SlideShare une entreprise Scribd logo
1  sur  105
Télécharger pour lire hors ligne
Algoritmos Aproximativos
Fernando Simeone
Mestrado em Ciência da Computação
Universidade Federal de Lavras
!
Projeto e Análise de Algoritmos (2014/2)
Tópicos
• Introdução
• Conceitos
• O problema de cobertura de vértices
• O problema do caixeiro viajante
• O problema da soma de subconjuntos
• Considerações finais
• Referências
Introdução
Introdução
Introdução
• Problemas com alto custo computacional;
Introdução
• Problemas com alto custo computacional;
• Problemas da classe NP-difícil;
Introdução
• Problemas com alto custo computacional;
• Problemas da classe NP-difícil;
• Problemas de grande relevância prática.
Introdução
Introdução
• Requisitos dos problemas da classe NP-difícil:
Introdução
• Requisitos dos problemas da classe NP-difícil:
1. Encontrar a solução ótima
Introdução
• Requisitos dos problemas da classe NP-difícil:
1. Encontrar a solução ótima
2. Em tempo polinomial
Introdução
• Requisitos dos problemas da classe NP-difícil:
1. Encontrar a solução ótima
2. Em tempo polinomial
3. Para todas as instâncias
Conceitos
Problemas de Otimização
Problemas de
MAXIMIZAÇÃO
Problemas de
MINIMIZAÇÃOX
Fator de aproximação
ρ(n)C C*
Algoritmo
ρ(n)-aproximativo
Problemas de Minimização
Problemas de Minimização
0 < C* ≤ C
Problemas de Minimização
0 < C* ≤ C
ρ(n) ≥ C
C*
Problemas de Maximização
Problemas de Maximização
0 < C ≤ C*
Problemas de Maximização
0 < C ≤ C*
ρ(n) ≥ C*
C
Problemas de Otimização
ρ(n) ≥ max C* , C
C C*
Esquema Aproximativo
𝟄 > 0
algoritmo (1 + 𝟄)-aproximativo
O problema de
cobertura de vértices
O problema de cobertura de
vértices
b dc
e f
a
g h
O problema de cobertura de
vértices
b dc
e f
a
g h
Algoritmo Aproximativo
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes em u ou v	

7	

 retorna C
O(V + E)
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Algoritmo Aproximativo
b dc
e f
a
g h
C = {}	

!
E' = {(a,b), (a,e), (b,c), (b,g), (c,d), 	

(d,g), (d,h), (e,f), (f,g)}
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Algoritmo Aproximativo
b dc
e f
a
g h
C = {a, b}	

!
E' = {(c,d), (d,g), (d,h), (e,f), (f,g)}
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Algoritmo Aproximativo
b dc
e f
a
g h
C = {a, b, c, d}	

!
E' = {(e,f), (f,g)}
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Algoritmo Aproximativo
b dc
e f
a
g h
C = {a, b, c, d, e, f}	

!
E' = {}
Algoritmo Aproximativo
b dc
e f
a
g h
Solução Encontrada
b dc
e f
a
g h
C = {b, d, e, f}
Solução Ótima
C = {a, b, c, d, e, f}
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Fator de Aproximação
b dc
e f
a
g h
A = { (a, b), (c, d), (e, f) }
A
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Fator de Aproximação
b dc
e f
a
g h
A = { (a, b), (c, d), (e, f) }
A
|A| ≤ |C*|
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Fator de Aproximação
b dc
e f
a
g h
A = { (a, b), (c, d), (e, f) }
A
|A| ≤ |C*|
|C| = 2|A|
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Fator de Aproximação
b dc
e f
a
g h
A = { (a, b), (c, d), (e, f) }
A
|A| ≤ |C*|
|C| = 2|A|
|C| ≤ 2|C*|
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Fator de Aproximação
b dc
e f
a
g h
A = { (a, b), (c, d), (e, f) }
A
|A| ≤ |C*|
|C| = 2|A|
|C| ≤ 2|C*|
ρ(n) = 2
COBERTURA-VÉRTICES-APROXIMADO (G)	

1	

 C = ∅	

2	

 E' = G.E	

3	

 enquanto E' ≠ ∅	

4	

 escolha uma aresta (u, v) ∈ E'	

5	

 C = C ∪ {u, v}	

6	

 remover de E' todas as arestas incidentes
	

 em u ou v	

7	

 retorna C
Fator de Aproximação
b dc
e f
a
g h
A = { (a, b), (c, d), (e, f) }
A
|A| ≤ |C*|
|C| = 2|A|
|C| ≤ 2|C*|
ρ(n) = 2
Algoritmo 2-aproximativo
de tempo polinomial
O problema do
caixeiro viajante
O problema do caixeiro
viajante
b
d
c
e f
a g
12
O problema do caixeiro
viajante
b
d
c
e f
a g
Inequalidade Triangular
b
c
a
dist(a, b) + dist(b, c) ≥ dist(a, c)
Algoritmo Aproximativo
𝜣(V2)
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua ordem de 	

	

 visitação em um percurso de pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Algoritmo Aproximativo
b
d
c
e f
a g
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Algoritmo Aproximativo
b
d
c
e f
a g
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Algoritmo Aproximativo
b
d
c
e f
a g
1
5
3
4
6
7
2
H = {a, b, d, e, f, g, c, a}
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Algoritmo Aproximativo
H = {a, b, d, e, f, g, c, a}
b
d
c
e f
a g
Algoritmo Aproximativo
b
d
c
e f
a g
b
d
c
e f
a g
b
d
c
e f
a g
b
d
c
e f
a g
1
5
3
4
6
7
2
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
Algoritmo Aproximativo
b
d
c
e f
a g
W
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
c(W) = 2c(T)
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
c(W) = 2c(T)
c(W) ≤ 2c(H*)
Algoritmo Aproximativo
b
d
c
e f
a g
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
H = {a, b, d, e, f, g, c, a}
Algoritmo Aproximativo
b
d
c
e f
a g
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
H = {a, b, d, e, f, g, c, a}
Algoritmo Aproximativo
b
d
c
e f
a g
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
H = {a, b, d, e, f, g, c, a}
Algoritmo Aproximativo
b
d
c
e f
a g
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
H = {a, b, d, e, f, g, c, a}
Algoritmo Aproximativo
b
d
c
e f
a g
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
H = {a, b, d, e, f, g, c, a}
Algoritmo Aproximativo
b
d
c
e f
a g
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
H = {a, b, d, e, f, g, c, a}
Algoritmo Aproximativo
b
d
c
e f
a g
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
H = {a, b, d, e, f, g, c, a}
Algoritmo Aproximativo
b
d
c
e f
a g
W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
H = {a, b, d, e, f, g, c, a}
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
c(W) = 2c(T)
c(W) ≤ 2c(H*)
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
c(W) = 2c(T)
c(W) ≤ 2c(H*)
c(H) ≤ c(W)
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
c(W) = 2c(T)
c(W) ≤ 2c(H*)
c(H) ≤ c(W)
c(H) ≤ 2c(H*)
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
c(W) = 2c(T)
c(W) ≤ 2c(H*)
c(H) ≤ c(W)
c(H) ≤ 2c(H*)
ρ(n) = 2
CAIXEIRO-VIAJANTE-APROXIMADO (G, c)	

1	

 seleciona vértice r ∈ G.E para ser a raiz	

2	

 T = PRIM(G, c, r)	

3	

 H = vértices ordenados de acordo com sua
	

 	

 ordem de visitação em um percurso de
	

 	

 pré-ordem em T	

4	

 retorna ciclo hamiltoniano H
Fator de Aproximação
c(T) ≤ c(H*)
c(W) = 2c(T)
c(W) ≤ 2c(H*)
c(H) ≤ c(W)
c(H) ≤ 2c(H*)
ρ(n) = 2
Algoritmo 2-aproximativo
de tempo polinomial
O problema da soma
de subconjuntos
O problema da soma de
subconjuntos
S = {1, 3, 5, 15, 18, 26}	

!
t = 41
Algoritmo Exato
S = {1, 3, 5, 15, 18, 26} t = 41
Algoritmo Exato
S = {1, 3, 5, 15, 18, 26}
L0
= {0}
t = 41
Algoritmo Exato
S = {1, 3, 5, 15, 18, 26}
L0
= {0}
L1
= L0
∪ L0
+ 1 = {0} ∪ {1} = {0,1}
t = 41
Algoritmo Exato
S = {1, 3, 5, 15, 18, 26}
L0
= {0}
L1
= L0
∪ L0
+ 1 = {0} ∪ {1} = {0,1}
L2
= L1
∪ L1
+ 3 = {0,1} ∪ {3, 4} = {0, 1, 3, 4}
t = 41
Algoritmo Exato
S = {1, 3, 5, 15, 18, 26}
L0
= {0}
L1
= L0
∪ L0
+ 1 = {0} ∪ {1} = {0,1}
L2
= L1
∪ L1
+ 3 = {0,1} ∪ {3, 4} = {0, 1, 3, 4}
Li
= Li-1
∪ Li-1
+ xi
…
t = 41
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos maiores que t	

6	

 retorna maior elemento em Ln
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
L1 = {0, 1}	

 	

 	

 	

 	

 	

 xi = 1
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
L1 = {0, 1}	

 	

 	

 	

 	

 	

 xi = 1
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
L1 = {0, 1}	

 	

 	

 	

 	

 	

 xi = 1	

L2 = {0, 1, 3, 4}	

 	

 	

 	

 	

 xi = 3
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
L1 = {0, 1}	

 	

 	

 	

 	

 	

 xi = 1	

L2 = {0, 1, 3, 4}	

 	

 	

 	

 	

 xi = 3
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
L1 = {0, 1}	

 	

 	

 	

 	

 	

 xi = 1	

L2 = {0, 1, 3, 4}	

 	

 	

 	

 	

 xi = 3	

L3 = {0, 1, 3, 4, 6, 7, 9, 10}	

	

 xi = 6
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
L1 = {0, 1}	

 	

 	

 	

 	

 	

 xi = 1	

L2 = {0, 1, 3, 4}	

 	

 	

 	

 	

 xi = 3	

L3 = {0, 1, 3, 4, 6, 7, 9, 10}	

	

 xi = 6
Algoritmo Exato
SOMA-SUBCONJUNTOS (S, t)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 remover de Li todos os elementos
	

 maiores que t	

6	

 retorna maior elemento em Ln
S = {1, 3, 6}, t = 5
n = 3
L0 = {0}	

 	

 	

 	

 	

 estado inicial
L1 = {0, 1}	

 	

 	

 	

 	

 	

 xi = 1	

L2 = {0, 1, 3, 4}	

 	

 	

 	

 	

 xi = 3	

L3 = {0, 1, 3, 4, 6, 7, 9, 10}	

	

 xi = 6	

Tamanho de Li pode chegar a 2i
Algoritmo Aproximativo
Estratégia: desconsiderar alguns elementos de Li
Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64}
Algoritmo Aproximativo
Estratégia: desconsiderar alguns elementos de Li
Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64}
Algoritmo Aproximativo
Estratégia: desconsiderar alguns elementos de Li
Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64}
TRIM(Li, δ) = {1, 5, 28, 45, 50, 55, 58, 63}
Algoritmo Aproximativo
Estratégia: desconsiderar alguns elementos de Li
Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64}
TRIM(Li, δ) = {1, 5, 28, 45, 50, 55, 58, 63}
y ≤ z ≤ y
1 + δ
Algoritmo Aproximativo
Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64}
y ≤ z ≤ y
1 + δ
Algoritmo Aproximativo
Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64}
y ≤ z ≤ y
1 + δ
z y
Se y ≤ z(1 + δ), remover y
Esquema Aproximativo
TRIM (L, δ)	

1	

 m = |L|	

2	

 L'= ⟨yi⟩	

3	

 z = yi	

4	

 para i = 2 até m	

5	

 se yi > z(1 + δ)	

6	

 adicionar yi a L’	

7	

 z = yi	

6	

 retorna L'
Esquema Aproximativo
SOMA-SUBCONJUNTOS-APROXIMADO (S, t, ϵ)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 Li = TRIM(Li, ϵ/2n)	

6	

 remover de Li todos os elementos maiores que t	

7	

 retorna maior elemento em Ln
Esquema Aproximativo
SOMA-SUBCONJUNTOS-APROXIMADO (S, t, ϵ)	

1	

 n = |S|	

2	

 L0 = ⟨0⟩	

3	

 para i = 1 até n	

4	

 Li = MERGE-LIST(Li-1, Li-1 + xi)	

5	

 Li = TRIM(Li, ϵ/2n)	

6	

 remover de Li todos os elementos maiores que t	

7	

 retorna maior elemento em Ln
Se n = 4 e ϵ = 0.4 então δ = ϵ / 8 = 0,05
Considerações Finais
Considerações Finais
Considerações Finais
• Algoritmos aproximativos são aplicáveis para problemas
de otimização da classe NP-difícil;
Considerações Finais
• Algoritmos aproximativos são aplicáveis para problemas
de otimização da classe NP-difícil;
• Conhecer o fator de aproximação possui importância
prática;
Considerações Finais
• Algoritmos aproximativos são aplicáveis para problemas
de otimização da classe NP-difícil;
• Conhecer o fator de aproximação possui importância
prática;
• Provar o fator aproximativo pode ser uma tarefa
complexa;
Considerações Finais
• Algoritmos aproximativos são aplicáveis para problemas
de otimização da classe NP-difícil;
• Conhecer o fator de aproximação possui importância
prática;
• Provar o fator aproximativo pode ser uma tarefa
complexa;
• Desenvolvimento de heurísticas.
Referências
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition.
!
Vazirani, V. V. (2001). Approximation algorithms. springer.
!
Williamson, D. P. and Shmoys, D. B. (2011). The design of
approximation algorithms. Cambridge University Press.
Obrigado
Dúvidas?

Contenu connexe

Tendances

Análise de Algoritmos - Método Guloso
Análise de Algoritmos - Método GulosoAnálise de Algoritmos - Método Guloso
Análise de Algoritmos - Método GulosoDelacyr Ferreira
 
Aula 18: Separação da equação de Schrödinger em coordenadas cartesianas. 2 Pa...
Aula 18: Separação da equação de Schrödinger em coordenadas cartesianas. 2 Pa...Aula 18: Separação da equação de Schrödinger em coordenadas cartesianas. 2 Pa...
Aula 18: Separação da equação de Schrödinger em coordenadas cartesianas. 2 Pa...Adriano Silva
 
Princípios de Comunicação - UFPI
Princípios de Comunicação - UFPI Princípios de Comunicação - UFPI
Princípios de Comunicação - UFPI Bruno Mesquita
 
Aulas 11-guloso Algoritmos
Aulas 11-guloso AlgoritmosAulas 11-guloso Algoritmos
Aulas 11-guloso AlgoritmosKevin Takano
 
2-Approximation Vertex Cover
2-Approximation Vertex Cover2-Approximation Vertex Cover
2-Approximation Vertex CoverKowshik Roy
 
Equivalencia de automatas finitos determinista
Equivalencia de automatas finitos deterministaEquivalencia de automatas finitos determinista
Equivalencia de automatas finitos deterministaAtahualpa Acosta
 
Bellman ford algorithm
Bellman ford algorithmBellman ford algorithm
Bellman ford algorithmRuchika Sinha
 
Análise de Algoritmos - Indução Finita
Análise de Algoritmos - Indução FinitaAnálise de Algoritmos - Indução Finita
Análise de Algoritmos - Indução FinitaDelacyr Ferreira
 
Display 7 seguimentos.
Display 7 seguimentos.Display 7 seguimentos.
Display 7 seguimentos.Tamy Okipney
 
Exercicios de Algoritimos
 Exercicios de Algoritimos Exercicios de Algoritimos
Exercicios de Algoritimossandra avenia
 
Característica de uma Matriz
Característica de uma MatrizCaracterística de uma Matriz
Característica de uma Matriznumerosnamente
 
Análise de Algoritmos - Análise Assintótica
Análise de Algoritmos - Análise AssintóticaAnálise de Algoritmos - Análise Assintótica
Análise de Algoritmos - Análise AssintóticaDelacyr Ferreira
 
Bellman Ford's Algorithm
Bellman Ford's AlgorithmBellman Ford's Algorithm
Bellman Ford's AlgorithmTanmay Baranwal
 

Tendances (20)

Análise de Algoritmos - Método Guloso
Análise de Algoritmos - Método GulosoAnálise de Algoritmos - Método Guloso
Análise de Algoritmos - Método Guloso
 
Algoritmo Guloso
Algoritmo GulosoAlgoritmo Guloso
Algoritmo Guloso
 
Aula 18: Separação da equação de Schrödinger em coordenadas cartesianas. 2 Pa...
Aula 18: Separação da equação de Schrödinger em coordenadas cartesianas. 2 Pa...Aula 18: Separação da equação de Schrödinger em coordenadas cartesianas. 2 Pa...
Aula 18: Separação da equação de Schrödinger em coordenadas cartesianas. 2 Pa...
 
Princípios de Comunicação - UFPI
Princípios de Comunicação - UFPI Princípios de Comunicação - UFPI
Princípios de Comunicação - UFPI
 
Aulas 11-guloso Algoritmos
Aulas 11-guloso AlgoritmosAulas 11-guloso Algoritmos
Aulas 11-guloso Algoritmos
 
2-Approximation Vertex Cover
2-Approximation Vertex Cover2-Approximation Vertex Cover
2-Approximation Vertex Cover
 
Np complete
Np completeNp complete
Np complete
 
Equivalencia de automatas finitos determinista
Equivalencia de automatas finitos deterministaEquivalencia de automatas finitos determinista
Equivalencia de automatas finitos determinista
 
Bellman ford algorithm
Bellman ford algorithmBellman ford algorithm
Bellman ford algorithm
 
Análise de Algoritmos - Indução Finita
Análise de Algoritmos - Indução FinitaAnálise de Algoritmos - Indução Finita
Análise de Algoritmos - Indução Finita
 
Push down automata
Push down automataPush down automata
Push down automata
 
Display 7 seguimentos.
Display 7 seguimentos.Display 7 seguimentos.
Display 7 seguimentos.
 
Exercicios de Algoritimos
 Exercicios de Algoritimos Exercicios de Algoritimos
Exercicios de Algoritimos
 
Característica de uma Matriz
Característica de uma MatrizCaracterística de uma Matriz
Característica de uma Matriz
 
Análise de Algoritmos - Análise Assintótica
Análise de Algoritmos - Análise AssintóticaAnálise de Algoritmos - Análise Assintótica
Análise de Algoritmos - Análise Assintótica
 
Minimum spanning tree
Minimum spanning treeMinimum spanning tree
Minimum spanning tree
 
Bellman Ford's Algorithm
Bellman Ford's AlgorithmBellman Ford's Algorithm
Bellman Ford's Algorithm
 
Funções
FunçõesFunções
Funções
 
Minimum spanning Tree
Minimum spanning TreeMinimum spanning Tree
Minimum spanning Tree
 
C++ Funções
 C++ Funções C++ Funções
C++ Funções
 

Similaire à Algoritmos Aproximativos

Ita2006 3dia
Ita2006 3diaIta2006 3dia
Ita2006 3diacavip
 
Ita2009 3dia
Ita2009 3diaIta2009 3dia
Ita2009 3diacavip
 
Ita2010 3dia
Ita2010 3diaIta2010 3dia
Ita2010 3diacavip
 
Base trigonometria 001
Base trigonometria  001Base trigonometria  001
Base trigonometria 001trigono_metria
 
Treinamento para Competições de Programacão - Single-Source Shortest Paths: D...
Treinamento para Competições de Programacão - Single-Source Shortest Paths: D...Treinamento para Competições de Programacão - Single-Source Shortest Paths: D...
Treinamento para Competições de Programacão - Single-Source Shortest Paths: D...Murilo Adriano Vasconcelos
 
Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Arthur Lima
 
Apreçando Opções Utilizando a Função Característica
Apreçando Opções Utilizando a Função CaracterísticaApreçando Opções Utilizando a Função Característica
Apreçando Opções Utilizando a Função CaracterísticaWilson Freitas
 
Ita2008 3dia
Ita2008 3diaIta2008 3dia
Ita2008 3diacavip
 
Campos escalares e vetoriais - Cálculo 2
Campos escalares e vetoriais - Cálculo 2Campos escalares e vetoriais - Cálculo 2
Campos escalares e vetoriais - Cálculo 2Sandra Gaspar Martins
 
Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogiotrigono_metria
 
todas-as-formulas-de-matematica
 todas-as-formulas-de-matematica todas-as-formulas-de-matematica
todas-as-formulas-de-matematicaHudson Sousa
 

Similaire à Algoritmos Aproximativos (20)

Ita2006 3dia
Ita2006 3diaIta2006 3dia
Ita2006 3dia
 
Ita2009 3dia
Ita2009 3diaIta2009 3dia
Ita2009 3dia
 
Ita2010 3dia
Ita2010 3diaIta2010 3dia
Ita2010 3dia
 
Base trigonometria 001
Base trigonometria  001Base trigonometria  001
Base trigonometria 001
 
Treinamento para Competições de Programacão - Single-Source Shortest Paths: D...
Treinamento para Competições de Programacão - Single-Source Shortest Paths: D...Treinamento para Competições de Programacão - Single-Source Shortest Paths: D...
Treinamento para Competições de Programacão - Single-Source Shortest Paths: D...
 
Cálculo vetorial
Cálculo vetorialCálculo vetorial
Cálculo vetorial
 
Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018
 
Apreçando Opções Utilizando a Função Característica
Apreçando Opções Utilizando a Função CaracterísticaApreçando Opções Utilizando a Função Característica
Apreçando Opções Utilizando a Função Característica
 
Ita2008 3dia
Ita2008 3diaIta2008 3dia
Ita2008 3dia
 
Lista 4
Lista 4Lista 4
Lista 4
 
03 calculo diferencial-parte2
03 calculo diferencial-parte203 calculo diferencial-parte2
03 calculo diferencial-parte2
 
ITA 97 Matematica
ITA 97 MatematicaITA 97 Matematica
ITA 97 Matematica
 
Formulario 12º ano
Formulario 12º anoFormulario 12º ano
Formulario 12º ano
 
Campos escalares e vetoriais - Cálculo 2
Campos escalares e vetoriais - Cálculo 2Campos escalares e vetoriais - Cálculo 2
Campos escalares e vetoriais - Cálculo 2
 
Efoom 2019
Efoom 2019Efoom 2019
Efoom 2019
 
Primitivas
PrimitivasPrimitivas
Primitivas
 
Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogio
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
todas-as-formulas-de-matematica
 todas-as-formulas-de-matematica todas-as-formulas-de-matematica
todas-as-formulas-de-matematica
 
fisica exercicios
fisica exerciciosfisica exercicios
fisica exercicios
 

Algoritmos Aproximativos

  • 1. Algoritmos Aproximativos Fernando Simeone Mestrado em Ciência da Computação Universidade Federal de Lavras ! Projeto e Análise de Algoritmos (2014/2)
  • 2. Tópicos • Introdução • Conceitos • O problema de cobertura de vértices • O problema do caixeiro viajante • O problema da soma de subconjuntos • Considerações finais • Referências
  • 5. Introdução • Problemas com alto custo computacional;
  • 6. Introdução • Problemas com alto custo computacional; • Problemas da classe NP-difícil;
  • 7. Introdução • Problemas com alto custo computacional; • Problemas da classe NP-difícil; • Problemas de grande relevância prática.
  • 9. Introdução • Requisitos dos problemas da classe NP-difícil:
  • 10. Introdução • Requisitos dos problemas da classe NP-difícil: 1. Encontrar a solução ótima
  • 11. Introdução • Requisitos dos problemas da classe NP-difícil: 1. Encontrar a solução ótima 2. Em tempo polinomial
  • 12. Introdução • Requisitos dos problemas da classe NP-difícil: 1. Encontrar a solução ótima 2. Em tempo polinomial 3. Para todas as instâncias
  • 14. Problemas de Otimização Problemas de MAXIMIZAÇÃO Problemas de MINIMIZAÇÃOX
  • 15. Fator de aproximação ρ(n)C C* Algoritmo ρ(n)-aproximativo
  • 18. Problemas de Minimização 0 < C* ≤ C ρ(n) ≥ C C*
  • 21. Problemas de Maximização 0 < C ≤ C* ρ(n) ≥ C* C
  • 22. Problemas de Otimização ρ(n) ≥ max C* , C C C*
  • 23. Esquema Aproximativo 𝟄 > 0 algoritmo (1 + 𝟄)-aproximativo
  • 24. O problema de cobertura de vértices
  • 25. O problema de cobertura de vértices b dc e f a g h
  • 26. O problema de cobertura de vértices b dc e f a g h
  • 27. Algoritmo Aproximativo COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C O(V + E)
  • 28. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Algoritmo Aproximativo b dc e f a g h C = {} ! E' = {(a,b), (a,e), (b,c), (b,g), (c,d), (d,g), (d,h), (e,f), (f,g)}
  • 29. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Algoritmo Aproximativo b dc e f a g h C = {a, b} ! E' = {(c,d), (d,g), (d,h), (e,f), (f,g)}
  • 30. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Algoritmo Aproximativo b dc e f a g h C = {a, b, c, d} ! E' = {(e,f), (f,g)}
  • 31. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Algoritmo Aproximativo b dc e f a g h C = {a, b, c, d, e, f} ! E' = {}
  • 32. Algoritmo Aproximativo b dc e f a g h Solução Encontrada b dc e f a g h C = {b, d, e, f} Solução Ótima C = {a, b, c, d, e, f}
  • 33. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Fator de Aproximação b dc e f a g h A = { (a, b), (c, d), (e, f) } A
  • 34. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Fator de Aproximação b dc e f a g h A = { (a, b), (c, d), (e, f) } A |A| ≤ |C*|
  • 35. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Fator de Aproximação b dc e f a g h A = { (a, b), (c, d), (e, f) } A |A| ≤ |C*| |C| = 2|A|
  • 36. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Fator de Aproximação b dc e f a g h A = { (a, b), (c, d), (e, f) } A |A| ≤ |C*| |C| = 2|A| |C| ≤ 2|C*|
  • 37. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Fator de Aproximação b dc e f a g h A = { (a, b), (c, d), (e, f) } A |A| ≤ |C*| |C| = 2|A| |C| ≤ 2|C*| ρ(n) = 2
  • 38. COBERTURA-VÉRTICES-APROXIMADO (G) 1 C = ∅ 2 E' = G.E 3 enquanto E' ≠ ∅ 4 escolha uma aresta (u, v) ∈ E' 5 C = C ∪ {u, v} 6 remover de E' todas as arestas incidentes em u ou v 7 retorna C Fator de Aproximação b dc e f a g h A = { (a, b), (c, d), (e, f) } A |A| ≤ |C*| |C| = 2|A| |C| ≤ 2|C*| ρ(n) = 2 Algoritmo 2-aproximativo de tempo polinomial
  • 40. O problema do caixeiro viajante b d c e f a g 12
  • 41. O problema do caixeiro viajante b d c e f a g
  • 42. Inequalidade Triangular b c a dist(a, b) + dist(b, c) ≥ dist(a, c)
  • 43. Algoritmo Aproximativo 𝜣(V2) CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H
  • 44. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Algoritmo Aproximativo b d c e f a g
  • 45. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Algoritmo Aproximativo b d c e f a g
  • 46. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Algoritmo Aproximativo b d c e f a g 1 5 3 4 6 7 2 H = {a, b, d, e, f, g, c, a}
  • 47. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Algoritmo Aproximativo H = {a, b, d, e, f, g, c, a} b d c e f a g
  • 48. Algoritmo Aproximativo b d c e f a g b d c e f a g b d c e f a g b d c e f a g 1 5 3 4 6 7 2
  • 49. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação
  • 50. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*)
  • 51. Algoritmo Aproximativo b d c e f a g W W = {a, b, d, e, f, g, f, e, d, c, d, b, a}
  • 52. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*)
  • 53. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*) c(W) = 2c(T)
  • 54. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*) c(W) = 2c(T) c(W) ≤ 2c(H*)
  • 55. Algoritmo Aproximativo b d c e f a g W = {a, b, d, e, f, g, f, e, d, c, d, b, a} H = {a, b, d, e, f, g, c, a}
  • 56. Algoritmo Aproximativo b d c e f a g W = {a, b, d, e, f, g, f, e, d, c, d, b, a} H = {a, b, d, e, f, g, c, a}
  • 57. Algoritmo Aproximativo b d c e f a g W = {a, b, d, e, f, g, f, e, d, c, d, b, a} H = {a, b, d, e, f, g, c, a}
  • 58. Algoritmo Aproximativo b d c e f a g W = {a, b, d, e, f, g, f, e, d, c, d, b, a} H = {a, b, d, e, f, g, c, a}
  • 59. Algoritmo Aproximativo b d c e f a g W = {a, b, d, e, f, g, f, e, d, c, d, b, a} H = {a, b, d, e, f, g, c, a}
  • 60. Algoritmo Aproximativo b d c e f a g W = {a, b, d, e, f, g, f, e, d, c, d, b, a} H = {a, b, d, e, f, g, c, a}
  • 61. Algoritmo Aproximativo b d c e f a g W = {a, b, d, e, f, g, f, e, d, c, d, b, a} H = {a, b, d, e, f, g, c, a}
  • 62. Algoritmo Aproximativo b d c e f a g W = {a, b, d, e, f, g, f, e, d, c, d, b, a} H = {a, b, d, e, f, g, c, a}
  • 63. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*) c(W) = 2c(T) c(W) ≤ 2c(H*)
  • 64. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*) c(W) = 2c(T) c(W) ≤ 2c(H*) c(H) ≤ c(W)
  • 65. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*) c(W) = 2c(T) c(W) ≤ 2c(H*) c(H) ≤ c(W) c(H) ≤ 2c(H*)
  • 66. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*) c(W) = 2c(T) c(W) ≤ 2c(H*) c(H) ≤ c(W) c(H) ≤ 2c(H*) ρ(n) = 2
  • 67. CAIXEIRO-VIAJANTE-APROXIMADO (G, c) 1 seleciona vértice r ∈ G.E para ser a raiz 2 T = PRIM(G, c, r) 3 H = vértices ordenados de acordo com sua ordem de visitação em um percurso de pré-ordem em T 4 retorna ciclo hamiltoniano H Fator de Aproximação c(T) ≤ c(H*) c(W) = 2c(T) c(W) ≤ 2c(H*) c(H) ≤ c(W) c(H) ≤ 2c(H*) ρ(n) = 2 Algoritmo 2-aproximativo de tempo polinomial
  • 68. O problema da soma de subconjuntos
  • 69. O problema da soma de subconjuntos S = {1, 3, 5, 15, 18, 26} ! t = 41
  • 70. Algoritmo Exato S = {1, 3, 5, 15, 18, 26} t = 41
  • 71. Algoritmo Exato S = {1, 3, 5, 15, 18, 26} L0 = {0} t = 41
  • 72. Algoritmo Exato S = {1, 3, 5, 15, 18, 26} L0 = {0} L1 = L0 ∪ L0 + 1 = {0} ∪ {1} = {0,1} t = 41
  • 73. Algoritmo Exato S = {1, 3, 5, 15, 18, 26} L0 = {0} L1 = L0 ∪ L0 + 1 = {0} ∪ {1} = {0,1} L2 = L1 ∪ L1 + 3 = {0,1} ∪ {3, 4} = {0, 1, 3, 4} t = 41
  • 74. Algoritmo Exato S = {1, 3, 5, 15, 18, 26} L0 = {0} L1 = L0 ∪ L0 + 1 = {0} ∪ {1} = {0,1} L2 = L1 ∪ L1 + 3 = {0,1} ∪ {3, 4} = {0, 1, 3, 4} Li = Li-1 ∪ Li-1 + xi … t = 41
  • 75. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln
  • 76. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln
  • 77. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5
  • 78. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3
  • 79. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3
  • 80. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial
  • 81. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial
  • 82. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial L1 = {0, 1} xi = 1
  • 83. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial L1 = {0, 1} xi = 1
  • 84. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial L1 = {0, 1} xi = 1 L2 = {0, 1, 3, 4} xi = 3
  • 85. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial L1 = {0, 1} xi = 1 L2 = {0, 1, 3, 4} xi = 3
  • 86. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial L1 = {0, 1} xi = 1 L2 = {0, 1, 3, 4} xi = 3 L3 = {0, 1, 3, 4, 6, 7, 9, 10} xi = 6
  • 87. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial L1 = {0, 1} xi = 1 L2 = {0, 1, 3, 4} xi = 3 L3 = {0, 1, 3, 4, 6, 7, 9, 10} xi = 6
  • 88. Algoritmo Exato SOMA-SUBCONJUNTOS (S, t) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 remover de Li todos os elementos maiores que t 6 retorna maior elemento em Ln S = {1, 3, 6}, t = 5 n = 3 L0 = {0} estado inicial L1 = {0, 1} xi = 1 L2 = {0, 1, 3, 4} xi = 3 L3 = {0, 1, 3, 4, 6, 7, 9, 10} xi = 6 Tamanho de Li pode chegar a 2i
  • 89. Algoritmo Aproximativo Estratégia: desconsiderar alguns elementos de Li Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64}
  • 90. Algoritmo Aproximativo Estratégia: desconsiderar alguns elementos de Li Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64}
  • 91. Algoritmo Aproximativo Estratégia: desconsiderar alguns elementos de Li Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64} TRIM(Li, δ) = {1, 5, 28, 45, 50, 55, 58, 63}
  • 92. Algoritmo Aproximativo Estratégia: desconsiderar alguns elementos de Li Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64} TRIM(Li, δ) = {1, 5, 28, 45, 50, 55, 58, 63} y ≤ z ≤ y 1 + δ
  • 93. Algoritmo Aproximativo Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64} y ≤ z ≤ y 1 + δ
  • 94. Algoritmo Aproximativo Li = {1, 5, 28, 29, 45, 50, 51, 55, 58, 63, 64} y ≤ z ≤ y 1 + δ z y Se y ≤ z(1 + δ), remover y
  • 95. Esquema Aproximativo TRIM (L, δ) 1 m = |L| 2 L'= ⟨yi⟩ 3 z = yi 4 para i = 2 até m 5 se yi > z(1 + δ) 6 adicionar yi a L’ 7 z = yi 6 retorna L'
  • 96. Esquema Aproximativo SOMA-SUBCONJUNTOS-APROXIMADO (S, t, ϵ) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 Li = TRIM(Li, ϵ/2n) 6 remover de Li todos os elementos maiores que t 7 retorna maior elemento em Ln
  • 97. Esquema Aproximativo SOMA-SUBCONJUNTOS-APROXIMADO (S, t, ϵ) 1 n = |S| 2 L0 = ⟨0⟩ 3 para i = 1 até n 4 Li = MERGE-LIST(Li-1, Li-1 + xi) 5 Li = TRIM(Li, ϵ/2n) 6 remover de Li todos os elementos maiores que t 7 retorna maior elemento em Ln Se n = 4 e ϵ = 0.4 então δ = ϵ / 8 = 0,05
  • 100. Considerações Finais • Algoritmos aproximativos são aplicáveis para problemas de otimização da classe NP-difícil;
  • 101. Considerações Finais • Algoritmos aproximativos são aplicáveis para problemas de otimização da classe NP-difícil; • Conhecer o fator de aproximação possui importância prática;
  • 102. Considerações Finais • Algoritmos aproximativos são aplicáveis para problemas de otimização da classe NP-difícil; • Conhecer o fator de aproximação possui importância prática; • Provar o fator aproximativo pode ser uma tarefa complexa;
  • 103. Considerações Finais • Algoritmos aproximativos são aplicáveis para problemas de otimização da classe NP-difícil; • Conhecer o fator de aproximação possui importância prática; • Provar o fator aproximativo pode ser uma tarefa complexa; • Desenvolvimento de heurísticas.
  • 104. Referências Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition. ! Vazirani, V. V. (2001). Approximation algorithms. springer. ! Williamson, D. P. and Shmoys, D. B. (2011). The design of approximation algorithms. Cambridge University Press.