SlideShare une entreprise Scribd logo
1  sur  36
1
2
The Bipolar Junction Transistor (BJT)
n p n
base
emitter collector
p n p
base
emitter collectornpn (Discrete) Transistor Fabrication (e.g. BC107, 108, 109)
200m n+ n-type
wafer
epitaxial
n-type
layern10m
SiO2
p n
emitter basebase
collector
3
n p n
base
emitter collector
200mn+
n 10mp n
emitter basebase
collector
• base is
deliberately
made thin, ~1
• BJT’s should be
connected as labelled,
otherwise gains and
breakdown voltages will
be drastically reduced
4
Energy bands for an npn transistor
under zero applied bias
emitter base collector
n p n
depletion regions
Conduction
Band
Valence
Band
ElectronEnergy
EF
Fig. 112
5
Energy bands for an npn transistor
under normal biasing conditions
Conduction
Band
Valence
Band
ElectronEnergy
Fig. 113
emitter base collector
VBE VCB+ +
n p n
electrons
6
n-type emitter p-type base n-type collector
base-emitter
junction
collector-base
junction
VBE VCB+ +
IE IC
IB
electrons
holes
|IE|
(1-)|IE|
 - emitter efficiency
(lightly doped)
α|IE|
α – common-base current gain
holes
ICBO
electrons
holes
IC = αIE + ICBO
BJT CARRIER FLOWSFig. 114
7
10
8
6
4
2
0
IE / mA
0 0.2 0.4 0.6 0.8 VBE / V
VCB = 0VVCB = 25V
)(
26
mAIeI
kT
dI
dV
rd 

For diode:
For BJT:
CE
e
eI
kT
eI
kT
dI
dV
r


re – dynamic emitter resistance
CE
e
II
r
2626

For  = 1, T = 300 K and IE,
IC in mA:
Fig. 116: Input
Characteristic –
CB Configuration
Increasing VCB
rd – dynamic resistance
8
10
8
6
4
2
0
IE / mA
0 0.2 0.4 0.6 0.8 VBE / V
VCB = 0VVCB = 25V
IE ≈ IC
b
e c
VBE
IE
IB
IC
VCB
INPUT OUTPUT
IC(VBE)TRANSFER
CHARACTERISTIC
Transconductance, gm, is slope
of transfer characteristic, hence:
e
m
r
g
1

9
LECTURE 18
BJT CHARACTERISTICS
 Common base
 Common emitter
 Common collector
 The Early effect
10
IC / mA
VCB / V-1 0 1 2 3 4 5 6 7 8
1
0.75
0.5
0.25
IE = 1.0 mA
IE = 0.75 mA
IE = 0.50 mA
IE = 0.25 mA
IE = 0
Breakdown
region
ICBO
Saturationregion
Active region
IC ≈ αIE, α ≈ 1
Cutoff region
Fig. 117: Output
Characteristics –
CB Configuration
b
e c
VBE
IE
IB
IC
VCB
IC(VCB)
11
b
c
VBE
IB
IE
IC
VCE
INPUT
OUTPUT
COMMON EMITTER CONFIGURATION
IB(VBE) IC(VCE)
e
Fig. 115 (b)
INPUT
CHARACTERISTICS
OUTPUT
CHARACTERISTICS
n
p
n
b
c
e
12
10
8
6
4
2
0
IB / A
0 0.2 0.4 0.6 0.8 VBE / V
VCE = 20VVCE = 5V
Fig. 118: Input Characteristic – CE Configuration
Increasing VCE
13
IC / mA
VCE / V0 5 10 15 20
4
3
2
1
IB = 40 A
IB = 30 A
IB = 20 A
IB = 10A
IB = 0
Breakdown
region
ICEO
Saturationregion
Active region
Cutoff region
Fig. 119: Output
Characteristics –
CE Configuration
b
c
VBE
IB
IE
IC
VCE
e
IC(VCE)
14
b
e
VCB
IB
IC
IE
VCE
INPUT
OUTPUT
COMMON COLLECTOR CONFIGURATION
IB(VCB) IE(VCE)
c
Fig. 115 (c)
INPUT
CHARACTERISTICS
OUTPUT
CHARACTERISTICS
15
IE / mA
VCE / V0 5 10 15 20
4
3
2
1
IB = 40 A
IB = 30 A
IB = 20 A
IB = 10A
IB = 0
Breakdown
region
ICEO
Saturationregion
Active region
Cutoff region
Fig. 121: Output
Characteristics –
CC Configuration
CC CE
IE(VCE)  IC(VCE)
IE ≈ IC since α ≈ 1
16
IB / A
VCB / V0 5 10 15 20
80
60
40
20
Fig. 120: Input
Characteristics –
CC Configuration
b
e
VCB
IB
IC
IE
VCE
c
Transistor on  VBE ≈ 0.7V
0.7V
VCB ≈ VCE – 0.7V
4.3
VCE = 5V VCE = 10V VCE = 15V
As VCB  VCE, VBE 
0, transistor turns off
IB vs. VCB for different
values of VCE
17
THE EARLY EFFECT, OR BASE-WIDTH MODULATION
baseemitter collector
n p n
e-b
junction
c-b
junction
depletion regions
VBE VCB+ +
IB
18
+–
- +
- +
- +
- +
V
VB
p n
Effect of bias on width of the depletion region
Fig. 55
Reverse bias
(p-type -ve w.r.t. n-type)
Potential
Distance
VB+V
VB
-2
0
-4
-6
-8
-10
-12
-14
- +
- +
- +
- +
Depletion
region
widens
19
+ –
- +
- +
- +
- +
V
VB
p n
Effect of bias on width of the depletion region
Fig. 55
Forward bias
(p-type +ve w.r.t. n-type)
Potential
Distance
VB-VVB
0.1
0
0.2
0.3
0.4
0.5
0.6
0.7
Depletion
region
narrows
- +
- +
20
VCB=6VVCB=5VVCB=4VVCB=3VVCB=2V
emitter collector
n p n
e-b
junction
VBE + +
IB
VCB=1V
THE EARLY EFFECT, OR BASE-WIDTH MODULATION
depletion regions
c-b
junction
VCB
base
effective
width of base
21
If the effective width of the base decreases: –
1. There will be less recombination in the base, so
α (and hence β) will increase.
β = α / (1- α)
nn--type emitter ptype emitter p--type base ntype base n--type collectortype collector
basebase--emitteremitter
junctionjunction
collectorcollector--basebase
junctionjunction
VVBEBE VVCBCB++ ++
IIEE IICC
IIBB
electronselectrons
holesholes
|I|IEE||
(1(1--)|I)|IEE||
(lightly doped)(lightly doped)
αα|I|IEE||
holesholes
IICBOCBO
electronselectrons
holesholes
IICC == ααIIEE + I+ ICBOCBO
nn--type emitter ptype emitter p--type base ntype base n--type collectortype collector
basebase--emitteremitter
junctionjunction
collectorcollector--basebase
junctionjunction
VVBEBE VVCBCB++ ++
IIEE IICC
IIBB
electronselectrons
holesholes
|I|IEE||
(1(1--)|I)|IEE||
(lightly doped)(lightly doped)
αα|I|IEE||
holesholes
IICBOCBO
electronselectrons
holesholes
IICC == ααIIEE + I+ ICBOCBO
22
If the effective width of the base decreases: –
2. The minority carrier concentration gradient
(Δn/Δx) will increase:
so |IE| will increase.
|IE|  Δn/Δx (Δx is the basewidth)
Δx
|IE|Electron
concentration Δn
emitter base collector
n p n
23
emitter collector
n p n
e-b
junction
VBE + +
IB
c-b
junction
VCB
base
If the effective width of the base decreases: –
3. The c-b depletion region may extend all the way
over to the e-b junction – PUNCH-THROUGH
24
Energy bands for an npn transistor
under normal biasing conditions
Conduction
Band
Valence
Band
ElectronEnergy
Fig. 113
emitter base collector
VBE VCB+ +
n p n
electrons
25
Energy bands for an npn transistor
under normal biasing conditions
Conduction
Band
Valence
Band
ElectronEnergy
Fig. 113
emitter base collector
VBE VCB+ +
n p n
electrons
26
Energy bands for an npn transistor
under normal biasing conditions
Conduction
Band
Valence
Band
ElectronEnergy
Fig. 113
emitter base collector
VBE VCB+ +
n p n
electrons
27
Energy bands for an npn transistor
under normal biasing conditions
Conduction
Band
Valence
Band
ElectronEnergy
Fig. 113
emitter base collector
VBE VCB+ +
n p n
electrons
28
IC / mA
VCB / V-1 0 1 2 3 4 5 6 7 8
1
0.75
0.5
0.25
IE = 1.0 mA
IE = 0.75 mA
IE = 0.50 mA
IE = 0.25 mA
IE = 0ICBO
Saturationregion
Active region
IC ≈ αIE
Cutoff region
b
e c
VBE
IE
IB
IC
VCB
IC(VCB)
Early effect implies α
and |IE| increases as
VCB increases, hence
IC (≈ αIE )increases
Common-base output characteristics
Breakdown
region
29
IC / mA
VCE / V0 5 10 15 20
4
3
2
1
IB = 40 A
IB = 30 A
IB = 20 A
IB = 10A
IB = 0
Breakdown
region
ICEO
Saturationregion
Active region
Cutoff region
b
c
VBE
IB
IE
IC
VCE
e
As VCE increases, VCB
increases. Early effect
implies α, and hence
β, increases as VCB
increases. IC ≈
βIB, hence IC increases
Common-emitter output characteristics
IC ≈ βIB
30
10
8
6
4
2
0
IE / mA
0 0.2 0.4 0.6 0.8 VBE / V
VCB = 0VVCB = 25V
Increasing VCB
Common-base input characteristics
Early effect implies
|IE| increases as VCB
increases.
31
10
8
6
4
2
0
IB / A
0 0.2 0.4 0.6 0.8 VBE / V
VCE = 20VVCE = 5V
Increasing VCE
Common-emitter input characteristics
Early effect implies
less recombination in
the base as VCB/VCE
increases hence IB
decreases
32
 IC = ICBO for IE = 0
 IC ≈ IE in flat regions
 IC  0 as VCB goes negative
 IC increases at large values of VCB due to
breakdown at the reverse-biased c-b junction
IICC / mA/ mA
VVCBCB / V/ V--1 0 1 2 3 4 51 0 1 2 3 4 5 6 7 86 7 8
11
0.750.75
0.50.5
0.250.25
IIEE = 1.0 mA= 1.0 mA
IIEE = 0.75 mA= 0.75 mA
IIEE = 0.50 mA= 0.50 mA
IIEE = 0.25 mA= 0.25 mA
IIEE = 0= 0
BreakdownBreakdown
regionregion
IICBOCBO
SaturationregionSaturationregion
Active regionActive region
IICC ≈≈ ααIIEE,, αα ≈≈ 11
Cutoff regionCutoff region
IICC / mA/ mA
VVCBCB / V/ V--1 0 1 2 3 4 51 0 1 2 3 4 5 6 7 86 7 8
11
0.750.75
0.50.5
0.250.25
IIEE = 1.0 mA= 1.0 mA
IIEE = 0.75 mA= 0.75 mA
IIEE = 0.50 mA= 0.50 mA
IIEE = 0.25 mA= 0.25 mA
IIEE = 0= 0
BreakdownBreakdown
regionregion
IICBOCBO
SaturationregionSaturationregion
Active regionActive region
IICC ≈≈ ααIIEE,, αα ≈≈ 11
Cutoff regionCutoff region
• CB output characteristics are plots of IC vs. VCB:
Summary
33
 Common-emitter configuration
• Input characteristics (IB vs. VBE) resemble that for a
forward-biased diode but depend on output voltage
VCE due to Early effect
1010
88
66
44
22
00
IIBB // AA
0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8 VVBEBE / V/ V
VVCECE = 20V= 20VVVCECE = 5V= 5V
Increasing VIncreasing VCECE
1010
88
66
44
22
00
IIBB // AA
0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8 VVBEBE / V/ V
VVCECE = 20V= 20VVVCECE = 5V= 5V
Increasing VIncreasing VCECE
34
• Output characteristics are plots of IC vs. VCE for
different values of the input current IB:
 IC = ICEO for IB = 0
 IC >> IB in flat regions due to current amplification
 IC increases at large values of VCE due to
breakdown at the reverse-biased c-b junction
IICC / mA/ mA
VVCECE / V/ V0 5 100 5 10 15 2015 20
44
33
22
11
IIBB = 40= 40 AA
IIBB = 30= 30 AA
IIBB = 20= 20 AA
IIBB = 10= 10AA
IIBB = 0= 0
BreakdownBreakdown
regionregion
IICEOCEO
SaturationregionSaturationregion
Active regionActive region
Cutoff regionCutoff region
IICC / mA/ mA
VVCECE / V/ V0 5 100 5 10 15 2015 20
44
33
22
11
IIBB = 40= 40 AA
IIBB = 30= 30 AA
IIBB = 20= 20 AA
IIBB = 10= 10AA
IIBB = 0= 0
BreakdownBreakdown
regionregion
IICEOCEO
SaturationregionSaturationregion
Active regionActive region
Cutoff regionCutoff region
35
 Common-collector configuration
• Input characteristics (IB vs. VCB)
VCB = VCE – VBE hence:
If transistor is “on” VCB is fixed at VCE – 0.7V
As VCB  VCE device turns off, IB  0
IIBB // AA
VVCBCB / V/ V0 5 100 5 10 15 2015 20
8080
6060
4040
2020
4.34.3
VVCECE = 5V= 5V VVCECE = 10V= 10V VVCECE = 15V= 15V
IIBB // AA
VVCBCB / V/ V0 5 100 5 10 15 2015 20
8080
6060
4040
2020
4.34.3
VVCECE = 5V= 5V VVCECE = 10V= 10V VVCECE = 15V= 15V
36
• Output characteristics are plots of IE vs. VCE for
different values of IB
Since IE ≈ IC, CC output characteristics are
essentially the same as those for CE
VVCBCB=6V=6V
emitter coemitter collectorllector
n p nn p n
ee--bb
junctionjunction
VVBEBE ++ ++
IIBB
depletion regionsdepletion regions
cc--bb
junctionjunction
VVCBCB
basebase
effectiveeffective
width of basewidth of base
VVCBCB=6V=6V
emitter coemitter collectorllector
n p nn p n
ee--bb
junctionjunction
VVBEBE ++ ++
IIBB
depletion regionsdepletion regions
cc--bb
junctionjunction
VVCBCB
basebase
effectiveeffective
width of basewidth of base
 THE EARLY EFFECT, OR BASE-WIDTH MODULATION

Contenu connexe

Tendances

Tendances (20)

Analog electronic circuit
Analog electronic circuitAnalog electronic circuit
Analog electronic circuit
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
 
Common Emitter circuit
Common Emitter circuitCommon Emitter circuit
Common Emitter circuit
 
BIASING OF BJT
BIASING OF BJT BIASING OF BJT
BIASING OF BJT
 
Common emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJCommon emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJ
 
Bjts
BjtsBjts
Bjts
 
Bipolar Junction Transistor
Bipolar Junction TransistorBipolar Junction Transistor
Bipolar Junction Transistor
 
Eee
EeeEee
Eee
 
29 sept ppt
29 sept ppt29 sept ppt
29 sept ppt
 
Bipolar Transistor Operation
Bipolar Transistor OperationBipolar Transistor Operation
Bipolar Transistor Operation
 
Bipolartransistor
BipolartransistorBipolartransistor
Bipolartransistor
 
Bipolar junction transistor
Bipolar junction transistorBipolar junction transistor
Bipolar junction transistor
 
Electronics and Communication Engineering
Electronics and Communication EngineeringElectronics and Communication Engineering
Electronics and Communication Engineering
 
2n3773
2n37732n3773
2n3773
 
Ac analysis of bjt and mosfet inverting amplifiers
Ac analysis of bjt and mosfet inverting amplifiersAc analysis of bjt and mosfet inverting amplifiers
Ac analysis of bjt and mosfet inverting amplifiers
 
Bipolar Transistor
Bipolar TransistorBipolar Transistor
Bipolar Transistor
 
Bjt
BjtBjt
Bjt
 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjt
 
ELECTRONICS
ELECTRONICSELECTRONICS
ELECTRONICS
 

En vedette (6)

Sundays and festivals with the Fathers of the Church
Sundays and festivals with the Fathers of the ChurchSundays and festivals with the Fathers of the Church
Sundays and festivals with the Fathers of the Church
 
Ordo missae ordinis praedicatorum
Ordo missae ordinis praedicatorumOrdo missae ordinis praedicatorum
Ordo missae ordinis praedicatorum
 
The Money Mentors Programme
The Money Mentors ProgrammeThe Money Mentors Programme
The Money Mentors Programme
 
DButzPrez on Group Practice Arrangements
DButzPrez on Group Practice ArrangementsDButzPrez on Group Practice Arrangements
DButzPrez on Group Practice Arrangements
 
Lesson 9 2
Lesson 9 2Lesson 9 2
Lesson 9 2
 
Attracting, Retaining & Engaging
Attracting, Retaining & EngagingAttracting, Retaining & Engaging
Attracting, Retaining & Engaging
 

Similaire à Trnasistor chapter 5th 2013_09_13_15_57_13

BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
GunaG14
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
Napex Terra
 

Similaire à Trnasistor chapter 5th 2013_09_13_15_57_13 (20)

BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
 
Mba admssion in india
Mba admssion in indiaMba admssion in india
Mba admssion in india
 
Bjts
BjtsBjts
Bjts
 
Bjts
Bjts Bjts
Bjts
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
BJT v-i characteristics
BJT  v-i characteristicsBJT  v-i characteristics
BJT v-i characteristics
 
Transistors.ppt
Transistors.pptTransistors.ppt
Transistors.ppt
 
Lecture 8M.pptx
Lecture 8M.pptxLecture 8M.pptx
Lecture 8M.pptx
 
Chapter2BipolarJunctionTransistor (1).pdf
Chapter2BipolarJunctionTransistor (1).pdfChapter2BipolarJunctionTransistor (1).pdf
Chapter2BipolarJunctionTransistor (1).pdf
 
Transistor 1 lecture
Transistor 1 lectureTransistor 1 lecture
Transistor 1 lecture
 
Bjt region of operation |Dept of ECE |ANITS
Bjt region of operation |Dept of ECE |ANITSBjt region of operation |Dept of ECE |ANITS
Bjt region of operation |Dept of ECE |ANITS
 
Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)
 
module2.pdf
module2.pdfmodule2.pdf
module2.pdf
 
Ch8 lecture slides Chenming Hu Device for IC
Ch8 lecture slides Chenming Hu Device for ICCh8 lecture slides Chenming Hu Device for IC
Ch8 lecture slides Chenming Hu Device for IC
 
My_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdfMy_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdf
 
Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)
 
(Latest) topic 4 bipolar_junction_transistors
(Latest) topic 4 bipolar_junction_transistors(Latest) topic 4 bipolar_junction_transistors
(Latest) topic 4 bipolar_junction_transistors
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
 
Various configurations in BJT
Various configurations in BJTVarious configurations in BJT
Various configurations in BJT
 
Ce configuration
Ce configurationCe configuration
Ce configuration
 

Dernier

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Dernier (20)

Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 

Trnasistor chapter 5th 2013_09_13_15_57_13

  • 1. 1
  • 2. 2 The Bipolar Junction Transistor (BJT) n p n base emitter collector p n p base emitter collectornpn (Discrete) Transistor Fabrication (e.g. BC107, 108, 109) 200m n+ n-type wafer epitaxial n-type layern10m SiO2 p n emitter basebase collector
  • 3. 3 n p n base emitter collector 200mn+ n 10mp n emitter basebase collector • base is deliberately made thin, ~1 • BJT’s should be connected as labelled, otherwise gains and breakdown voltages will be drastically reduced
  • 4. 4 Energy bands for an npn transistor under zero applied bias emitter base collector n p n depletion regions Conduction Band Valence Band ElectronEnergy EF Fig. 112
  • 5. 5 Energy bands for an npn transistor under normal biasing conditions Conduction Band Valence Band ElectronEnergy Fig. 113 emitter base collector VBE VCB+ + n p n electrons
  • 6. 6 n-type emitter p-type base n-type collector base-emitter junction collector-base junction VBE VCB+ + IE IC IB electrons holes |IE| (1-)|IE|  - emitter efficiency (lightly doped) α|IE| α – common-base current gain holes ICBO electrons holes IC = αIE + ICBO BJT CARRIER FLOWSFig. 114
  • 7. 7 10 8 6 4 2 0 IE / mA 0 0.2 0.4 0.6 0.8 VBE / V VCB = 0VVCB = 25V )( 26 mAIeI kT dI dV rd   For diode: For BJT: CE e eI kT eI kT dI dV r   re – dynamic emitter resistance CE e II r 2626  For  = 1, T = 300 K and IE, IC in mA: Fig. 116: Input Characteristic – CB Configuration Increasing VCB rd – dynamic resistance
  • 8. 8 10 8 6 4 2 0 IE / mA 0 0.2 0.4 0.6 0.8 VBE / V VCB = 0VVCB = 25V IE ≈ IC b e c VBE IE IB IC VCB INPUT OUTPUT IC(VBE)TRANSFER CHARACTERISTIC Transconductance, gm, is slope of transfer characteristic, hence: e m r g 1 
  • 9. 9 LECTURE 18 BJT CHARACTERISTICS  Common base  Common emitter  Common collector  The Early effect
  • 10. 10 IC / mA VCB / V-1 0 1 2 3 4 5 6 7 8 1 0.75 0.5 0.25 IE = 1.0 mA IE = 0.75 mA IE = 0.50 mA IE = 0.25 mA IE = 0 Breakdown region ICBO Saturationregion Active region IC ≈ αIE, α ≈ 1 Cutoff region Fig. 117: Output Characteristics – CB Configuration b e c VBE IE IB IC VCB IC(VCB)
  • 11. 11 b c VBE IB IE IC VCE INPUT OUTPUT COMMON EMITTER CONFIGURATION IB(VBE) IC(VCE) e Fig. 115 (b) INPUT CHARACTERISTICS OUTPUT CHARACTERISTICS n p n b c e
  • 12. 12 10 8 6 4 2 0 IB / A 0 0.2 0.4 0.6 0.8 VBE / V VCE = 20VVCE = 5V Fig. 118: Input Characteristic – CE Configuration Increasing VCE
  • 13. 13 IC / mA VCE / V0 5 10 15 20 4 3 2 1 IB = 40 A IB = 30 A IB = 20 A IB = 10A IB = 0 Breakdown region ICEO Saturationregion Active region Cutoff region Fig. 119: Output Characteristics – CE Configuration b c VBE IB IE IC VCE e IC(VCE)
  • 14. 14 b e VCB IB IC IE VCE INPUT OUTPUT COMMON COLLECTOR CONFIGURATION IB(VCB) IE(VCE) c Fig. 115 (c) INPUT CHARACTERISTICS OUTPUT CHARACTERISTICS
  • 15. 15 IE / mA VCE / V0 5 10 15 20 4 3 2 1 IB = 40 A IB = 30 A IB = 20 A IB = 10A IB = 0 Breakdown region ICEO Saturationregion Active region Cutoff region Fig. 121: Output Characteristics – CC Configuration CC CE IE(VCE)  IC(VCE) IE ≈ IC since α ≈ 1
  • 16. 16 IB / A VCB / V0 5 10 15 20 80 60 40 20 Fig. 120: Input Characteristics – CC Configuration b e VCB IB IC IE VCE c Transistor on  VBE ≈ 0.7V 0.7V VCB ≈ VCE – 0.7V 4.3 VCE = 5V VCE = 10V VCE = 15V As VCB  VCE, VBE  0, transistor turns off IB vs. VCB for different values of VCE
  • 17. 17 THE EARLY EFFECT, OR BASE-WIDTH MODULATION baseemitter collector n p n e-b junction c-b junction depletion regions VBE VCB+ + IB
  • 18. 18 +– - + - + - + - + V VB p n Effect of bias on width of the depletion region Fig. 55 Reverse bias (p-type -ve w.r.t. n-type) Potential Distance VB+V VB -2 0 -4 -6 -8 -10 -12 -14 - + - + - + - + Depletion region widens
  • 19. 19 + – - + - + - + - + V VB p n Effect of bias on width of the depletion region Fig. 55 Forward bias (p-type +ve w.r.t. n-type) Potential Distance VB-VVB 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 Depletion region narrows - + - +
  • 20. 20 VCB=6VVCB=5VVCB=4VVCB=3VVCB=2V emitter collector n p n e-b junction VBE + + IB VCB=1V THE EARLY EFFECT, OR BASE-WIDTH MODULATION depletion regions c-b junction VCB base effective width of base
  • 21. 21 If the effective width of the base decreases: – 1. There will be less recombination in the base, so α (and hence β) will increase. β = α / (1- α) nn--type emitter ptype emitter p--type base ntype base n--type collectortype collector basebase--emitteremitter junctionjunction collectorcollector--basebase junctionjunction VVBEBE VVCBCB++ ++ IIEE IICC IIBB electronselectrons holesholes |I|IEE|| (1(1--)|I)|IEE|| (lightly doped)(lightly doped) αα|I|IEE|| holesholes IICBOCBO electronselectrons holesholes IICC == ααIIEE + I+ ICBOCBO nn--type emitter ptype emitter p--type base ntype base n--type collectortype collector basebase--emitteremitter junctionjunction collectorcollector--basebase junctionjunction VVBEBE VVCBCB++ ++ IIEE IICC IIBB electronselectrons holesholes |I|IEE|| (1(1--)|I)|IEE|| (lightly doped)(lightly doped) αα|I|IEE|| holesholes IICBOCBO electronselectrons holesholes IICC == ααIIEE + I+ ICBOCBO
  • 22. 22 If the effective width of the base decreases: – 2. The minority carrier concentration gradient (Δn/Δx) will increase: so |IE| will increase. |IE|  Δn/Δx (Δx is the basewidth) Δx |IE|Electron concentration Δn emitter base collector n p n
  • 23. 23 emitter collector n p n e-b junction VBE + + IB c-b junction VCB base If the effective width of the base decreases: – 3. The c-b depletion region may extend all the way over to the e-b junction – PUNCH-THROUGH
  • 24. 24 Energy bands for an npn transistor under normal biasing conditions Conduction Band Valence Band ElectronEnergy Fig. 113 emitter base collector VBE VCB+ + n p n electrons
  • 25. 25 Energy bands for an npn transistor under normal biasing conditions Conduction Band Valence Band ElectronEnergy Fig. 113 emitter base collector VBE VCB+ + n p n electrons
  • 26. 26 Energy bands for an npn transistor under normal biasing conditions Conduction Band Valence Band ElectronEnergy Fig. 113 emitter base collector VBE VCB+ + n p n electrons
  • 27. 27 Energy bands for an npn transistor under normal biasing conditions Conduction Band Valence Band ElectronEnergy Fig. 113 emitter base collector VBE VCB+ + n p n electrons
  • 28. 28 IC / mA VCB / V-1 0 1 2 3 4 5 6 7 8 1 0.75 0.5 0.25 IE = 1.0 mA IE = 0.75 mA IE = 0.50 mA IE = 0.25 mA IE = 0ICBO Saturationregion Active region IC ≈ αIE Cutoff region b e c VBE IE IB IC VCB IC(VCB) Early effect implies α and |IE| increases as VCB increases, hence IC (≈ αIE )increases Common-base output characteristics Breakdown region
  • 29. 29 IC / mA VCE / V0 5 10 15 20 4 3 2 1 IB = 40 A IB = 30 A IB = 20 A IB = 10A IB = 0 Breakdown region ICEO Saturationregion Active region Cutoff region b c VBE IB IE IC VCE e As VCE increases, VCB increases. Early effect implies α, and hence β, increases as VCB increases. IC ≈ βIB, hence IC increases Common-emitter output characteristics IC ≈ βIB
  • 30. 30 10 8 6 4 2 0 IE / mA 0 0.2 0.4 0.6 0.8 VBE / V VCB = 0VVCB = 25V Increasing VCB Common-base input characteristics Early effect implies |IE| increases as VCB increases.
  • 31. 31 10 8 6 4 2 0 IB / A 0 0.2 0.4 0.6 0.8 VBE / V VCE = 20VVCE = 5V Increasing VCE Common-emitter input characteristics Early effect implies less recombination in the base as VCB/VCE increases hence IB decreases
  • 32. 32  IC = ICBO for IE = 0  IC ≈ IE in flat regions  IC  0 as VCB goes negative  IC increases at large values of VCB due to breakdown at the reverse-biased c-b junction IICC / mA/ mA VVCBCB / V/ V--1 0 1 2 3 4 51 0 1 2 3 4 5 6 7 86 7 8 11 0.750.75 0.50.5 0.250.25 IIEE = 1.0 mA= 1.0 mA IIEE = 0.75 mA= 0.75 mA IIEE = 0.50 mA= 0.50 mA IIEE = 0.25 mA= 0.25 mA IIEE = 0= 0 BreakdownBreakdown regionregion IICBOCBO SaturationregionSaturationregion Active regionActive region IICC ≈≈ ααIIEE,, αα ≈≈ 11 Cutoff regionCutoff region IICC / mA/ mA VVCBCB / V/ V--1 0 1 2 3 4 51 0 1 2 3 4 5 6 7 86 7 8 11 0.750.75 0.50.5 0.250.25 IIEE = 1.0 mA= 1.0 mA IIEE = 0.75 mA= 0.75 mA IIEE = 0.50 mA= 0.50 mA IIEE = 0.25 mA= 0.25 mA IIEE = 0= 0 BreakdownBreakdown regionregion IICBOCBO SaturationregionSaturationregion Active regionActive region IICC ≈≈ ααIIEE,, αα ≈≈ 11 Cutoff regionCutoff region • CB output characteristics are plots of IC vs. VCB: Summary
  • 33. 33  Common-emitter configuration • Input characteristics (IB vs. VBE) resemble that for a forward-biased diode but depend on output voltage VCE due to Early effect 1010 88 66 44 22 00 IIBB // AA 0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8 VVBEBE / V/ V VVCECE = 20V= 20VVVCECE = 5V= 5V Increasing VIncreasing VCECE 1010 88 66 44 22 00 IIBB // AA 0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8 VVBEBE / V/ V VVCECE = 20V= 20VVVCECE = 5V= 5V Increasing VIncreasing VCECE
  • 34. 34 • Output characteristics are plots of IC vs. VCE for different values of the input current IB:  IC = ICEO for IB = 0  IC >> IB in flat regions due to current amplification  IC increases at large values of VCE due to breakdown at the reverse-biased c-b junction IICC / mA/ mA VVCECE / V/ V0 5 100 5 10 15 2015 20 44 33 22 11 IIBB = 40= 40 AA IIBB = 30= 30 AA IIBB = 20= 20 AA IIBB = 10= 10AA IIBB = 0= 0 BreakdownBreakdown regionregion IICEOCEO SaturationregionSaturationregion Active regionActive region Cutoff regionCutoff region IICC / mA/ mA VVCECE / V/ V0 5 100 5 10 15 2015 20 44 33 22 11 IIBB = 40= 40 AA IIBB = 30= 30 AA IIBB = 20= 20 AA IIBB = 10= 10AA IIBB = 0= 0 BreakdownBreakdown regionregion IICEOCEO SaturationregionSaturationregion Active regionActive region Cutoff regionCutoff region
  • 35. 35  Common-collector configuration • Input characteristics (IB vs. VCB) VCB = VCE – VBE hence: If transistor is “on” VCB is fixed at VCE – 0.7V As VCB  VCE device turns off, IB  0 IIBB // AA VVCBCB / V/ V0 5 100 5 10 15 2015 20 8080 6060 4040 2020 4.34.3 VVCECE = 5V= 5V VVCECE = 10V= 10V VVCECE = 15V= 15V IIBB // AA VVCBCB / V/ V0 5 100 5 10 15 2015 20 8080 6060 4040 2020 4.34.3 VVCECE = 5V= 5V VVCECE = 10V= 10V VVCECE = 15V= 15V
  • 36. 36 • Output characteristics are plots of IE vs. VCE for different values of IB Since IE ≈ IC, CC output characteristics are essentially the same as those for CE VVCBCB=6V=6V emitter coemitter collectorllector n p nn p n ee--bb junctionjunction VVBEBE ++ ++ IIBB depletion regionsdepletion regions cc--bb junctionjunction VVCBCB basebase effectiveeffective width of basewidth of base VVCBCB=6V=6V emitter coemitter collectorllector n p nn p n ee--bb junctionjunction VVBEBE ++ ++ IIBB depletion regionsdepletion regions cc--bb junctionjunction VVCBCB basebase effectiveeffective width of basewidth of base  THE EARLY EFFECT, OR BASE-WIDTH MODULATION