SlideShare une entreprise Scribd logo
1  sur  14
Télécharger pour lire hors ligne
2.8 Force Vector Directed
               along a Line
  In 3D problems, direction of F is specified by
  2 points, through which its line of action lies
  F can be formulated as a Cartesian vector

      F = F u = F (r/r)

Note that F has units of
forces (N) unlike r, with
units of length (m)
2.8 Force Vector Directed
            along a Line




Force F acting along the chain can be
presented as a Cartesian vector by
- Establish x, y, z axes
- Form a position vector r along length of
chain
2.8 Force Vector Directed
            along a Line




Unit vector, u = r/r that defines the direction
of both the chain and the force
We get F = Fu
2.8 Force Vector Directed
             along a Line
Example 2.13
The man pulls on the cord
with a force of 350N.
Represent this force acting
on the support A, as a
Cartesian vector and
determine its direction.
2.8 Force Vector Directed
             along a Line
Solution
End points of the cord are A (0m, 0m, 7.5m)
and B (3m, -2m, 1.5m)
r = (3m – 0m)i + (-2m – 0m)j + (1.5m –
   7.5m)k
   = {3i – 2j – 6k}m
Magnitude = length of cord AB
 r = (3m ) + (− 2m ) + (− 6m ) = 7m
          2         2         2


Unit vector, u = r /r
                      = 3/7i - 2/7j - 6/7k
2.8 Force Vector Directed
              along a Line
Solution
Force F has a magnitude of 350N, direction
specified by u
  F = Fu
    = 350N(3/7i - 2/7j - 6/7k)
    = {150i - 100j - 300k} N

  α = cos-1(3/7) = 64.6°
  β = cos-1(-2/7) = 107°
  γ = cos-1(-6/7) = 149°
2.8 Force Vector Directed
            along a Line
Example 2.14
The circular plate is
partially supported by
the cable AB. If the
force of the cable on
  the
hook at A is F = 500N,
express F as a
Cartesian vector.
2.8 Force Vector Directed
                         along a Line
Solution
End points of the cable are (0m, 0m, 2m) and B
(1.707m, 0.707m, 0m)
  r = (1.707m – 0m)i + (0.707m – 0m)j
           + (0m – 2m)k
    = {1.707i + 0.707j - 2k}m
Magnitude = length of cable AB

r=   (1.707m )2 + (0.707m )2 + (− 2m )2   = 2.723m
2.8 Force Vector Directed
                  along a Line
Solution
Unit vector,
  u = r /r
     = (1.707/2.723)i + (0.707/2.723)j – (2/2.723)k
     = 0.6269i + 0.2597j – 0.7345k
For force F,
  F = Fu
    = 500N(0.6269i + 0.2597j – 0.7345k)
     = {313i - 130j - 367k} N
2.8 Force Vector Directed
                 along a Line
Solution
Checking
F=   (313) + (130) + (− 367 )
           2      2         2


= 500 N
Show that γ = 137° and
indicate this angle on the
diagram
2.8 Force Vector Directed
              along a Line
Example 2.15
The roof is supported by
cables. If the cables exert
FAB = 100N and FAC = 120N
on the wall hook at A,
determine the magnitude of
the resultant force acting at
A.
2.8 Force Vector Directed
                     along a Line
Solution
rAB = (4m – 0m)i + (0m – 0m)j + (0m – 4m)k
     = {4i – 4k}m
rAB =    (4m )2 + (− 4m )2   = 5.66m


FAB = 100N (rAB/r AB)
    = 100N {(4/5.66)i - (4/5.66)k}
    = {70.7i - 70.7k} N
2.8 Force Vector Directed
                         along a Line
Solution
rAC = (4m – 0m)i + (2m – 0m)j + (0m – 4m)k
    = {4i + 2j – 4k}m

    rAC =   (4m )2 + (2m )2 + (− 4m )2   = 6m

FAC = 120N (rAB/r AB)
    = 120N {(4/6)i + (2/6)j - (4/6)k}
    = {80i + 40j – 80k} N
2.8 Force Vector Directed
                        along a Line
Solution
FR = FAB + FAC
   = {70.7i - 70.7k} N + {80i + 40j – 80k} N
   = {150.7i + 40j – 150.7k} N

Magnitude of FR
   FR =   (150.7 )2 + (40)2 + (− 150.7 )2
   = 217 N

Contenu connexe

Tendances

Vector lesson and problems
Vector lesson and problemsVector lesson and problems
Vector lesson and problems
John Trinh
 
Thực hành thí nghiệm cơ học đất
Thực hành thí nghiệm cơ học đấtThực hành thí nghiệm cơ học đất
Thực hành thí nghiệm cơ học đất
Vcoi Vit
 
6161103 3.4 three dimensional force systems
6161103 3.4 three dimensional force systems6161103 3.4 three dimensional force systems
6161103 3.4 three dimensional force systems
etcenterrbru
 
3_hydrostatic-force_tutorial-solution(1)
3_hydrostatic-force_tutorial-solution(1)3_hydrostatic-force_tutorial-solution(1)
3_hydrostatic-force_tutorial-solution(1)
Diptesh Dash
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)
Raul Garcia
 

Tendances (20)

Module 7
Module 7 Module 7
Module 7
 
Harry hess presentation 2
Harry hess presentation 2Harry hess presentation 2
Harry hess presentation 2
 
Chapter 1 stress and strain
Chapter 1   stress and strainChapter 1   stress and strain
Chapter 1 stress and strain
 
Vector lesson and problems
Vector lesson and problemsVector lesson and problems
Vector lesson and problems
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_hole
 
Equilibrium 3
Equilibrium 3Equilibrium 3
Equilibrium 3
 
Normal stress & Shear Stress
 Normal stress & Shear Stress Normal stress & Shear Stress
Normal stress & Shear Stress
 
Chapter 5-cables and arches
Chapter 5-cables and archesChapter 5-cables and arches
Chapter 5-cables and arches
 
Solution manual 4 6
Solution manual 4 6Solution manual 4 6
Solution manual 4 6
 
Thực hành thí nghiệm cơ học đất
Thực hành thí nghiệm cơ học đấtThực hành thí nghiệm cơ học đất
Thực hành thí nghiệm cơ học đất
 
solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...
 
Ge 122 lecture 1 (GEODETIC CONTROL SURVEY) by: Broddett Bello abatayo
Ge 122 lecture 1 (GEODETIC CONTROL SURVEY) by: Broddett Bello abatayoGe 122 lecture 1 (GEODETIC CONTROL SURVEY) by: Broddett Bello abatayo
Ge 122 lecture 1 (GEODETIC CONTROL SURVEY) by: Broddett Bello abatayo
 
Simple stresses and Stain
Simple stresses and StainSimple stresses and Stain
Simple stresses and Stain
 
General Physics 2.pptx
General Physics 2.pptxGeneral Physics 2.pptx
General Physics 2.pptx
 
Ge 105 lecture 5 (STRENGTH OF FIGURE) by: Broddett B. Abatayo
Ge 105 lecture 5 (STRENGTH OF FIGURE) by: Broddett B. AbatayoGe 105 lecture 5 (STRENGTH OF FIGURE) by: Broddett B. Abatayo
Ge 105 lecture 5 (STRENGTH OF FIGURE) by: Broddett B. Abatayo
 
6161103 3.4 three dimensional force systems
6161103 3.4 three dimensional force systems6161103 3.4 three dimensional force systems
6161103 3.4 three dimensional force systems
 
Bản vẽ đồ án Nền móng- Đại học Xây dựng
Bản vẽ đồ án Nền móng- Đại học Xây dựngBản vẽ đồ án Nền móng- Đại học Xây dựng
Bản vẽ đồ án Nền móng- Đại học Xây dựng
 
3_hydrostatic-force_tutorial-solution(1)
3_hydrostatic-force_tutorial-solution(1)3_hydrostatic-force_tutorial-solution(1)
3_hydrostatic-force_tutorial-solution(1)
 
H.w. #7
H.w. #7H.w. #7
H.w. #7
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)
 

En vedette (7)

6161103 4.3 moment of force vector formulation
6161103 4.3 moment of force   vector formulation6161103 4.3 moment of force   vector formulation
6161103 4.3 moment of force vector formulation
 
Mass weight & density
Mass weight & densityMass weight & density
Mass weight & density
 
Laws of mechanics
Laws of mechanicsLaws of mechanics
Laws of mechanics
 
Engineering Mechanics Introduction
Engineering Mechanics IntroductionEngineering Mechanics Introduction
Engineering Mechanics Introduction
 
Force vectors
Force vectorsForce vectors
Force vectors
 
mass, volume, weight and density
mass, volume, weight and densitymass, volume, weight and density
mass, volume, weight and density
 
Force and Motion Review ppt
Force and Motion Review pptForce and Motion Review ppt
Force and Motion Review ppt
 

Similaire à 6161103 2.8 force vector directed along a line

6161103 2.9 dot product
6161103 2.9 dot product6161103 2.9 dot product
6161103 2.9 dot product
etcenterrbru
 
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
rafbolet0
 
6161103 2.3 vector addition of forces
6161103 2.3 vector addition of forces6161103 2.3 vector addition of forces
6161103 2.3 vector addition of forces
etcenterrbru
 

Similaire à 6161103 2.8 force vector directed along a line (20)

6161103 Ch02b
6161103 Ch02b6161103 Ch02b
6161103 Ch02b
 
ME 245_ 2.pptx
ME 245_ 2.pptxME 245_ 2.pptx
ME 245_ 2.pptx
 
6161103 2.9 dot product
6161103 2.9 dot product6161103 2.9 dot product
6161103 2.9 dot product
 
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
 
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.pptA(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
 
Ch27 ssm
Ch27 ssmCh27 ssm
Ch27 ssm
 
Application of Comparators in Modern Power System Protection and Control
Application of Comparators in Modern Power System Protection and ControlApplication of Comparators in Modern Power System Protection and Control
Application of Comparators in Modern Power System Protection and Control
 
6161103 2.3 vector addition of forces
6161103 2.3 vector addition of forces6161103 2.3 vector addition of forces
6161103 2.3 vector addition of forces
 
22564 emd 2.0 direct and bending
22564 emd 2.0 direct and bending22564 emd 2.0 direct and bending
22564 emd 2.0 direct and bending
 
Chapter 4 Transmission.ppt
Chapter 4 Transmission.pptChapter 4 Transmission.ppt
Chapter 4 Transmission.ppt
 
Dynamics of Machines - Forced Vibration - Problems.pdf
Dynamics of Machines - Forced Vibration - Problems.pdfDynamics of Machines - Forced Vibration - Problems.pdf
Dynamics of Machines - Forced Vibration - Problems.pdf
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
1.4 - Forces in Space.pptx
1.4 - Forces in Space.pptx1.4 - Forces in Space.pptx
1.4 - Forces in Space.pptx
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
 
Design of a Lift Mechanism for Disabled People
Design of a Lift Mechanism for Disabled PeopleDesign of a Lift Mechanism for Disabled People
Design of a Lift Mechanism for Disabled People
 
Capitulo2
Capitulo2Capitulo2
Capitulo2
 
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
 
Rotating machines part 1
Rotating machines part 1Rotating machines part 1
Rotating machines part 1
 
Resultant of a system of forces
Resultant of a system of forcesResultant of a system of forces
Resultant of a system of forces
 
Physics Marking scheme| Class 12 session 2023-2024
Physics Marking scheme| Class 12 session 2023-2024Physics Marking scheme| Class 12 session 2023-2024
Physics Marking scheme| Class 12 session 2023-2024
 

Plus de etcenterrbru

บทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาดบทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาด
etcenterrbru
 
บทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคลบทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคล
etcenterrbru
 
6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium
etcenterrbru
 
6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies
etcenterrbru
 
6161103 11 virtual work
6161103 11 virtual work6161103 11 virtual work
6161103 11 virtual work
etcenterrbru
 
6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia
etcenterrbru
 
6161103 10.8 mohr’s circle for moments of inertia
6161103 10.8 mohr’s circle for moments of inertia6161103 10.8 mohr’s circle for moments of inertia
6161103 10.8 mohr’s circle for moments of inertia
etcenterrbru
 
6161103 10.7 moments of inertia for an area about inclined axes
6161103 10.7 moments of inertia for an area about inclined axes6161103 10.7 moments of inertia for an area about inclined axes
6161103 10.7 moments of inertia for an area about inclined axes
etcenterrbru
 
6161103 10.6 inertia for an area
6161103 10.6 inertia for an area6161103 10.6 inertia for an area
6161103 10.6 inertia for an area
etcenterrbru
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
etcenterrbru
 
6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration
etcenterrbru
 
6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review
etcenterrbru
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body
etcenterrbru
 
6161103 9.6 fluid pressure
6161103 9.6 fluid pressure6161103 9.6 fluid pressure
6161103 9.6 fluid pressure
etcenterrbru
 
6161103 9.3 composite bodies
6161103 9.3 composite bodies6161103 9.3 composite bodies
6161103 9.3 composite bodies
etcenterrbru
 
6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review
etcenterrbru
 
6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws
etcenterrbru
 
6161103 8.3 wedges
6161103 8.3 wedges6161103 8.3 wedges
6161103 8.3 wedges
etcenterrbru
 
6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction
etcenterrbru
 

Plus de etcenterrbru (20)

บทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาดบทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาด
 
บทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคลบทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคล
 
บทที่ 7 การประชาสัมพันธ์
บทที่ 7 การประชาสัมพันธ์บทที่ 7 การประชาสัมพันธ์
บทที่ 7 การประชาสัมพันธ์
 
6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium
 
6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies
 
6161103 11 virtual work
6161103 11 virtual work6161103 11 virtual work
6161103 11 virtual work
 
6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia
 
6161103 10.8 mohr’s circle for moments of inertia
6161103 10.8 mohr’s circle for moments of inertia6161103 10.8 mohr’s circle for moments of inertia
6161103 10.8 mohr’s circle for moments of inertia
 
6161103 10.7 moments of inertia for an area about inclined axes
6161103 10.7 moments of inertia for an area about inclined axes6161103 10.7 moments of inertia for an area about inclined axes
6161103 10.7 moments of inertia for an area about inclined axes
 
6161103 10.6 inertia for an area
6161103 10.6 inertia for an area6161103 10.6 inertia for an area
6161103 10.6 inertia for an area
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration
 
6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body
 
6161103 9.6 fluid pressure
6161103 9.6 fluid pressure6161103 9.6 fluid pressure
6161103 9.6 fluid pressure
 
6161103 9.3 composite bodies
6161103 9.3 composite bodies6161103 9.3 composite bodies
6161103 9.3 composite bodies
 
6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review
 
6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws
 
6161103 8.3 wedges
6161103 8.3 wedges6161103 8.3 wedges
6161103 8.3 wedges
 
6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction
 

Dernier

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

6161103 2.8 force vector directed along a line

  • 1. 2.8 Force Vector Directed along a Line In 3D problems, direction of F is specified by 2 points, through which its line of action lies F can be formulated as a Cartesian vector F = F u = F (r/r) Note that F has units of forces (N) unlike r, with units of length (m)
  • 2. 2.8 Force Vector Directed along a Line Force F acting along the chain can be presented as a Cartesian vector by - Establish x, y, z axes - Form a position vector r along length of chain
  • 3. 2.8 Force Vector Directed along a Line Unit vector, u = r/r that defines the direction of both the chain and the force We get F = Fu
  • 4. 2.8 Force Vector Directed along a Line Example 2.13 The man pulls on the cord with a force of 350N. Represent this force acting on the support A, as a Cartesian vector and determine its direction.
  • 5. 2.8 Force Vector Directed along a Line Solution End points of the cord are A (0m, 0m, 7.5m) and B (3m, -2m, 1.5m) r = (3m – 0m)i + (-2m – 0m)j + (1.5m – 7.5m)k = {3i – 2j – 6k}m Magnitude = length of cord AB r = (3m ) + (− 2m ) + (− 6m ) = 7m 2 2 2 Unit vector, u = r /r = 3/7i - 2/7j - 6/7k
  • 6. 2.8 Force Vector Directed along a Line Solution Force F has a magnitude of 350N, direction specified by u F = Fu = 350N(3/7i - 2/7j - 6/7k) = {150i - 100j - 300k} N α = cos-1(3/7) = 64.6° β = cos-1(-2/7) = 107° γ = cos-1(-6/7) = 149°
  • 7. 2.8 Force Vector Directed along a Line Example 2.14 The circular plate is partially supported by the cable AB. If the force of the cable on the hook at A is F = 500N, express F as a Cartesian vector.
  • 8. 2.8 Force Vector Directed along a Line Solution End points of the cable are (0m, 0m, 2m) and B (1.707m, 0.707m, 0m) r = (1.707m – 0m)i + (0.707m – 0m)j + (0m – 2m)k = {1.707i + 0.707j - 2k}m Magnitude = length of cable AB r= (1.707m )2 + (0.707m )2 + (− 2m )2 = 2.723m
  • 9. 2.8 Force Vector Directed along a Line Solution Unit vector, u = r /r = (1.707/2.723)i + (0.707/2.723)j – (2/2.723)k = 0.6269i + 0.2597j – 0.7345k For force F, F = Fu = 500N(0.6269i + 0.2597j – 0.7345k) = {313i - 130j - 367k} N
  • 10. 2.8 Force Vector Directed along a Line Solution Checking F= (313) + (130) + (− 367 ) 2 2 2 = 500 N Show that γ = 137° and indicate this angle on the diagram
  • 11. 2.8 Force Vector Directed along a Line Example 2.15 The roof is supported by cables. If the cables exert FAB = 100N and FAC = 120N on the wall hook at A, determine the magnitude of the resultant force acting at A.
  • 12. 2.8 Force Vector Directed along a Line Solution rAB = (4m – 0m)i + (0m – 0m)j + (0m – 4m)k = {4i – 4k}m rAB = (4m )2 + (− 4m )2 = 5.66m FAB = 100N (rAB/r AB) = 100N {(4/5.66)i - (4/5.66)k} = {70.7i - 70.7k} N
  • 13. 2.8 Force Vector Directed along a Line Solution rAC = (4m – 0m)i + (2m – 0m)j + (0m – 4m)k = {4i + 2j – 4k}m rAC = (4m )2 + (2m )2 + (− 4m )2 = 6m FAC = 120N (rAB/r AB) = 120N {(4/6)i + (2/6)j - (4/6)k} = {80i + 40j – 80k} N
  • 14. 2.8 Force Vector Directed along a Line Solution FR = FAB + FAC = {70.7i - 70.7k} N + {80i + 40j – 80k} N = {150.7i + 40j – 150.7k} N Magnitude of FR FR = (150.7 )2 + (40)2 + (− 150.7 )2 = 217 N