao perceber que deveria-se romper com algumas características clássica e adotar para a matéria características quantizadas que foram propostas nos trabalhos de Max Planck sobre a radiação do corpo negro e por Einstein nos seus trabalhos sobre o efeito fotoelétrico. A teoria de Bohr baseava-se nos seguinte postulados: 1) Os elétrons move-se em órbitas circulares e com raios determinados (estado estacionário); 2) Quando nessas órbitas os elétrons não emitem radiação; 3) Essa órbitas são tais que temos a seguinte expressão para o momento angular do eletrón: ;
  • 3. 4) Ao mudar de um estado estacionário (órbita) para outro, tem-se a emissão de um fóton, cuja frequencia é dada pela expressão: , tendo-se Ep> Eq; De posse desses postulados, Bohr pode tecer sua teoria e predizer com grande precisão o espectro atômico para o Hidrogênio e também para átomos hidrogenóides. Suas bases eram incertas, mas tinha a precisão experimental para serem, de fato, considerada como válidas. A cerca disso Einstein falou: “Que essas bases incertas e contraditórias tenham permitido a Bohr descobrir as leis que regem as linhas espectrais e as camadas eletrônicas dos átomos, bem como seu significado para a química, pareceu-me como um milagre” Bem, a certeza da precisão e validade da teoria de Bohr que tanto assustava Einstein e tantos outros cientistas à época, só veio a aumentar quando os cientistas James Franck e Gustav Hertz realizaram uma série de experimentos que no ano de 1914, pelos quais foram lauraeados com o Nobel de 1925. A importancia desses experimentos vem do fato de que até o momento o caratér quantizado da transferência de energia se restringiam essencialmente a emissão e absorção de radiação. Com os experimentos, viu-se pela primeira vez a quantização da transferência de energia cinética, sendo a transmissão realizada pelas colisões, como veremos na descrição qualitativa do experimento que apresentamos abaixo. Segue um diagrama esquemático do dispositivo: Figura 1. Desenho esquemático de uma válvula triodo usada no experimento de FranckHertz.(http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html) Dentro dessa válvula, onde fez-se vácuo, temos vapor de mercúrio, de forma que os elétrons ejetados pelo catodo aquecido poderão chocar-se com os
  • 4. átomos de mercúrio no seu caminho até a placa coletora, essa placa é mantida em um potencial levemente repulsivo. Portanto os elétrons são acelerados pelo diferença de potencial entre o catodo e a grade, porém, somente os elétrons que consigam vencer o potencial negativo do anodo irão ser coletados pela placa. O que os cientistas perceberam foi que a corrente na placa coletora, formada pelos elétrons que a atingiam, variava com o potencial de aceleração aplicado à grade. Porém eles perceberam, também que para certas faixa de valores dessadiferença de potencial aceleradora, a corrente se reduzia apresentando o comportamento exibido abaixo (para o mercúrio): Figura 1. Gráfico do comportamento da corrente com a tensão aceleradora.(http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html) Franck e Hertz, mediram a tensão onde iniciava-se a queda da corrente e encontraram um valor próximo a 4.89 eV. Sendo que os demais picos ocorriam em mútiplos desse valor, como pode ser visto no gráfico e como iremos comprovar na presente prática. Logo, Franck e Hertz identificaram esse comportamento com o descrito pela teoria de Bohr, e assim comprovaram-na mais uma vez, identificando que os átomos de mercúrio ao serem atingindos por elétrons com determinados valores enérgeticos, se excitavam e acabavam por “roubar” a energia desse elétrons fazendo com que os mesmo não atingissem a placa coletora, reduzindo assim a corrente. Os demais picos podem ser explicado, extendendo-se esse comportamento de forma que ao aumenta a energia dos elétrons, uma fração significativa deles somente serão “parados” pelos átomos de mercúrio quando tiverem uma valor de enérgia múltiplo de 4.89 eV.
  • 5. Procedimento Devido a problemas técnicos com os equipamentos relativos a prática, a exibição da geração do gráfico relacionando a corrente na placa com a tensão aceleradora não foi realizada. Nos foi dado um exemplar de uma plotagem realizada em iguais condições, a partir dos quais serão respondidas as questões relativas à prática. Questionário (respostas) 1. A partir da diferença entre dois máximos consecutivos no gráfico da corrente, obtenha a energia de excitação dos átomos de mercúrio e compare com o resultado obtido usando a diferença entre dois mínimos. Discuta os resultados encontrados; R: 2. Veja na literatura qual é a energia de ionização do átomo de Hg. A partir do experimento de Franck-Hertz você poderia determiná-la ? Justifique. R: 3. Considere que 4,88 eV é a energia necessária para o átomo de mercúrio passar do estado fundamental para o primeiro estado excitado. Então, ao passar do estado excitado para o fundamental, o mercúrio deveria produzir uma linha no espectro com que comprimento de onda ? Esta linha está em que faixa do espectro eletromagnético ? R:
  • 6. 4. Em uma experiência tipo Franck-Hertz, bombardeia-se hidrogênio atômico com elétrons e obtêm-se os potenciais de excitação em 10,21 V e 12,10 V. (a) Explique a observação de que três linhas diferentes de emissão espectral acompanham essas excitações. (b) Determine as frequências e comprimento de onda das linha espectrais observadas. (Sugestão: trace um diagrama de níveis de energia). R: Conclusão Nessa prática conseguimos verificar a energia de excitação para átomos de mercúrio. Entendemos que esse fato é essencial para mostra a validade do fato central da teoria de Bohr, qual seja, a quantização da energia dos elétrons, mesmo sendo essa energia transferida pela colisão dos mesmos com átomos mais pesados, e esses últimos, mostrando também um comportamento quantizado nessa absorção. Mesmo não podendo aplicar diretamente a teoria para átomos mais pesados, vimos que a característica de quantização é universal e perceptível em escala atômica. Bibliografia Fisica IV, Sears & Semansky 12ed; Física Básica Vol 4, Moysés Nussenzveig; http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html (Acessado em 28/11/2013); http://pt.wikipedia.org/wiki/Experimento_de_Franck-Hertz (Acessado em 28/11/2013);