SlideShare une entreprise Scribd logo
1  sur  98
Télécharger pour lire hors ligne
Polynomial Matrix Decompositions
Stephan Weiss
Centre for Signal & Image Processing
Department of Electonic & Electrical Engineering
University of Strathclyde, Glasgow, Scotland, UK
F¨orderverein, Alpen-Adria Universit¨at Klagenfurt, 25. April 2016
With many thanks to:
J.G. McWhirter, I.K. Proudler, J. Corr and F.K. Coutts
This work was supported by QinetiQ, the Engineering and Physical Sciences Research
Council (EPSRC) Grant number EP/K014307/1 and the MOD University Defence Re-
search Collaboration in Signal Processing.
1 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Presentation Overview
1. Overview
Part I: Polynomial Matrices and Decompositions
2. Polynomial matrices and basic operations
2.1 occurence: MIMO systems, filter banks, space-time covariance
2.2 basic properties and operations
3. Polynomial eigenvalue decomposition (PEVD)
4. Iterative PEVD algorithms
4.1 sequential best rotation (SBR2)
4.2 sequential matrix diagonalisation (SMD)
5. PEVD Matlab toolbox
Part II: Beamforming & Source Separation Applications
6. Broadband MIMO decoupling
7. Broadband angle of arrival estimation
7.1 broadband / polynomial subspace decomposition
7.2 polynomial MUSIC
8. Broadband beamforming
9. Summary and materials
2 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
What is a Polynomial Matrix?
◮ A polynomial matrix is a polynomial with matrix-valued
coefficients, e.g.:
A(z) =
1 −1
−1 2
+
1 1
1 −1
z−1
+
−1 2
1 −1
z−2
(1)
◮ a polynomial matrix can equivalently be understood a matrix with
polynomial entries, i.e.
A(z) =
1 + z−1 − z−2 −1 + z−1 + 2z−2
−1 + z−1 + z−2 2 − z−1 − z−2 (2)
◮ polynomial matrices could also contain rational polynomials, but
the notation would not be as easily interchangeable as (1) and (2).
3 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Where Do Polynomial Matrices Arise?
◮ A multiple-input multiple-output (MIMO) system could be made
up of a number of finite impulse response (FIR) channels:
+h11[n]
h21[n]
h12[n]
h22[n] +
y1[n]
y2[n]
x1[n]
x2[n]
◮ writing this as a matrix of impulse responses:
H[n] =
h11[n] h12[n]
h21[n] h22[n]
(3)
4 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Transfer Function of a MIMO System
◮ Example for MIMO matrix H[n] of impulse responses:
0 1 2 3 4
−0.5
0
0.5
1
h11[n]
0 1 2 3 4
−0.5
0
0.5
1
h12[n]0 1 2 3 4
−0.5
0
0.5
1
h21[n]
discrete time index n
0 1 2 3 4
−0.5
0
0.5
1
h22[n]
discrete time index n
◮ the transfer function of this MIMO system is a polynomial matrix:
H(z) =
∞
n=−∞
H[n]z−1
or H(z) •—◦ H[n] (4)
5 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Analysis Filter Bank
◮ Critically decimated K-channel analysis filter bank:
H1(z)
H2(z)
HK(z)
↓K
↓K
...
↓K
◮ equivalent polyphase representation:
z−1
z−1
↓K
↓K
↓K





H1,1(z) . . . H1,K(z)
H2,1(z) . . . H2,K(z)
...
...
HK,1(z) . . . HK,K(z)





H(z) =
6 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Polyphase Analysis Matrix
◮ With the K-fold polyphase decomposition of the analysis filters
Hk(z) =
K
n=1
Hk,n(zK
)z−n+1
(5)
hk[n]
n
K = 4
◮ the polyphase analysis matrix is a polynomial matrix:
H(z) =





H1,1(z) H1,2(z) . . . H1,K(z)
H2,1(z) H2,2(z) . . . H2,K(z)
...
...
...
...
HK,1(z) HK,2(z) . . . HK,K(z)





(6)
7 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Synthesis Filter Bank
◮ Critically decimated K-channel synthesis filter bank:
↑K
↑K
↑K
G1(z)
G2(z)
GK(z)
...
+
+
◮ equivalent polyphase representation:





G1,1(z) . . . G1,K(z)
G2,1(z) . . . G2,K(z)
...
...
GK,1(z) . . . GK,K(z)





G(z) =
...
+
+
z−1
z−1
↑K
↑K
↑K
8 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Polyphase Synthesis Matrix
◮ Analoguous to analysis filter bank, the synthesis filters Gk(z) can
be split into K polyphase components, creating a polyphse
synthesis matrix
G(z) =





G1,1(z) G1,2(z) . . . G1,K(z)
G2,1(z) G2,2(z) . . . G2,K(z)
...
...
...
...
GK,1(z) GK,2(z) . . . GK,K(z)





(7)
◮ operating analysis and synthesis back-to-back, perfect
reconstruction is achieved if
G(z)H(z) = I ; (8)
◮ i.e. for perfect reconstruction, the polyphase analysis matrix must
be invertible: G(z) = H−1
(z).
9 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Space-Time Covariance Matrix
◮ Measurements obtained from M sensors are collected in a
vector x[n] ∈ CM :
xT
[n] = [x1[n] x2[n] . . . xM [n]] ; (9)
◮ with the expectation operator E{·}, the spatial correlation is
captured by R = E x[n]xH[n] ;
◮ for spatial and temporal correlation, we require a space-time
covariance matrix
R[τ] = E x[n]xH
[n − τ] (10)
◮ this space-time covariance matrix contains auto- and
cross-correlation terms, e.g. for M = 2
R[τ] =
E{x1[n]x∗
1[n − τ]} E{x1[n]x∗
2[n − τ]}
E{x2[n]x∗
1[n − τ]} E{x2[n]x∗
2[n − τ]}
(11)
10 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Cross-Spectral Density Matrix
◮ example for a space-time covariance matrix R[τ] ∈ R2×2:
−2 −1 0 1 2
−0.5
0
0.5
1
rx1x1[τ]
−2 −1 0 1 2
−0.5
0
0.5
1
rx1x2
[n]−2 −1 0 1 2
−0.5
0
0.5
1
rx2x1
[n]
lag τ
−2 −1 0 1 2
−0.5
0
0.5
1
rx2x2
[n]
lag τ
◮ the cross-spectral density (CSD) matrix
R(z) ◦—• R[τ] (12)
is a polynomial matrix.
11 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Parahermitian Operator
◮ A parahermitian operation is indicated by ˜{·}, and compared to
the Hermitian (= complex conjugate transpose) of a matrix
additionally performs a time-reversal;
◮ example:
A(z) =





0 1 2 3 4
−0.5
0
0.5
1
0 1 2 3 4
−0.5
0
0.5
1
0 1 2 3 4
−0.5
0
0.5
1
0 1 2 3 4
−0.5
0
0.5
1





◮ parahermitian ˜A(z) = AH
(z−1):
˜A(z) =





−4 −3 −2 −1 0
−0.5
0
0.5
1
−4 −3 −2 −1 0
−0.5
0
0.5
1
−4 −3 −2 −1 0
−0.5
0
0.5
1
−4 −3 −2 −1 0
−0.5
0
0.5
1





12 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Parahermitian Property
◮ A polynomial matrix A(z) is parahermitian if ˜A(z) = A(z);
◮ this is an extension of the symmetric (if A ∈ R) or or Hermitian
(if A ∈ C) property to the polynomial case:
transposition, complex conjugation and time reversal (in any
order) do not alter a parahermitian A(z);
◮ any CSD matrix is parahermitian;
◮ example:
R(z) =










−2 −1 0 1 2
−0.5
0
0.5
1
−2 −1 0 1 2
−0.5
0
0.5
1
−2 −1 0 1 2
−0.5
0
0.5
1
−2 −1 0 1 2
−0.5
0
0.5
1










= ˜R(z)
13 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Paraunitary Matrices
◮ Recall that A ∈ C (or A ∈ R) is a unitary (or orthonormal)
matrix if AAH = AHA = I;
◮ in the polynomial case, A(z) is paraunitary if
A(z) ˜A(z) = ˜A(z)A(z) = I (13)
◮ therefore, if A(z) is paraunitary, then the polynomial matrix
inverse is simple:
A−1
(z) = ˜A(z) (14)
◮ example: polyphase analysis or synthesis matrices of perfectly
reconstructing (or lossless) filter banks are usually paraunitary.
14 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Attempt of Gaussian Elimination
◮ System of polynomial equations:
A11(z) A12(z)
A21(z) A22(z)
·
X1(z)
X2(z)
=
B1(z)
B2(z)
(15)
◮ modification of 2nd row:
A11(z) A12(z)
A11(z) A11(z)
A21(z) A22(z)
·
X1(z)
X2(z)
=
B1(z)
A11(z)
A21(z) B2(z)
(16)
◮ upper triangular form by subtracting 1st row from 2nd:
A11(z) A12(z)
0 A11(z)A22(z)−A12(z)A21(z)
A21(z)
·
X1(z)
X2(z)
=
B1(z)
¯B2(z)
(17)
◮ penalty: we end up with rational polynomials.
15 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Polynomial Eigenvalue Decomposition
[McWhirter et al., IEEE TSP 2007]
◮ Polynomial EVD of the CSD matrix
R(z) ≈ Q(z) Λ(z) ˜Q(z) (18)
◮ with paraunitary Q(z), s.t. Q(z) ˜Q(z) = I;
◮ diagonalised and spectrally majorised Λ(z):
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
γij[τ]
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
lat τ
−10 0 10
0
10
20
30
40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10
−5
0
5
10
15
20
normalised angular frequency Ω/(2π)
10log10|Γi|/[dB]
i=1
i=2
i=3
◮ approximation in (18) can be close with an FIR Q(z) of
sufficiently high order [Icart & Comon 2012].
16 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
PEVD Ambiguity
[Corr et al., EUSIPCO 2015]
◮ We believe diagonalised and spectral majorised Λ(z) is unique;
◮ but there is ambiguity w.r.t. the paraunitary matrix Q(z);
◮ set ¯Q(z) = Q(z)Γ(z), with a diagonal allpass Γ(z):
R(z) = ¯Q(z)Λ(z)˜¯Q(z) = Q(z)Γ(z)Λ(z)˜Γ(z) ˜Q(z)
= Q(z)Λ(z)Γ(z)˜Γ(z) ˜Q(z) = Q(z)Λ(z) ˜Q(z) (19)
◮ example for ˜Q(z) — note different orders:
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 10 20 30
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
0 2 4 6
0
0.2
0.4
0.6
17 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Iterative PEVD Algorithms
◮ Second order sequential best rotation (SBR2, McWhirter 2007);
◮ iterative approach based on an elementary paraunitary operation:
S(0)
(z) = R(z)
...
S(i+1)
(z) = ˜H
(i+1)
(z)S(i+1)
(z)H(i+1)
(z)
◮ H(i)
(z) is an elementary paraunitary operation, which at the ith
step eliminates the largest off-diagonal element in s(i−1)(z);
◮ stop after L iterations:
ˆΛ(z) = S(L)
(z) , Q(z) =
L
i=1
H(i)
(z)
◮ sequential matrix diagonalisation (SMD) and
◮ multiple-shift SMD (MS-SMD) will follow the same scheme . . .
18 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Elementary Paraunitary Operation
◮ An elementary paraunitary matrix [Vaidyanathan] is defined as
H(i)
(z) = I − v(i)
v(i),H
+ z−1
v(i)
v(i),H
, v(i)
2 = 1
◮ we utilise a different definition:
H(i)
(z) = D(i)
(z)Q(i)
◮ D(i)
(z) is a delay matrix:
D(i)
(z) = diag 1 . . . 1 z−τ
1 . . . 1
◮ Q(i)(z) is a Givens rotation.
19 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ At iteration i, consider S(i−1)
(z) ◦—• S(i−1)[τ]
000111
00
00
11
11
001100001111
000
000
111
111
000111001100
00
11
11
0
−T
T
20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ ˜D
(i)
(z)S(i−1)
(z)D(i)
(z)
0011000
000
111
111
00
00
11
11
0011000111000
000
111
111
00
00
11
11
00110
−T
T
·




1
...
z−T
1








1
...
zT
1



 ·
20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ ˜D
(i)
(z) advances a row-slice of S(i−1)
(z) by T
00000000000000000000
0000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
11111111111111111111
1111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
0011000
000
111
111
00
00
11
11
0011000111000
000
111
111
00
00
11
11
00110
−T
T




1
...
zT
1



 ·
·




1
...
z−T
1




20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ the off-diagonal element at −T has now been translated to lag
zero
0000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
000111000111000111000111000111000111
000111
0011
0
·




1
...
z−T
1




T
−T
20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ D(i)(z) delays a column-slice of S(i−1)
(z) by T
00000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
11111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
000
000
111
111
000
000
111
111
000
000
111
111
000111
000000111111
000000000
000000000000000000
000000000
000000000
111111111
111111111111111111
111111111
111111111
000000000000000000000000000000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
111111111111111111111111111111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
00
00
11
11
000000000
000000000
000000000000000000
000000000
111111111
111111111
111111111111111111
111111111
0
·




1
...
z−T
1




T
−T
20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ the off-diagonal element at −T has now been translated to lag
zero
00000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
000000000000000000000000000000000000000000000000000000000000
00000000000000000000
00000000000000000000
11111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
1111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
111111111111111111111111111111111111111111111111111111111111
11111111111111111111
11111111111111111111
000111000111000111000111
000111
000000000000000000000000000000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
111111111111111111111111111111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
111111111111111111111111111
000111
0
T
−T
20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ the step ˜D
(i)
(z)S(i−1)
(z)D(i)(z) has brought the largest
off-diagonal elements to lag 0.
000111
00
00
11
11
001100
00
11
11
000
000
111
111
000111001100
00
11
11
0
T
−T
20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ Jacobi step to eliminate largest off-diagonal elements by Q(i)
00
00
11
11
00
00
11
11
000111000
000
111
111
0011
000
000
111
111
0
·




c −e−jϑ
s
I
ejϑ
s c
1








c e−jϑ
s
I
−ejϑ
s c
1



 ·
T
−T
20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Best Rotation Algorithm (McWhirter)
◮ iteration i is completed, having performed
S(i)
(z) = Q(i)
D(i)
(z)S(i−1)
(z) ˜D
(i)
(z) ˜Q(i)
(z)
0011
0011000111000000111111
00
00
11
11
00001111
0
T
−T
20 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SBR2 Outcome
◮ At the ith iteration, the zeroing of off-diagonal elements achieved
during previous steps may be partially undone;
◮ however, the algorithm has been shown to converge, transfering
energy onto the main diagonal at every step (McWhirter 2007);
◮ after L iterations, we reach an approximate diagonalisation
ˆΛ(z) = S(L)
(z) = ˜Q(z)R(z)Q(z)
with
Q(z) =
L
i=1
D(i)
(z)Q(i)
◮ diagonalisation of the previous 3 × 3 polynomial matrix . . .
21 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SBR2 Example — Diagonalisation
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
γij[τ]
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
lat τ
−10 0 10
0
10
20
30
40
22 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SBR2 Example — Spectral Majorisation
◮ The on-diagonal elements are spectrally majorised
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10
−5
0
5
10
15
20
normalised angular frequency Ω/(2π)
10log10|Γi|/[dB]
i=1
i=2
i=3
23 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SBR2 — Givens Rotation
◮ A Givens rotation eliminates the maximum off-diagonal element
once brought onto the lag-zero matrix;
◮ note I: in the lag-zero matrix, one column and one row are
modified by the shift:
◮ note II: a Givens rotation only affects two columns and two rows
in every matrix;
◮ Givens rotation is relatively low in computational cost!
24 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SBR2 — Givens Rotation
◮ A Givens rotation eliminates the maximum off-diagonal element
once brought onto the lag-zero matrix;
◮ note I: in the lag-zero matrix, one column and one row are
modified by the shift:
◮ note II: a Givens rotation only affects two columns and two rows
in every matrix;
◮ Givens rotation is relatively low in computational cost!
24 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Matrix Diagonalisation (SMD)
[Redif et al., IEEE Trans SP 2015]
◮ Main idea — the zero-lag matrix is diagonalised in every step;
◮ initialisation: diagonalise R[0] by EVD and apply modal matrix to
all matrix coefficients −→ S(0)
;
◮ at the ith step as in SBR2, the maximum element (or column
with max. norm) is shifted to the lag-zero matrix:
◮ an EVD is used to re-diagonalise the zero-lag matrix;
◮ a full modal matrix is applied at all lags — more costly than
SBR2. 25 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Sequential Matrix Diagonalisation (SMD)
[Redif et al., IEEE Trans SP 2015]
◮ Main idea — the zero-lag matrix is diagonalised in every step;
◮ initialisation: diagonalise R[0] by EVD and apply modal matrix to
all matrix coefficients −→ S(0)
;
◮ at the ith step as in SBR2, the maximum element (or column
with max. norm) is shifted to the lag-zero matrix:
−→
◮ an EVD is used to re-diagonalise the zero-lag matrix;
◮ a full modal matrix is applied at all lags — more costly than
SBR2. 25 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Multiple Shift SMD (SMD)
◮ SMD converges faster than SBR2 — more energy is
transfered per iteration step;
◮ SMD is more expensive than SBR2 — full matrix multiplication at
every lag;
◮ this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration
◮ MS-SMD will transfer yet more off-diagonal energy per iteration;
◮ because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge. 26 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Multiple Shift SMD (SMD)
◮ SMD converges faster than SBR2 — more energy is
transfered per iteration step;
◮ SMD is more expensive than SBR2 — full matrix multiplication at
every lag;
◮ this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration
◮ MS-SMD will transfer yet more off-diagonal energy per iteration;
◮ because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge. 26 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Multiple Shift SMD (SMD)
◮ SMD converges faster than SBR2 — more energy is
transfered per iteration step;
◮ SMD is more expensive than SBR2 — full matrix multiplication at
every lag;
◮ this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration
◮ MS-SMD will transfer yet more off-diagonal energy per iteration;
◮ because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge. 26 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Multiple Shift SMD (SMD)
◮ SMD converges faster than SBR2 — more energy is
transfered per iteration step;
◮ SMD is more expensive than SBR2 — full matrix multiplication at
every lag;
◮ this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration
−→
◮ MS-SMD will transfer yet more off-diagonal energy per iteration;
◮ because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge. 26 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SBR2/SMD/MS-SMD Convergence
◮ Measuring the remaining normalised off-diagonal energy
over an ensemble of space-time covariance matrices:
0 10 20 30 40 50 60 70 80 90 100
−40
−35
−30
−25
−20
−15
−10
−5
0
iteration index i
normalisedoff-diagonalenergy/[dB]
SBR2
SMD
MS−SMD
C−MS−SMD
95% conf. intervals
27 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SBR2/SMD/MS-SMD Application Cost 1
◮ Ensemble average of remaining off-diagonal energy vs. order
of paraunitary filter banks to decompose 4x4x16 matrices:
0 5 10 15 20 25
−30
−25
−20
−15
−10
−5
0
paraunitary filter bank order
normalisedoff-diagonalenergy/[dB]
SBR2
SMD
MS−SMD
C−MS−SMD
28 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SBR2/SMD/MS-SMD Application Cost 2
◮ Ensemble average of remaining off-diagonal energy vs. order
of paraunitary filter banks to decompose 8x8x64 matrices:
10 15 20 25 30 35 40 45 50 55 60
−30
−25
−20
−15
−10
−5
0
paraunitary filter bank order
5log10M{E
(i)
norm}/[dB]
SBR2
SBR2C
SMD v2
SMD
29 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
MATLAB Polynomial EVD Toolbox
◮ The MATLAB polynomial EVD toolbox can be downloaded from
pevd-toolbox.eee.strath.ac.uk
◮ the toolbox contains a number of iterative algorithms to calculate
an approximate PEVD, related functions, and demos. 30 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband MIMO Communications
◮ a narrowband channel is characterised by a matrix C containing
complex gain factors;
◮ problem: how to select the precoder and equaliser?
C? ?...
...
...
...
◮ overall system;
31 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband MIMO Communications
◮ a narrowband channel is characterised by a matrix C containing
complex gain factors;
◮ problem: how to select the precoder and equaliser?
C = UΣVH
VH
Σ U? ?...
...
...
...
...
...
◮ the singular value decomposition (SVD) factorises C into two
unitary matrices U and VH and a diagonal matrix Σ;
31 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband MIMO Communications
◮ a narrowband channel is characterised by a matrix C containing
complex gain factors;
◮ problem: how to select the precoder and equaliser?
C = UΣVH
VH
Σ UV UH...
...
...
...
...
...
◮ we select the precoder and the equaliser from the unitary matrices
provided by the channel’s SVD;
◮ the overall system is diagonalised, decoupling the channel into
independent single-input single-output systems by means of
unitary matrices. 31 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Broadband MIMO Channel
◮ The channel is now a matrix of FIR filters; example for a 3 × 4
MIMO system C[n]:
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
0 1 2 3
0
1
2
discrete time index n
|ci,j[n]|
◮ the transfer function C(z) •—◦ C[n] is a polynomial matrix;
◮ an SVD can only diagonalise C[n] for one particular lag n.
32 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Standard Broadband MIMO Approaches
◮ OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
◮ optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
◮ both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.
C0 C1z−1
( +y(z) = ) · x(z)
33 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Standard Broadband MIMO Approaches
◮ OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
◮ optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
◮ both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.
C0 C1z−1
( +y(z) = ) · x(z)
33 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Standard Broadband MIMO Approaches
◮ OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
◮ optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
◮ both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.
C′
0(y(z) = ) · x(z)
33 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Standard Broadband MIMO Approaches
◮ OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
◮ optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
◮ both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.
C0 C1z−1
( +y(z) = ) · x(z)
33 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Standard Broadband MIMO Approaches
◮ OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
◮ optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
◮ both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.
C′
0(y(z) = ) · x(z)
33 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Polynomial Singular Value Decompositions
◮ Iterative algorithms have been developed to determine a
polynomial eigenvalue decomposition (EVD) for a parahermitian
matrix R(z) = ˜R(z) = RH
(z−1):
R(z) ≈ H(z)Γ(z) ˜H(z)
◮ paraunitary H(z) ˜H(z) = I, diagonal and spectrally majorised
Γ(z);
◮ polynomial SVD of channel C(z) can be obtained via two EVDs:
C(z) ˜C(z) = U(z)Σ+
(z)Σ−
(z) ˜U(z)
˜C(z)C(z) = V (z)Σ−
(z)Σ+
(z) ˜V (z)
finally:
C(z) = U(z)Σ+
(z) ˜V (z)
34 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
MIMO Application Example
◮ Polynomial SVD of the previous C(z) ∈ C3×4 channel matrix:
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
0 5 10
0
2
4
discrete time index n
|σi,j[n]|
◮ the singular value spectra are majorised:
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−10
0
10
norm. angular frequency Ω/(2π)
PSD/[dB]
Σ+
1 (ejΩ
)
Σ+
2 (ejΩ
)
Σ+
3 (ejΩ
)
35 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband Source Model
◮ Scenario with sensor array and far-field sources:
x1[n]
x2[n]
x3[n]
xM [n]
s1[n]
◮ for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector
◮ data model:
x[n] =
36 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband Source Model
◮ Scenario with sensor array and far-field sources:
x1[n]
x2[n]
x3[n]
xM [n]
s1[n]
◮ for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector s1
◮ data model:
x[n] = s1[n] · s1
36 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband Source Model
◮ Scenario with sensor array and far-field sources:
x1[n]
x2[n]
x3[n]
xM [n]
s1[n]
s2[n]
◮ for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector s1
◮ data model:
x[n] = s1[n] · s1
36 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband Source Model
◮ Scenario with sensor array and far-field sources:
x1[n]
x2[n]
x3[n]
xM [n]
s1[n]
s2[n]
◮ for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector s1, s2
◮ data model:
x[n] = s1[n] · s1 + s1[n] · s2
36 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband Source Model
◮ Scenario with sensor array and far-field sources:
x1[n]
x2[n]
x3[n]
xM [n]
s1[n]
s2[n]
sR[n]
◮ for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector s1, s2
◮ data model:
x[n] = s1[n] · s1 + s1[n] · s2
36 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband Source Model
◮ Scenario with sensor array and far-field sources:
x1[n]
x2[n]
x3[n]
xM [n]
s1[n]
s2[n]
sR[n]
◮ for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector s1, s2, . . . sR;
◮ data model:
x[n] = s1[n] · s1 + s1[n] · s2 + · · · + sR[n] · sR =
R
r=1
sr[n] · sr
36 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Steering Vector
◮ A signal s[n] arriving at the array can be characterised by
the delays of its wavefront (neglecting attenuation):





x0[n]
x1[n]
...
xM−1[n]





=





s[n − τ0]
s[n − τ1]
...
s[n − τM−1]





=





δ[n − τ0]
δ[n − τ1]
...
δ[n − τM−1]





∗s[n] ◦—• aϑ(z)S(z)
◮ if evaluated at a narrowband normalised angular frequency Ωi, the
time delays τm in the broadband steering vector aϑ(z) collapse to
phase shifts in the narrowband steering vector aϑ,Ωi
,
aϑ,Ωi
= aϑ(z)|z=ejΩi =





e−jτ0Ωi
e−jτ1Ωi
...
e−jτM−1Ωi





.
37 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Data and Covariance Matrices
◮ A data matrix X ∈ CM×L can be formed from L measurements:
X = x[n] x[n + 1] . . . x[n + L − 1]
◮ assuming that all xm[n], m = 1, 2, . . . M are zero mean, the
(instantaneous) data covariance matrix is
R = E x[n]xH
[n] ≈
1
L
XXH
where the approximation assumes ergodicity and a sufficiently
large L;
◮ Problem: can we tell from X or R (i) the number of sources and
(ii) their orgin / time series?
◮ w.r.t. Jonathon Chamber’s introduction, we here only consider the
underdetermined case of more sensors than sources, M ≥ K, and
generally L ≫ M.
38 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SVD of Data Matrix
◮ Singular value decomposition of X:
X U Σ VH=
◮ unitary matrices U = [u1 . . . uM ] and V = [v1 . . . vL];
◮ diagonal Σ contains the real, positive semidefinite singular values
of X in descending order:
Σ =






σ1 0 . . . 0 0 . . . 0
0 σ2
...
...
...
...
...
...
... 0
...
...
0 0 σM 0 . . . 0






with σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0.
39 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Singular Values
◮ If the array is illuminated by R ≤ M linearly independent sources,
the rank of
the data matrix is
rank{X} = R
◮ only the first R singular values of X will be non-zero;
◮ in practice, noise often will ensure that rank{X} = M, with
M − R trailing singular values that define the noise floor:
1 2 3 4 5 6 7 8 9 10
0
0.2
0.4
0.6
0.8
1
ordered index m
σm
◮ therefore, by thresholding singular values, it is possible to estimate
the number of linearly independent sources R.
40 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Subspace Decomposition
◮ If rank{X} = R, the SVD can be split:
X = [Us Un]
Σs 0
0 Σn
VH
s
VH
n
◮ with Us ∈ CM×R and VH
s ∈ CR×L corresponding to the R
largest singular values;
◮ Us and VH
s define the signal-plus-noise subspace of X:
X =
M
m=1
σmumvH
m ≈
R
m=1
σmumvH
m
◮ the complements Un and VH
n ,
UH
s Un = 0 , VsVH
n = 0
define the noise-only subspace of X.
41 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
SVD via Two EVDs
◮ Any Hermitian matrix A = AH allows an eigenvalue
decomposition
A = QΛQH
with Q unitary and the eigenvalues in Λ real valued and positive
semi-definite;
◮ postulating X = UΣVH, therefore:
XXH
= (UΣVH
)(VΣH
UH
) = UΛUH
(20)
XH
X = (VΣH
UH
)(UΣVH
) = VΛVH
(21)
◮ (ordered) eigenvalues relate to the singular values: λm = σ2
m;
◮ the covariance matrix R = 1
L XX has the same rank as the data
matrix X, and with U provides access to the same spatial
subspace decomposition.
42 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband MUSIC Algorithm
◮ EVD of the narrowband covariance matrix identifies
signal-plus-noise and noise-only subspaces
R = [Us Un]
Λs 0
0 Λn
UH
s
UH
n
◮ scanning the signal-plus-noise subspace could only help to retrieve
sources with orthogonal steering vectors;
◮ therefore, the multiple signal classification (MUSIC) algorithm
scans the noise-only subspace for minima, or maxima of its
reciprocal
SMUSIC(ϑ) =
1
Unaϑ,Ωi
2
2
−80 −60 −40 −20 0 20 40 60 80
−40
−20
0
SMUSIC(ϑ)/[dB]
43 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband Source Separation
◮ Via SVD of the data matrix X or EVD of the covariance matrix
R, we can determine the number of linearly independent sources
R;
◮ using the subspace decompositions offered by EVD/SVD, the
directions of arrival can be estimated using e.g. MUSIC;
◮ based on knowledge of the angle of arrival, beamforming could be
applied to X to extract specific sources;
◮ overall: EVD (and SVD) can play a vital part in narrowband
source separation;
◮ what about broadband source separation?
44 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Broadband Array Scenario
x0[n]
x1[n]
x2[n]
xM−1[n]
s1[n]
◮ Compared to the narrowband case, time delays rather than phase
shifts bear information on the direction of a source.
45 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Broadband Steering Vector
◮ A signal s[n] arriving at the array can be characterised by
the delays of its wavefront (neglecting attenuation):





x0[n]
x1[n]
...
xM−1[n]





=





s[n − τ0]
s[n − τ1]
...
s[n − τM−1]





=





δ[n − τ0]
δ[n − τ1]
...
δ[n − τM−1]





∗s[n] ◦—• aϑ(z)S(z)
◮ if evaluated at a narrowband normalised angular frequency Ωi, the
time delays τm in the broadband steering vector aϑ(z) collapse to
phase shifts in the narrowband steering vector aϑ,Ωi
,
aϑ,Ωi
= aϑ(z)|z=ejΩi =





e−jτ0Ωi
e−jτ1Ωi
...
e−jτM−1Ωi





.
46 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Space-Time Covariance Matrix
◮ If delays must be considered, the (space-time) covariance
matrix must capture the lag τ:
R[τ] = E x[n] · xH
[n − τ]
◮ R[τ] contains auto- and cross-correlation sequences:
−2 0 2
0
5
10
15
20
−2 0 2
0
5
10
15
20
−2 0 2
0
5
10
15
20
−2 0 2
0
5
10
15
20
rij[τ]
−2 0 2
0
5
10
15
20
−2 0 2
0
5
10
15
20
−2 0 2
0
5
10
15
20
−2 0 2
0
5
10
15
20
lat τ
−2 0 2
0
5
10
15
20
47 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Cross Spectral Density Matrix
◮ z-transform of the space-time covariance matrix is given by
R[τ] = E xnxH
n−τ ◦—• R(z) =
l
Sl(z)aϑl
(z)˜aϑl
(z)+σ2
N I
with ϑl the direction of arrival and Sl(z) the PSD of the lth
source;
◮ R(z) is the cross spectral density (CSD) matrix;
◮ the instantaneous covariance matrix (no lag parameter τ)
R = E xnxH
n = R[0]
48 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Polynomial MUSIC (PMUSIC)
[Alrmah, Weiss, Lambotharan,EUSIPCO (2011)]
◮ Based on the polynomial EVD of the broadband covariance matrix
R(z) ≈ [Qs(z) Qn(z)]
Q(z)
Λs(z) 0
0 Λn(z)
Λ(z)
˜Qs(z)
˜Qn(z)
◮ paraunitary Q(z), s.t. Q(z) ˜Q(z) = I;
◮ diagonalised and spectrally majorised Λ(z):
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
γij[τ]
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
−10 0 10
0
10
20
30
40
lat τ
−10 0 10
0
10
20
30
40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10
−5
0
5
10
15
20
normalised angular frequency Ω/(2π)
10log10|Γi|/[dB]
i=1
i=2
i=3
49 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
PMUSIC cont’d
◮ Idea —- scan the polynomial noise-only subspace Qn(z) with
broadband steering vectors
Γ(z, ϑ) = ˜aϑ(z) ˜Qn(z)Qn(z)aϑ(z)
◮ looking for minima leads to a spatio-spectral PMUSIC
SPSS−MUSIC(ϑ, Ω) = (Γ(z, ϑ)|z=ejΩ )−1
◮ and a spatial-only PMUSIC
SPS−MUSIC(ϑ) = 2π Γ(z, ϑ)|z=ejΩ dΩ
−1
= Γ−1
ϑ [0]
with Γϑ[τ] ◦—• Γ(z, ϑ).
50 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Simulation I — Toy Problem
◮ Linear uniform array with critical spatial and temporal sampling;
◮ broadband steering vector for end-fire position:
aπ/2(z) = [1 z−1
· · · z−M+1
]T
◮ covariance matrix
R(z) = aπ/2(z)˜aπ/2(z) =






1 z1 . . . zM−1
z−1 1
...
...
...
...
z−M+1 . . . . . . 1






.
◮ PEVD (by inspection)
Q(z) = TDFTdiag 1 z−1
· · · z−M+1
; Λ(z) = diag{1 0 · · · 0}
◮ simulations with M = 4 . . .
51 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Simulation I — PSS-MUSIC
−60 −40 −20 0 20 40 60 80 100 120
0
0.5
1
−50
0
Ω/π
ϑ/◦
SPSS(ϑ,ejΩ
)/[dB]
(a)
−60 −40 −20 0 20 40 60 80 100 120
0
0.5
1
−120
−100
−80
−60
−40
−20
Ω/π
ϑ/◦
Sdiff(ϑ,ejΩ
)/[dB]
(b)
52 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Simulation II
◮ M = 8 element sensor array illuminated by three sources;
◮ source 1: ϑ1 = −30◦, active over range Ω ∈ [3π
8 ; π];
◮ source 2: ϑ2 = 20◦, active over range Ω ∈ [π
2 ; π];
◮ source 3: ϑ3 = 40◦, active over range Ω ∈ [2π
8 ; 7π
8 ]; and
0 40 60 90-30-60-90
π
π
2
Ω
ϑ/[◦]
20
◮ filter banks as innovation filters, and broadband steering vectors
to simulate AoA;
◮ space-time covariance matrix is estimated from 104 samples. 53 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Simulation II — PSS-MUSIC
−80 −60 −40 −20 0 20 40 60 80
0
0.2
0.4
0.6
0.8
1
0
20
40
Ω/π
ϑ/◦
SPSS(ϑ,ejΩ
)/[dB]
(a)
−80 −60 −40 −20 0 20 40 60 80
0
0.2
0.4
0.6
0.8
1
0
20
40
Ω/π
ϑ/◦
SAF(ϑ,ejΩ
)/[dB]
(b)
54 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
PS-MUSIC Comparison
◮ Simulation I (toy problem): peaks normalised to unity:
87 88 89 90 91 92 93
0
0.2
0.4
0.6
0.8
1
ϑ/◦
normalisedspectrum
AF-MUSIC (Ω0 = π/2)
AF-MUSIC (integrated)
PS-MUSIC (SBR2)
PS-MUSIC (ideal)
◮ Simulation II: inaccuracies on PEVD and broadband steering
vector
−80 −60 −40 −20 0 20 40 60 80
−40
−30
−20
−10
0
ϑ/◦
normalisedspectrum/[dB]
sources
AF−MUSIC
PS−MUSIC
55 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
AoA Estimation — Conclusions
◮ We have considered the importance of SVD and EVD for
narrowband source separation;
◮ narrowband matrix decomposition real the matrix rank and offer
subspace decompositions on which angle-of-arrival estimation
alhorithms such as MUSIC can be based;
◮ broadband problems lead to a space-time covariance or CSD
matrix;
◮ such polynomial matrices cannot be decomposed by standard
EVD and SVD;
◮ a polynomial EVD has been defined;
◮ iterative algorithms such as SBR2 can be used to approximate the
PEVD;
◮ this permits a number of applications, such as broadband angle of
arrival estimation;
◮ broadband beamforming could then be used to separate
broadband sources.
56 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband Minimum Variance Distortionless
Response Beamformer
◮ Scenario: an array of M sensors receives data x[n], containing a
desired signal with frequency Ωs and angle of arrival ϑs, corrupted
by interferers;
◮ a narrowband beamformer applies a single coefficient to every of
the M sensor signals:
x1[n]
x2[n]
xM [n]
w1
w2
wM
+
×
×
×
...
e[n]
57 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Narrowband MVDR Problem
◮ Recall the space-time covariance matrix:
R[τ] = E x[n]xH
[n − τ]
◮ the MVDR beamformer minimises the output power of the
beamformer:
min
w
E |e[n]|2
= min
w
wH
R[0]w (22)
s.t. aH
(ϑs, Ωs)w = 1 , (23)
◮ this is subject to protecting the signal of interest by a constraint
in look direction ϑs;
◮ the steering vector aϑs,Ωs defines the signal of interest’s
parameters.
58 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Broadband MVDR Beamformer
◮ Each sensor is followed by a tap delay line of dimension L, giving
a total of ML coefficients in a vector v ∈ CML
+ e[n]
z−1
z−1
z−1
× ×××
x1[n]
+ + +
w1,1 w1,2 w1,3 w1,L
x1[n − L + 1]x1[n − 2]
z−1
z−1
z−1
× ×××
xM [n]
+ + +
wM,1 wM,2 wM,3 wM,L
xM [n − L + 1]xM [n − 2]
...
...
59 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Broadband MVDR Beamformer
◮ A larger input vector xn ∈ CML is generated, also including lags;
◮ the general approach is similar to the narrowband system,
minimising the power of e[n] = vHxn;
◮ however, we require several constraint equations to protect the
signal of interest, e.g.
C = [s(ϑs, Ω0), s(ϑs, Ω1) . . . s(ϑs, ΩL−1)] (24)
◮ these L constraints pin down the response to unit gain at L
separate points in frequency:
CH
v = 1 ; (25)
◮ generally C ∈ CML×L, but simplifications can be applied if the
look direction is towards broadside.
60 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Generalised Sidelobe Canceller
◮ A quiescent beamformer vq = CH †
1 ∈ CML picks the
signal of interest;
◮ the quiescent beamformer is optimal for AWGN but generally
passes structured interference;
◮ the output of the blocking matrix B contains interference only,
which requires [BC] to be unitary; hence B ∈ CML×(M−1)L;
◮ an adaptive noise canceller va ∈ C(M−1)L aims to remove the
residual interference:
vH
q (z)
B vH
a (z) +
−
d[n]
e[n]y[n]
xn
u[n]
◮ note: all dimensions are determined by {M, L}.
61 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Polynomial Matrix MVDR Formulation
◮ Power spectral density of beamformer output:
Re(z) = ˜w(z)R(z)w(z)
◮ proposed broadband MVDR beamformer formulation:
min
w(z) |z|=1
Re(z)
dz
z
(26)
s.t. ˜a(ϑs, z)w(z) = F(z) . (27)
◮ precision of broadband steering vector, |˜a(ϑs, z)a(ϑs, z) − 1|,
depends on the length T of the fractional delay filter:
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−80
−70
−60
−50
−40
−30
−20
−10
0
normalised angular frequency Ω/(2π)
20log10|E1(ejΩ
)|
T=50
T=100
62 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Generalised Sidelobe Canceller
◮ Instead of performing constrained optimisation, the GSC projects
the data and performs adaptive noise cancellation:
˜wq(z)
B(z) ˜wa(z) +
−
d[n]
e[n]y[n]
x[n]
u[n]
◮ the quiescent vector wq(z) is generated from the constraints and
passes signal plus interference;
◮ the blocking matrix B(z) has to be orthonormal to wq(z) and
only pass interference.
63 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Design Considerations
◮ The blocking matrix can be obtained by completing a paraunitary
matrix from wq(z);
◮ this can be achieved by calculating a PEVD of the rank one
matrix wq(z) ˜wq(z);
◮ this leads to a block matrix of order N that is typically greater
than L;
◮ maximum leakage of the signal of interest through the blocking
matrix:
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−55
−50
−45
−40
−35
−30
−25
normalised angular frequency Ω/(2π)
20log10|E2(ejΩ
)|
truncation 1e-4, N = 164
truncation 1e-3, N = 140
64 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Computational Cost
◮ With M sensors and a TDL length of L, the complexity of a
standard beamformer is dominated by the blocking matrix;
◮ in the proposed design, wa ∈ CM−1 has degree L;
◮ the quiescent vector wq(z) ∈ CM has degree T;
◮ the blocking matrix B(z) ∈ C(M−1)×M has degree N;
◮ cost comparison in multiply-accumulates (MACs):
GSC cost
component polynomial standard
quiescent beamformer MT ML
blocking matrix M(M−1)N M(M−1)L2
adaptive filter (NLMS) 2(M−1)L 2(M−1)L
65 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Example
◮ We assume a signal of interest from ϑ = 30◦;
◮ three interferers with angles ϑi ∈ {−40◦, −10◦, 80◦} active over
the frequency range Ω = 2π · [0.1; 0.45] at signal to interference
ratio of -40 dB;
ϑ
Ω
−90◦
90◦
0
π
0◦
−40◦
−10◦
30◦
80◦
◮ M = 8 element linear uniform array is also corrupted by spatially
and temporally white additive Gaussian noise at 20 dB SNR;
◮ parameters: L = 175, T = 50, and N = 140;
◮ cost per iteration: 10.7 kMACs (proposed) versus 1.72 MMACs
(standard).
66 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Quiescent Beamformer
◮ Directivity pattern of quiescent standard broadband beamformer:
angle of arrival ϑ /[◦
]
20log10|A(ϑ,ejΩ
)|/[dB]
Ω
2π
67 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Quiescent Beamformer
◮ Directivity pattern of quiescent proposed broadband beamformer:
angle of arrival ϑ /[◦
]
20log10|A(ϑ,ejΩ
)|/[dB]
Ω
2π
68 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Adaptation
◮ Convergence curves of the two broadband beamformers, showing
the residual mean squared error (i.e. beamformer output minus
signal of interest):
0 2 4 6 8 10 12 14 16 18
x 10
4
−15
−10
−5
0
meansq.res.err./[dB]
discrete time index n
standard broadband GSC
polynomial GSC
69 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Adapted Beamformer
◮ Directivity pattern of adapted proposed broadband beamformer:
angle of arrival ϑ /[◦
]
20log10|A(ϑ,ejΩ
)|/[dB]
Ω
2π
70 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Adapted Beamformer
◮ Directivity pattern of adapted standard broadband beamformer:
angle of arrival ϑ /[◦
]
20log10|A(ϑ,ejΩ
)|/[dB]
Ω
2π
71 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Gain in Look Direction
◮ Gain in look direction ϑs = 30◦ before and after adaptation:
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2
−1.5
−1
−0.5
0
0.5
1
1.5
2
normalised angular frequency Ω/(2π)
20log10|A(ϑs,ejΩ
)|/[dB]
standard quiescent
standard adapted
point constraints
polynomial quiescent
polynomial adapted
◮ due to signal leakage, the standard broadband beamformer after
adaptation only maintains the point constraints but deviates
elsewhere.
72 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Broadband Beamforming Conclusions
◮ Based on the previous AoA estimation, beamforming can help to
extract source signals and thus perform “source separation”;
◮ broadband beamformers usually assume pre-steering such that the
signal of interest lies at broadside;
◮ this is not always given, and difficult for arbitary array geometries;
◮ the proposed beamformer using a polynomial matrix formulation
can implement abitrary constraints;
◮ the performance for such constraints is better in terms of the
accuracy of the directivity pattern;
◮ because the proposed design decouples the complexities of the
coefficient vector, the quiescent vector and block matrix, and the
adaptive process, the cost is significantly lower than for a
standard broadband adaptive beamformer.
73 / 74
Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material
Additional Material
◮ Key papers:
1 J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, and J. Foster:
“An EVD Algorithm for Para-Hermitian Polynomial Matrices,”
IEEE Trans SP, 55(5): 2158-2169, May 2007.
2 S. Redif, J.G. McWhirter, and S. Weiss: “Design of FIR
Paraunitary Filter Banks for Subband Coding Using a Polynomial
Eigenvalue Decomposition,” IEEE Trans SP, 59(11): 5253-5264,
Nov. 2011.
3 S. Redif, S. Weiss, and J.G. McWhirter: “Sequential matrix
diagonalisation algorithms for polynomial EVD of parahermitian
matrices,” IEEE Trans SP, 63(1): 81–89, Jan. 2015.
◮ If interested in the discussed methods and algorithms, please
download the free Matlab PEVD toolbox from
pevd-toolbox.eee.strath.ac.uk
◮ for questions, please feel free to ask:
• Stephan Weiss (stephan.weiss@strath.ac.uk) or
• Jamie Corr (jamie.corr@strath.ac.uk)
• Fraser Coutts (fraser.coutts@strath.ac.uk) 74 / 74

Contenu connexe

Tendances

Basic simulation lab manual1
Basic simulation lab manual1Basic simulation lab manual1
Basic simulation lab manual1
Janardhana Raju M
 
Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]
JULIO GONZALEZ SANZ
 

Tendances (20)

Dsss final
Dsss finalDsss final
Dsss final
 
Firefly Algorithm: Recent Advances and Applications
Firefly Algorithm: Recent Advances and ApplicationsFirefly Algorithm: Recent Advances and Applications
Firefly Algorithm: Recent Advances and Applications
 
MINIMUM SHIFT KEYING(MSK)
MINIMUM SHIFT KEYING(MSK)MINIMUM SHIFT KEYING(MSK)
MINIMUM SHIFT KEYING(MSK)
 
Unit iv wcn main
Unit iv wcn mainUnit iv wcn main
Unit iv wcn main
 
Basic galois field arithmatics required for error control codes
Basic galois field arithmatics required for error control codesBasic galois field arithmatics required for error control codes
Basic galois field arithmatics required for error control codes
 
Basic simulation lab manual1
Basic simulation lab manual1Basic simulation lab manual1
Basic simulation lab manual1
 
String matching algorithms(knuth morris-pratt)
String matching algorithms(knuth morris-pratt)String matching algorithms(knuth morris-pratt)
String matching algorithms(knuth morris-pratt)
 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation ppt
 
Mdp
MdpMdp
Mdp
 
Introduction to equalization
Introduction to equalizationIntroduction to equalization
Introduction to equalization
 
Hamming codes
Hamming codesHamming codes
Hamming codes
 
Information Theory - Introduction
Information Theory  -  IntroductionInformation Theory  -  Introduction
Information Theory - Introduction
 
Classification of signals
Classification of signalsClassification of signals
Classification of signals
 
Ch04
Ch04Ch04
Ch04
 
Dft,fft,windowing
Dft,fft,windowingDft,fft,windowing
Dft,fft,windowing
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic Reasoning
 
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTETBASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
 
Gsm radio-interface
Gsm radio-interfaceGsm radio-interface
Gsm radio-interface
 
Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]
 

En vedette

Wege, Umwege, Irrwege zur Kanalkapazität : Zur Geschichte der Entwicklung hoc...
Wege, Umwege, Irrwege zur Kanalkapazität : Zur Geschichte der Entwicklung hoc...Wege, Umwege, Irrwege zur Kanalkapazität : Zur Geschichte der Entwicklung hoc...
Wege, Umwege, Irrwege zur Kanalkapazität : Zur Geschichte der Entwicklung hoc...
Förderverein Technische Fakultät
 
Student-centered teaching patterns in the context of computaional thinking pr...
Student-centered teaching patterns in the context of computaional thinking pr...Student-centered teaching patterns in the context of computaional thinking pr...
Student-centered teaching patterns in the context of computaional thinking pr...
Förderverein Technische Fakultät
 
ER model to Relational model mapping
ER model to Relational model mappingER model to Relational model mapping
ER model to Relational model mapping
Shubham Saini
 

En vedette (7)

Wege, Umwege, Irrwege zur Kanalkapazität : Zur Geschichte der Entwicklung hoc...
Wege, Umwege, Irrwege zur Kanalkapazität : Zur Geschichte der Entwicklung hoc...Wege, Umwege, Irrwege zur Kanalkapazität : Zur Geschichte der Entwicklung hoc...
Wege, Umwege, Irrwege zur Kanalkapazität : Zur Geschichte der Entwicklung hoc...
 
Student-centered teaching patterns in the context of computaional thinking pr...
Student-centered teaching patterns in the context of computaional thinking pr...Student-centered teaching patterns in the context of computaional thinking pr...
Student-centered teaching patterns in the context of computaional thinking pr...
 
A Behavior-based Approach to Secure and Resilient Industrial Control Systems
A Behavior-based Approach to Secure and Resilient Industrial Control SystemsA Behavior-based Approach to Secure and Resilient Industrial Control Systems
A Behavior-based Approach to Secure and Resilient Industrial Control Systems
 
Förderverein Technische Fakultät
Förderverein Technische FakultätFörderverein Technische Fakultät
Förderverein Technische Fakultät
 
Can you trust what you see? The magic of visual perception
Can you trust what you see? The magic of visual perceptionCan you trust what you see? The magic of visual perception
Can you trust what you see? The magic of visual perception
 
Pruebas de funcion renal 1
Pruebas de funcion renal 1Pruebas de funcion renal 1
Pruebas de funcion renal 1
 
ER model to Relational model mapping
ER model to Relational model mappingER model to Relational model mapping
ER model to Relational model mapping
 

Similaire à Polynomial Matrix Decompositions

New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
Alexander Litvinenko
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
RTEFGDFGJU
 
MarcoCeze_defense
MarcoCeze_defenseMarcoCeze_defense
MarcoCeze_defense
Marco Ceze
 

Similaire à Polynomial Matrix Decompositions (20)

Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Slides
SlidesSlides
Slides
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structures
 
MarcoCeze_defense
MarcoCeze_defenseMarcoCeze_defense
MarcoCeze_defense
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Irjet v2i170
Irjet v2i170Irjet v2i170
Irjet v2i170
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
 
Estimating structured vector autoregressive models
Estimating structured vector autoregressive modelsEstimating structured vector autoregressive models
Estimating structured vector autoregressive models
 

Plus de Förderverein Technische Fakultät

The Digital Transformation of Education: A Hyper-Disruptive Era through Block...
The Digital Transformation of Education: A Hyper-Disruptive Era through Block...The Digital Transformation of Education: A Hyper-Disruptive Era through Block...
The Digital Transformation of Education: A Hyper-Disruptive Era through Block...
Förderverein Technische Fakultät
 
Don't Treat the Symptom, Find the Cause!.pptx
Don't Treat the Symptom, Find the Cause!.pptxDon't Treat the Symptom, Find the Cause!.pptx
Don't Treat the Symptom, Find the Cause!.pptx
Förderverein Technische Fakultät
 
The Computing Continuum.pdf
The Computing Continuum.pdfThe Computing Continuum.pdf
The Computing Continuum.pdf
Förderverein Technische Fakultät
 

Plus de Förderverein Technische Fakultät (20)

Supervisory control of business processes
Supervisory control of business processesSupervisory control of business processes
Supervisory control of business processes
 
The Digital Transformation of Education: A Hyper-Disruptive Era through Block...
The Digital Transformation of Education: A Hyper-Disruptive Era through Block...The Digital Transformation of Education: A Hyper-Disruptive Era through Block...
The Digital Transformation of Education: A Hyper-Disruptive Era through Block...
 
A Game of Chess is Like a Swordfight.pdf
A Game of Chess is Like a Swordfight.pdfA Game of Chess is Like a Swordfight.pdf
A Game of Chess is Like a Swordfight.pdf
 
From Mind to Meta.pdf
From Mind to Meta.pdfFrom Mind to Meta.pdf
From Mind to Meta.pdf
 
Miniatures Design for Tabletop Games.pdf
Miniatures Design for Tabletop Games.pdfMiniatures Design for Tabletop Games.pdf
Miniatures Design for Tabletop Games.pdf
 
Distributed Systems in the Post-Moore Era.pptx
Distributed Systems in the Post-Moore Era.pptxDistributed Systems in the Post-Moore Era.pptx
Distributed Systems in the Post-Moore Era.pptx
 
Don't Treat the Symptom, Find the Cause!.pptx
Don't Treat the Symptom, Find the Cause!.pptxDon't Treat the Symptom, Find the Cause!.pptx
Don't Treat the Symptom, Find the Cause!.pptx
 
Engineering Serverless Workflow Applications in Federated FaaS.pdf
Engineering Serverless Workflow Applications in Federated FaaS.pdfEngineering Serverless Workflow Applications in Federated FaaS.pdf
Engineering Serverless Workflow Applications in Federated FaaS.pdf
 
The Role of Machine Learning in Fluid Network Control and Data Planes.pdf
The Role of Machine Learning in Fluid Network Control and Data Planes.pdfThe Role of Machine Learning in Fluid Network Control and Data Planes.pdf
The Role of Machine Learning in Fluid Network Control and Data Planes.pdf
 
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
Nonequilibrium Network Dynamics_Inference, Fluctuation-Respones & Tipping Poi...
 
Towards a data driven identification of teaching patterns.pdf
Towards a data driven identification of teaching patterns.pdfTowards a data driven identification of teaching patterns.pdf
Towards a data driven identification of teaching patterns.pdf
 
Förderverein Technische Fakultät.pptx
Förderverein Technische Fakultät.pptxFörderverein Technische Fakultät.pptx
Förderverein Technische Fakultät.pptx
 
The Computing Continuum.pdf
The Computing Continuum.pdfThe Computing Continuum.pdf
The Computing Continuum.pdf
 
East-west oriented photovoltaic power systems: model, benefits and technical ...
East-west oriented photovoltaic power systems: model, benefits and technical ...East-west oriented photovoltaic power systems: model, benefits and technical ...
East-west oriented photovoltaic power systems: model, benefits and technical ...
 
Machine Learning in Finance via Randomization
Machine Learning in Finance via RandomizationMachine Learning in Finance via Randomization
Machine Learning in Finance via Randomization
 
IT does not stop
IT does not stopIT does not stop
IT does not stop
 
Advances in Visual Quality Restoration with Generative Adversarial Networks
Advances in Visual Quality Restoration with Generative Adversarial NetworksAdvances in Visual Quality Restoration with Generative Adversarial Networks
Advances in Visual Quality Restoration with Generative Adversarial Networks
 
Recent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at Netflix
 
Industriepraktikum_ Unterstützung bei Projekten in der Automatisierung.pdf
Industriepraktikum_ Unterstützung bei Projekten in der Automatisierung.pdfIndustriepraktikum_ Unterstützung bei Projekten in der Automatisierung.pdf
Industriepraktikum_ Unterstützung bei Projekten in der Automatisierung.pdf
 
Introduction to 5G from radio perspective
Introduction to 5G from radio perspectiveIntroduction to 5G from radio perspective
Introduction to 5G from radio perspective
 

Dernier

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Dernier (20)

Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 

Polynomial Matrix Decompositions

  • 1. Polynomial Matrix Decompositions Stephan Weiss Centre for Signal & Image Processing Department of Electonic & Electrical Engineering University of Strathclyde, Glasgow, Scotland, UK F¨orderverein, Alpen-Adria Universit¨at Klagenfurt, 25. April 2016 With many thanks to: J.G. McWhirter, I.K. Proudler, J. Corr and F.K. Coutts This work was supported by QinetiQ, the Engineering and Physical Sciences Research Council (EPSRC) Grant number EP/K014307/1 and the MOD University Defence Re- search Collaboration in Signal Processing. 1 / 74
  • 2. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Presentation Overview 1. Overview Part I: Polynomial Matrices and Decompositions 2. Polynomial matrices and basic operations 2.1 occurence: MIMO systems, filter banks, space-time covariance 2.2 basic properties and operations 3. Polynomial eigenvalue decomposition (PEVD) 4. Iterative PEVD algorithms 4.1 sequential best rotation (SBR2) 4.2 sequential matrix diagonalisation (SMD) 5. PEVD Matlab toolbox Part II: Beamforming & Source Separation Applications 6. Broadband MIMO decoupling 7. Broadband angle of arrival estimation 7.1 broadband / polynomial subspace decomposition 7.2 polynomial MUSIC 8. Broadband beamforming 9. Summary and materials 2 / 74
  • 3. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material What is a Polynomial Matrix? ◮ A polynomial matrix is a polynomial with matrix-valued coefficients, e.g.: A(z) = 1 −1 −1 2 + 1 1 1 −1 z−1 + −1 2 1 −1 z−2 (1) ◮ a polynomial matrix can equivalently be understood a matrix with polynomial entries, i.e. A(z) = 1 + z−1 − z−2 −1 + z−1 + 2z−2 −1 + z−1 + z−2 2 − z−1 − z−2 (2) ◮ polynomial matrices could also contain rational polynomials, but the notation would not be as easily interchangeable as (1) and (2). 3 / 74
  • 4. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Where Do Polynomial Matrices Arise? ◮ A multiple-input multiple-output (MIMO) system could be made up of a number of finite impulse response (FIR) channels: +h11[n] h21[n] h12[n] h22[n] + y1[n] y2[n] x1[n] x2[n] ◮ writing this as a matrix of impulse responses: H[n] = h11[n] h12[n] h21[n] h22[n] (3) 4 / 74
  • 5. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Transfer Function of a MIMO System ◮ Example for MIMO matrix H[n] of impulse responses: 0 1 2 3 4 −0.5 0 0.5 1 h11[n] 0 1 2 3 4 −0.5 0 0.5 1 h12[n]0 1 2 3 4 −0.5 0 0.5 1 h21[n] discrete time index n 0 1 2 3 4 −0.5 0 0.5 1 h22[n] discrete time index n ◮ the transfer function of this MIMO system is a polynomial matrix: H(z) = ∞ n=−∞ H[n]z−1 or H(z) •—◦ H[n] (4) 5 / 74
  • 6. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Analysis Filter Bank ◮ Critically decimated K-channel analysis filter bank: H1(z) H2(z) HK(z) ↓K ↓K ... ↓K ◮ equivalent polyphase representation: z−1 z−1 ↓K ↓K ↓K      H1,1(z) . . . H1,K(z) H2,1(z) . . . H2,K(z) ... ... HK,1(z) . . . HK,K(z)      H(z) = 6 / 74
  • 7. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Polyphase Analysis Matrix ◮ With the K-fold polyphase decomposition of the analysis filters Hk(z) = K n=1 Hk,n(zK )z−n+1 (5) hk[n] n K = 4 ◮ the polyphase analysis matrix is a polynomial matrix: H(z) =      H1,1(z) H1,2(z) . . . H1,K(z) H2,1(z) H2,2(z) . . . H2,K(z) ... ... ... ... HK,1(z) HK,2(z) . . . HK,K(z)      (6) 7 / 74
  • 8. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Synthesis Filter Bank ◮ Critically decimated K-channel synthesis filter bank: ↑K ↑K ↑K G1(z) G2(z) GK(z) ... + + ◮ equivalent polyphase representation:      G1,1(z) . . . G1,K(z) G2,1(z) . . . G2,K(z) ... ... GK,1(z) . . . GK,K(z)      G(z) = ... + + z−1 z−1 ↑K ↑K ↑K 8 / 74
  • 9. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Polyphase Synthesis Matrix ◮ Analoguous to analysis filter bank, the synthesis filters Gk(z) can be split into K polyphase components, creating a polyphse synthesis matrix G(z) =      G1,1(z) G1,2(z) . . . G1,K(z) G2,1(z) G2,2(z) . . . G2,K(z) ... ... ... ... GK,1(z) GK,2(z) . . . GK,K(z)      (7) ◮ operating analysis and synthesis back-to-back, perfect reconstruction is achieved if G(z)H(z) = I ; (8) ◮ i.e. for perfect reconstruction, the polyphase analysis matrix must be invertible: G(z) = H−1 (z). 9 / 74
  • 10. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Space-Time Covariance Matrix ◮ Measurements obtained from M sensors are collected in a vector x[n] ∈ CM : xT [n] = [x1[n] x2[n] . . . xM [n]] ; (9) ◮ with the expectation operator E{·}, the spatial correlation is captured by R = E x[n]xH[n] ; ◮ for spatial and temporal correlation, we require a space-time covariance matrix R[τ] = E x[n]xH [n − τ] (10) ◮ this space-time covariance matrix contains auto- and cross-correlation terms, e.g. for M = 2 R[τ] = E{x1[n]x∗ 1[n − τ]} E{x1[n]x∗ 2[n − τ]} E{x2[n]x∗ 1[n − τ]} E{x2[n]x∗ 2[n − τ]} (11) 10 / 74
  • 11. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Cross-Spectral Density Matrix ◮ example for a space-time covariance matrix R[τ] ∈ R2×2: −2 −1 0 1 2 −0.5 0 0.5 1 rx1x1[τ] −2 −1 0 1 2 −0.5 0 0.5 1 rx1x2 [n]−2 −1 0 1 2 −0.5 0 0.5 1 rx2x1 [n] lag τ −2 −1 0 1 2 −0.5 0 0.5 1 rx2x2 [n] lag τ ◮ the cross-spectral density (CSD) matrix R(z) ◦—• R[τ] (12) is a polynomial matrix. 11 / 74
  • 12. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Parahermitian Operator ◮ A parahermitian operation is indicated by ˜{·}, and compared to the Hermitian (= complex conjugate transpose) of a matrix additionally performs a time-reversal; ◮ example: A(z) =      0 1 2 3 4 −0.5 0 0.5 1 0 1 2 3 4 −0.5 0 0.5 1 0 1 2 3 4 −0.5 0 0.5 1 0 1 2 3 4 −0.5 0 0.5 1      ◮ parahermitian ˜A(z) = AH (z−1): ˜A(z) =      −4 −3 −2 −1 0 −0.5 0 0.5 1 −4 −3 −2 −1 0 −0.5 0 0.5 1 −4 −3 −2 −1 0 −0.5 0 0.5 1 −4 −3 −2 −1 0 −0.5 0 0.5 1      12 / 74
  • 13. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Parahermitian Property ◮ A polynomial matrix A(z) is parahermitian if ˜A(z) = A(z); ◮ this is an extension of the symmetric (if A ∈ R) or or Hermitian (if A ∈ C) property to the polynomial case: transposition, complex conjugation and time reversal (in any order) do not alter a parahermitian A(z); ◮ any CSD matrix is parahermitian; ◮ example: R(z) =           −2 −1 0 1 2 −0.5 0 0.5 1 −2 −1 0 1 2 −0.5 0 0.5 1 −2 −1 0 1 2 −0.5 0 0.5 1 −2 −1 0 1 2 −0.5 0 0.5 1           = ˜R(z) 13 / 74
  • 14. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Paraunitary Matrices ◮ Recall that A ∈ C (or A ∈ R) is a unitary (or orthonormal) matrix if AAH = AHA = I; ◮ in the polynomial case, A(z) is paraunitary if A(z) ˜A(z) = ˜A(z)A(z) = I (13) ◮ therefore, if A(z) is paraunitary, then the polynomial matrix inverse is simple: A−1 (z) = ˜A(z) (14) ◮ example: polyphase analysis or synthesis matrices of perfectly reconstructing (or lossless) filter banks are usually paraunitary. 14 / 74
  • 15. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Attempt of Gaussian Elimination ◮ System of polynomial equations: A11(z) A12(z) A21(z) A22(z) · X1(z) X2(z) = B1(z) B2(z) (15) ◮ modification of 2nd row: A11(z) A12(z) A11(z) A11(z) A21(z) A22(z) · X1(z) X2(z) = B1(z) A11(z) A21(z) B2(z) (16) ◮ upper triangular form by subtracting 1st row from 2nd: A11(z) A12(z) 0 A11(z)A22(z)−A12(z)A21(z) A21(z) · X1(z) X2(z) = B1(z) ¯B2(z) (17) ◮ penalty: we end up with rational polynomials. 15 / 74
  • 16. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Polynomial Eigenvalue Decomposition [McWhirter et al., IEEE TSP 2007] ◮ Polynomial EVD of the CSD matrix R(z) ≈ Q(z) Λ(z) ˜Q(z) (18) ◮ with paraunitary Q(z), s.t. Q(z) ˜Q(z) = I; ◮ diagonalised and spectrally majorised Λ(z): −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 γij[τ] −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 lat τ −10 0 10 0 10 20 30 40 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −10 −5 0 5 10 15 20 normalised angular frequency Ω/(2π) 10log10|Γi|/[dB] i=1 i=2 i=3 ◮ approximation in (18) can be close with an FIR Q(z) of sufficiently high order [Icart & Comon 2012]. 16 / 74
  • 17. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material PEVD Ambiguity [Corr et al., EUSIPCO 2015] ◮ We believe diagonalised and spectral majorised Λ(z) is unique; ◮ but there is ambiguity w.r.t. the paraunitary matrix Q(z); ◮ set ¯Q(z) = Q(z)Γ(z), with a diagonal allpass Γ(z): R(z) = ¯Q(z)Λ(z)˜¯Q(z) = Q(z)Γ(z)Λ(z)˜Γ(z) ˜Q(z) = Q(z)Λ(z)Γ(z)˜Γ(z) ˜Q(z) = Q(z)Λ(z) ˜Q(z) (19) ◮ example for ˜Q(z) — note different orders: 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 10 20 30 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 0 2 4 6 0 0.2 0.4 0.6 17 / 74
  • 18. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Iterative PEVD Algorithms ◮ Second order sequential best rotation (SBR2, McWhirter 2007); ◮ iterative approach based on an elementary paraunitary operation: S(0) (z) = R(z) ... S(i+1) (z) = ˜H (i+1) (z)S(i+1) (z)H(i+1) (z) ◮ H(i) (z) is an elementary paraunitary operation, which at the ith step eliminates the largest off-diagonal element in s(i−1)(z); ◮ stop after L iterations: ˆΛ(z) = S(L) (z) , Q(z) = L i=1 H(i) (z) ◮ sequential matrix diagonalisation (SMD) and ◮ multiple-shift SMD (MS-SMD) will follow the same scheme . . . 18 / 74
  • 19. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Elementary Paraunitary Operation ◮ An elementary paraunitary matrix [Vaidyanathan] is defined as H(i) (z) = I − v(i) v(i),H + z−1 v(i) v(i),H , v(i) 2 = 1 ◮ we utilise a different definition: H(i) (z) = D(i) (z)Q(i) ◮ D(i) (z) is a delay matrix: D(i) (z) = diag 1 . . . 1 z−τ 1 . . . 1 ◮ Q(i)(z) is a Givens rotation. 19 / 74
  • 20. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ At iteration i, consider S(i−1) (z) ◦—• S(i−1)[τ] 000111 00 00 11 11 001100001111 000 000 111 111 000111001100 00 11 11 0 −T T 20 / 74
  • 21. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ ˜D (i) (z)S(i−1) (z)D(i) (z) 0011000 000 111 111 00 00 11 11 0011000111000 000 111 111 00 00 11 11 00110 −T T ·     1 ... z−T 1         1 ... zT 1     · 20 / 74
  • 22. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ ˜D (i) (z) advances a row-slice of S(i−1) (z) by T 00000000000000000000 0000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 11111111111111111111 1111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 0011000 000 111 111 00 00 11 11 0011000111000 000 111 111 00 00 11 11 00110 −T T     1 ... zT 1     · ·     1 ... z−T 1     20 / 74
  • 23. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ the off-diagonal element at −T has now been translated to lag zero 0000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 1111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 000111000111000111000111000111000111 000111 0011 0 ·     1 ... z−T 1     T −T 20 / 74
  • 24. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ D(i)(z) delays a column-slice of S(i−1) (z) by T 00000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 11111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 000 000 111 111 000 000 111 111 000 000 111 111 000111 000000111111 000000000 000000000000000000 000000000 000000000 111111111 111111111111111111 111111111 111111111 000000000000000000000000000000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 111111111111111111111111111111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 00 00 11 11 000000000 000000000 000000000000000000 000000000 111111111 111111111 111111111111111111 111111111 0 ·     1 ... z−T 1     T −T 20 / 74
  • 25. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ the off-diagonal element at −T has now been translated to lag zero 00000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 000000000000000000000000000000000000000000000000000000000000 00000000000000000000 00000000000000000000 11111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 111111111111111111111111111111111111111111111111111111111111 11111111111111111111 11111111111111111111 000111000111000111000111 000111 000000000000000000000000000000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 111111111111111111111111111111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 111111111111111111111111111 000111 0 T −T 20 / 74
  • 26. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ the step ˜D (i) (z)S(i−1) (z)D(i)(z) has brought the largest off-diagonal elements to lag 0. 000111 00 00 11 11 001100 00 11 11 000 000 111 111 000111001100 00 11 11 0 T −T 20 / 74
  • 27. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ Jacobi step to eliminate largest off-diagonal elements by Q(i) 00 00 11 11 00 00 11 11 000111000 000 111 111 0011 000 000 111 111 0 ·     c −e−jϑ s I ejϑ s c 1         c e−jϑ s I −ejϑ s c 1     · T −T 20 / 74
  • 28. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Best Rotation Algorithm (McWhirter) ◮ iteration i is completed, having performed S(i) (z) = Q(i) D(i) (z)S(i−1) (z) ˜D (i) (z) ˜Q(i) (z) 0011 0011000111000000111111 00 00 11 11 00001111 0 T −T 20 / 74
  • 29. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SBR2 Outcome ◮ At the ith iteration, the zeroing of off-diagonal elements achieved during previous steps may be partially undone; ◮ however, the algorithm has been shown to converge, transfering energy onto the main diagonal at every step (McWhirter 2007); ◮ after L iterations, we reach an approximate diagonalisation ˆΛ(z) = S(L) (z) = ˜Q(z)R(z)Q(z) with Q(z) = L i=1 D(i) (z)Q(i) ◮ diagonalisation of the previous 3 × 3 polynomial matrix . . . 21 / 74
  • 30. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SBR2 Example — Diagonalisation −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 γij[τ] −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 lat τ −10 0 10 0 10 20 30 40 22 / 74
  • 31. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SBR2 Example — Spectral Majorisation ◮ The on-diagonal elements are spectrally majorised 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −10 −5 0 5 10 15 20 normalised angular frequency Ω/(2π) 10log10|Γi|/[dB] i=1 i=2 i=3 23 / 74
  • 32. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SBR2 — Givens Rotation ◮ A Givens rotation eliminates the maximum off-diagonal element once brought onto the lag-zero matrix; ◮ note I: in the lag-zero matrix, one column and one row are modified by the shift: ◮ note II: a Givens rotation only affects two columns and two rows in every matrix; ◮ Givens rotation is relatively low in computational cost! 24 / 74
  • 33. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SBR2 — Givens Rotation ◮ A Givens rotation eliminates the maximum off-diagonal element once brought onto the lag-zero matrix; ◮ note I: in the lag-zero matrix, one column and one row are modified by the shift: ◮ note II: a Givens rotation only affects two columns and two rows in every matrix; ◮ Givens rotation is relatively low in computational cost! 24 / 74
  • 34. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Matrix Diagonalisation (SMD) [Redif et al., IEEE Trans SP 2015] ◮ Main idea — the zero-lag matrix is diagonalised in every step; ◮ initialisation: diagonalise R[0] by EVD and apply modal matrix to all matrix coefficients −→ S(0) ; ◮ at the ith step as in SBR2, the maximum element (or column with max. norm) is shifted to the lag-zero matrix: ◮ an EVD is used to re-diagonalise the zero-lag matrix; ◮ a full modal matrix is applied at all lags — more costly than SBR2. 25 / 74
  • 35. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Sequential Matrix Diagonalisation (SMD) [Redif et al., IEEE Trans SP 2015] ◮ Main idea — the zero-lag matrix is diagonalised in every step; ◮ initialisation: diagonalise R[0] by EVD and apply modal matrix to all matrix coefficients −→ S(0) ; ◮ at the ith step as in SBR2, the maximum element (or column with max. norm) is shifted to the lag-zero matrix: −→ ◮ an EVD is used to re-diagonalise the zero-lag matrix; ◮ a full modal matrix is applied at all lags — more costly than SBR2. 25 / 74
  • 36. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Multiple Shift SMD (SMD) ◮ SMD converges faster than SBR2 — more energy is transfered per iteration step; ◮ SMD is more expensive than SBR2 — full matrix multiplication at every lag; ◮ this cost will not increase further if more columns / rows are shifted into the lag-zero matrix at every iteration ◮ MS-SMD will transfer yet more off-diagonal energy per iteration; ◮ because the total energy must remain constant under paraunitary operations, SBR2, SMD and MS-SMD can be proven to converge. 26 / 74
  • 37. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Multiple Shift SMD (SMD) ◮ SMD converges faster than SBR2 — more energy is transfered per iteration step; ◮ SMD is more expensive than SBR2 — full matrix multiplication at every lag; ◮ this cost will not increase further if more columns / rows are shifted into the lag-zero matrix at every iteration ◮ MS-SMD will transfer yet more off-diagonal energy per iteration; ◮ because the total energy must remain constant under paraunitary operations, SBR2, SMD and MS-SMD can be proven to converge. 26 / 74
  • 38. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Multiple Shift SMD (SMD) ◮ SMD converges faster than SBR2 — more energy is transfered per iteration step; ◮ SMD is more expensive than SBR2 — full matrix multiplication at every lag; ◮ this cost will not increase further if more columns / rows are shifted into the lag-zero matrix at every iteration ◮ MS-SMD will transfer yet more off-diagonal energy per iteration; ◮ because the total energy must remain constant under paraunitary operations, SBR2, SMD and MS-SMD can be proven to converge. 26 / 74
  • 39. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Multiple Shift SMD (SMD) ◮ SMD converges faster than SBR2 — more energy is transfered per iteration step; ◮ SMD is more expensive than SBR2 — full matrix multiplication at every lag; ◮ this cost will not increase further if more columns / rows are shifted into the lag-zero matrix at every iteration −→ ◮ MS-SMD will transfer yet more off-diagonal energy per iteration; ◮ because the total energy must remain constant under paraunitary operations, SBR2, SMD and MS-SMD can be proven to converge. 26 / 74
  • 40. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SBR2/SMD/MS-SMD Convergence ◮ Measuring the remaining normalised off-diagonal energy over an ensemble of space-time covariance matrices: 0 10 20 30 40 50 60 70 80 90 100 −40 −35 −30 −25 −20 −15 −10 −5 0 iteration index i normalisedoff-diagonalenergy/[dB] SBR2 SMD MS−SMD C−MS−SMD 95% conf. intervals 27 / 74
  • 41. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SBR2/SMD/MS-SMD Application Cost 1 ◮ Ensemble average of remaining off-diagonal energy vs. order of paraunitary filter banks to decompose 4x4x16 matrices: 0 5 10 15 20 25 −30 −25 −20 −15 −10 −5 0 paraunitary filter bank order normalisedoff-diagonalenergy/[dB] SBR2 SMD MS−SMD C−MS−SMD 28 / 74
  • 42. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SBR2/SMD/MS-SMD Application Cost 2 ◮ Ensemble average of remaining off-diagonal energy vs. order of paraunitary filter banks to decompose 8x8x64 matrices: 10 15 20 25 30 35 40 45 50 55 60 −30 −25 −20 −15 −10 −5 0 paraunitary filter bank order 5log10M{E (i) norm}/[dB] SBR2 SBR2C SMD v2 SMD 29 / 74
  • 43. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material MATLAB Polynomial EVD Toolbox ◮ The MATLAB polynomial EVD toolbox can be downloaded from pevd-toolbox.eee.strath.ac.uk ◮ the toolbox contains a number of iterative algorithms to calculate an approximate PEVD, related functions, and demos. 30 / 74
  • 44. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband MIMO Communications ◮ a narrowband channel is characterised by a matrix C containing complex gain factors; ◮ problem: how to select the precoder and equaliser? C? ?... ... ... ... ◮ overall system; 31 / 74
  • 45. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband MIMO Communications ◮ a narrowband channel is characterised by a matrix C containing complex gain factors; ◮ problem: how to select the precoder and equaliser? C = UΣVH VH Σ U? ?... ... ... ... ... ... ◮ the singular value decomposition (SVD) factorises C into two unitary matrices U and VH and a diagonal matrix Σ; 31 / 74
  • 46. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband MIMO Communications ◮ a narrowband channel is characterised by a matrix C containing complex gain factors; ◮ problem: how to select the precoder and equaliser? C = UΣVH VH Σ UV UH... ... ... ... ... ... ◮ we select the precoder and the equaliser from the unitary matrices provided by the channel’s SVD; ◮ the overall system is diagonalised, decoupling the channel into independent single-input single-output systems by means of unitary matrices. 31 / 74
  • 47. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Broadband MIMO Channel ◮ The channel is now a matrix of FIR filters; example for a 3 × 4 MIMO system C[n]: 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 discrete time index n |ci,j[n]| ◮ the transfer function C(z) •—◦ C[n] is a polynomial matrix; ◮ an SVD can only diagonalise C[n] for one particular lag n. 32 / 74
  • 48. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Standard Broadband MIMO Approaches ◮ OFDM (if approximate channel length is known): 1. divide spectrum into narrowband channels; 2. address each narrowband channel independently using narrowband-optimal techniques; drawback: ignores spectral coherence across frequency bins; ◮ optimum filter bank transceiver (if channel itself is known): 1. block processing; 2. inter-block interference is eliminated by guard intervals; 3. resulting matrix can be diagonalised by SVD; ◮ both techniques invest DOFs into the guard intervals, which are generally not balanced against other error sources. C0 C1z−1 ( +y(z) = ) · x(z) 33 / 74
  • 49. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Standard Broadband MIMO Approaches ◮ OFDM (if approximate channel length is known): 1. divide spectrum into narrowband channels; 2. address each narrowband channel independently using narrowband-optimal techniques; drawback: ignores spectral coherence across frequency bins; ◮ optimum filter bank transceiver (if channel itself is known): 1. block processing; 2. inter-block interference is eliminated by guard intervals; 3. resulting matrix can be diagonalised by SVD; ◮ both techniques invest DOFs into the guard intervals, which are generally not balanced against other error sources. C0 C1z−1 ( +y(z) = ) · x(z) 33 / 74
  • 50. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Standard Broadband MIMO Approaches ◮ OFDM (if approximate channel length is known): 1. divide spectrum into narrowband channels; 2. address each narrowband channel independently using narrowband-optimal techniques; drawback: ignores spectral coherence across frequency bins; ◮ optimum filter bank transceiver (if channel itself is known): 1. block processing; 2. inter-block interference is eliminated by guard intervals; 3. resulting matrix can be diagonalised by SVD; ◮ both techniques invest DOFs into the guard intervals, which are generally not balanced against other error sources. C′ 0(y(z) = ) · x(z) 33 / 74
  • 51. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Standard Broadband MIMO Approaches ◮ OFDM (if approximate channel length is known): 1. divide spectrum into narrowband channels; 2. address each narrowband channel independently using narrowband-optimal techniques; drawback: ignores spectral coherence across frequency bins; ◮ optimum filter bank transceiver (if channel itself is known): 1. block processing; 2. inter-block interference is eliminated by guard intervals; 3. resulting matrix can be diagonalised by SVD; ◮ both techniques invest DOFs into the guard intervals, which are generally not balanced against other error sources. C0 C1z−1 ( +y(z) = ) · x(z) 33 / 74
  • 52. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Standard Broadband MIMO Approaches ◮ OFDM (if approximate channel length is known): 1. divide spectrum into narrowband channels; 2. address each narrowband channel independently using narrowband-optimal techniques; drawback: ignores spectral coherence across frequency bins; ◮ optimum filter bank transceiver (if channel itself is known): 1. block processing; 2. inter-block interference is eliminated by guard intervals; 3. resulting matrix can be diagonalised by SVD; ◮ both techniques invest DOFs into the guard intervals, which are generally not balanced against other error sources. C′ 0(y(z) = ) · x(z) 33 / 74
  • 53. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Polynomial Singular Value Decompositions ◮ Iterative algorithms have been developed to determine a polynomial eigenvalue decomposition (EVD) for a parahermitian matrix R(z) = ˜R(z) = RH (z−1): R(z) ≈ H(z)Γ(z) ˜H(z) ◮ paraunitary H(z) ˜H(z) = I, diagonal and spectrally majorised Γ(z); ◮ polynomial SVD of channel C(z) can be obtained via two EVDs: C(z) ˜C(z) = U(z)Σ+ (z)Σ− (z) ˜U(z) ˜C(z)C(z) = V (z)Σ− (z)Σ+ (z) ˜V (z) finally: C(z) = U(z)Σ+ (z) ˜V (z) 34 / 74
  • 54. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material MIMO Application Example ◮ Polynomial SVD of the previous C(z) ∈ C3×4 channel matrix: 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 0 5 10 0 2 4 discrete time index n |σi,j[n]| ◮ the singular value spectra are majorised: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 −10 0 10 norm. angular frequency Ω/(2π) PSD/[dB] Σ+ 1 (ejΩ ) Σ+ 2 (ejΩ ) Σ+ 3 (ejΩ ) 35 / 74
  • 55. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband Source Model ◮ Scenario with sensor array and far-field sources: x1[n] x2[n] x3[n] xM [n] s1[n] ◮ for the narrowband case, the source signals arrive with delays, expressed by phase shifts in a steering vector ◮ data model: x[n] = 36 / 74
  • 56. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband Source Model ◮ Scenario with sensor array and far-field sources: x1[n] x2[n] x3[n] xM [n] s1[n] ◮ for the narrowband case, the source signals arrive with delays, expressed by phase shifts in a steering vector s1 ◮ data model: x[n] = s1[n] · s1 36 / 74
  • 57. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband Source Model ◮ Scenario with sensor array and far-field sources: x1[n] x2[n] x3[n] xM [n] s1[n] s2[n] ◮ for the narrowband case, the source signals arrive with delays, expressed by phase shifts in a steering vector s1 ◮ data model: x[n] = s1[n] · s1 36 / 74
  • 58. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband Source Model ◮ Scenario with sensor array and far-field sources: x1[n] x2[n] x3[n] xM [n] s1[n] s2[n] ◮ for the narrowband case, the source signals arrive with delays, expressed by phase shifts in a steering vector s1, s2 ◮ data model: x[n] = s1[n] · s1 + s1[n] · s2 36 / 74
  • 59. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband Source Model ◮ Scenario with sensor array and far-field sources: x1[n] x2[n] x3[n] xM [n] s1[n] s2[n] sR[n] ◮ for the narrowband case, the source signals arrive with delays, expressed by phase shifts in a steering vector s1, s2 ◮ data model: x[n] = s1[n] · s1 + s1[n] · s2 36 / 74
  • 60. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband Source Model ◮ Scenario with sensor array and far-field sources: x1[n] x2[n] x3[n] xM [n] s1[n] s2[n] sR[n] ◮ for the narrowband case, the source signals arrive with delays, expressed by phase shifts in a steering vector s1, s2, . . . sR; ◮ data model: x[n] = s1[n] · s1 + s1[n] · s2 + · · · + sR[n] · sR = R r=1 sr[n] · sr 36 / 74
  • 61. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Steering Vector ◮ A signal s[n] arriving at the array can be characterised by the delays of its wavefront (neglecting attenuation):      x0[n] x1[n] ... xM−1[n]      =      s[n − τ0] s[n − τ1] ... s[n − τM−1]      =      δ[n − τ0] δ[n − τ1] ... δ[n − τM−1]      ∗s[n] ◦—• aϑ(z)S(z) ◮ if evaluated at a narrowband normalised angular frequency Ωi, the time delays τm in the broadband steering vector aϑ(z) collapse to phase shifts in the narrowband steering vector aϑ,Ωi , aϑ,Ωi = aϑ(z)|z=ejΩi =      e−jτ0Ωi e−jτ1Ωi ... e−jτM−1Ωi      . 37 / 74
  • 62. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Data and Covariance Matrices ◮ A data matrix X ∈ CM×L can be formed from L measurements: X = x[n] x[n + 1] . . . x[n + L − 1] ◮ assuming that all xm[n], m = 1, 2, . . . M are zero mean, the (instantaneous) data covariance matrix is R = E x[n]xH [n] ≈ 1 L XXH where the approximation assumes ergodicity and a sufficiently large L; ◮ Problem: can we tell from X or R (i) the number of sources and (ii) their orgin / time series? ◮ w.r.t. Jonathon Chamber’s introduction, we here only consider the underdetermined case of more sensors than sources, M ≥ K, and generally L ≫ M. 38 / 74
  • 63. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SVD of Data Matrix ◮ Singular value decomposition of X: X U Σ VH= ◮ unitary matrices U = [u1 . . . uM ] and V = [v1 . . . vL]; ◮ diagonal Σ contains the real, positive semidefinite singular values of X in descending order: Σ =       σ1 0 . . . 0 0 . . . 0 0 σ2 ... ... ... ... ... ... ... 0 ... ... 0 0 σM 0 . . . 0       with σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0. 39 / 74
  • 64. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Singular Values ◮ If the array is illuminated by R ≤ M linearly independent sources, the rank of the data matrix is rank{X} = R ◮ only the first R singular values of X will be non-zero; ◮ in practice, noise often will ensure that rank{X} = M, with M − R trailing singular values that define the noise floor: 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 0.6 0.8 1 ordered index m σm ◮ therefore, by thresholding singular values, it is possible to estimate the number of linearly independent sources R. 40 / 74
  • 65. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Subspace Decomposition ◮ If rank{X} = R, the SVD can be split: X = [Us Un] Σs 0 0 Σn VH s VH n ◮ with Us ∈ CM×R and VH s ∈ CR×L corresponding to the R largest singular values; ◮ Us and VH s define the signal-plus-noise subspace of X: X = M m=1 σmumvH m ≈ R m=1 σmumvH m ◮ the complements Un and VH n , UH s Un = 0 , VsVH n = 0 define the noise-only subspace of X. 41 / 74
  • 66. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material SVD via Two EVDs ◮ Any Hermitian matrix A = AH allows an eigenvalue decomposition A = QΛQH with Q unitary and the eigenvalues in Λ real valued and positive semi-definite; ◮ postulating X = UΣVH, therefore: XXH = (UΣVH )(VΣH UH ) = UΛUH (20) XH X = (VΣH UH )(UΣVH ) = VΛVH (21) ◮ (ordered) eigenvalues relate to the singular values: λm = σ2 m; ◮ the covariance matrix R = 1 L XX has the same rank as the data matrix X, and with U provides access to the same spatial subspace decomposition. 42 / 74
  • 67. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband MUSIC Algorithm ◮ EVD of the narrowband covariance matrix identifies signal-plus-noise and noise-only subspaces R = [Us Un] Λs 0 0 Λn UH s UH n ◮ scanning the signal-plus-noise subspace could only help to retrieve sources with orthogonal steering vectors; ◮ therefore, the multiple signal classification (MUSIC) algorithm scans the noise-only subspace for minima, or maxima of its reciprocal SMUSIC(ϑ) = 1 Unaϑ,Ωi 2 2 −80 −60 −40 −20 0 20 40 60 80 −40 −20 0 SMUSIC(ϑ)/[dB] 43 / 74
  • 68. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband Source Separation ◮ Via SVD of the data matrix X or EVD of the covariance matrix R, we can determine the number of linearly independent sources R; ◮ using the subspace decompositions offered by EVD/SVD, the directions of arrival can be estimated using e.g. MUSIC; ◮ based on knowledge of the angle of arrival, beamforming could be applied to X to extract specific sources; ◮ overall: EVD (and SVD) can play a vital part in narrowband source separation; ◮ what about broadband source separation? 44 / 74
  • 69. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Broadband Array Scenario x0[n] x1[n] x2[n] xM−1[n] s1[n] ◮ Compared to the narrowband case, time delays rather than phase shifts bear information on the direction of a source. 45 / 74
  • 70. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Broadband Steering Vector ◮ A signal s[n] arriving at the array can be characterised by the delays of its wavefront (neglecting attenuation):      x0[n] x1[n] ... xM−1[n]      =      s[n − τ0] s[n − τ1] ... s[n − τM−1]      =      δ[n − τ0] δ[n − τ1] ... δ[n − τM−1]      ∗s[n] ◦—• aϑ(z)S(z) ◮ if evaluated at a narrowband normalised angular frequency Ωi, the time delays τm in the broadband steering vector aϑ(z) collapse to phase shifts in the narrowband steering vector aϑ,Ωi , aϑ,Ωi = aϑ(z)|z=ejΩi =      e−jτ0Ωi e−jτ1Ωi ... e−jτM−1Ωi      . 46 / 74
  • 71. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Space-Time Covariance Matrix ◮ If delays must be considered, the (space-time) covariance matrix must capture the lag τ: R[τ] = E x[n] · xH [n − τ] ◮ R[τ] contains auto- and cross-correlation sequences: −2 0 2 0 5 10 15 20 −2 0 2 0 5 10 15 20 −2 0 2 0 5 10 15 20 −2 0 2 0 5 10 15 20 rij[τ] −2 0 2 0 5 10 15 20 −2 0 2 0 5 10 15 20 −2 0 2 0 5 10 15 20 −2 0 2 0 5 10 15 20 lat τ −2 0 2 0 5 10 15 20 47 / 74
  • 72. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Cross Spectral Density Matrix ◮ z-transform of the space-time covariance matrix is given by R[τ] = E xnxH n−τ ◦—• R(z) = l Sl(z)aϑl (z)˜aϑl (z)+σ2 N I with ϑl the direction of arrival and Sl(z) the PSD of the lth source; ◮ R(z) is the cross spectral density (CSD) matrix; ◮ the instantaneous covariance matrix (no lag parameter τ) R = E xnxH n = R[0] 48 / 74
  • 73. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Polynomial MUSIC (PMUSIC) [Alrmah, Weiss, Lambotharan,EUSIPCO (2011)] ◮ Based on the polynomial EVD of the broadband covariance matrix R(z) ≈ [Qs(z) Qn(z)] Q(z) Λs(z) 0 0 Λn(z) Λ(z) ˜Qs(z) ˜Qn(z) ◮ paraunitary Q(z), s.t. Q(z) ˜Q(z) = I; ◮ diagonalised and spectrally majorised Λ(z): −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 γij[τ] −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 −10 0 10 0 10 20 30 40 lat τ −10 0 10 0 10 20 30 40 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −10 −5 0 5 10 15 20 normalised angular frequency Ω/(2π) 10log10|Γi|/[dB] i=1 i=2 i=3 49 / 74
  • 74. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material PMUSIC cont’d ◮ Idea —- scan the polynomial noise-only subspace Qn(z) with broadband steering vectors Γ(z, ϑ) = ˜aϑ(z) ˜Qn(z)Qn(z)aϑ(z) ◮ looking for minima leads to a spatio-spectral PMUSIC SPSS−MUSIC(ϑ, Ω) = (Γ(z, ϑ)|z=ejΩ )−1 ◮ and a spatial-only PMUSIC SPS−MUSIC(ϑ) = 2π Γ(z, ϑ)|z=ejΩ dΩ −1 = Γ−1 ϑ [0] with Γϑ[τ] ◦—• Γ(z, ϑ). 50 / 74
  • 75. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Simulation I — Toy Problem ◮ Linear uniform array with critical spatial and temporal sampling; ◮ broadband steering vector for end-fire position: aπ/2(z) = [1 z−1 · · · z−M+1 ]T ◮ covariance matrix R(z) = aπ/2(z)˜aπ/2(z) =       1 z1 . . . zM−1 z−1 1 ... ... ... ... z−M+1 . . . . . . 1       . ◮ PEVD (by inspection) Q(z) = TDFTdiag 1 z−1 · · · z−M+1 ; Λ(z) = diag{1 0 · · · 0} ◮ simulations with M = 4 . . . 51 / 74
  • 76. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Simulation I — PSS-MUSIC −60 −40 −20 0 20 40 60 80 100 120 0 0.5 1 −50 0 Ω/π ϑ/◦ SPSS(ϑ,ejΩ )/[dB] (a) −60 −40 −20 0 20 40 60 80 100 120 0 0.5 1 −120 −100 −80 −60 −40 −20 Ω/π ϑ/◦ Sdiff(ϑ,ejΩ )/[dB] (b) 52 / 74
  • 77. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Simulation II ◮ M = 8 element sensor array illuminated by three sources; ◮ source 1: ϑ1 = −30◦, active over range Ω ∈ [3π 8 ; π]; ◮ source 2: ϑ2 = 20◦, active over range Ω ∈ [π 2 ; π]; ◮ source 3: ϑ3 = 40◦, active over range Ω ∈ [2π 8 ; 7π 8 ]; and 0 40 60 90-30-60-90 π π 2 Ω ϑ/[◦] 20 ◮ filter banks as innovation filters, and broadband steering vectors to simulate AoA; ◮ space-time covariance matrix is estimated from 104 samples. 53 / 74
  • 78. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Simulation II — PSS-MUSIC −80 −60 −40 −20 0 20 40 60 80 0 0.2 0.4 0.6 0.8 1 0 20 40 Ω/π ϑ/◦ SPSS(ϑ,ejΩ )/[dB] (a) −80 −60 −40 −20 0 20 40 60 80 0 0.2 0.4 0.6 0.8 1 0 20 40 Ω/π ϑ/◦ SAF(ϑ,ejΩ )/[dB] (b) 54 / 74
  • 79. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material PS-MUSIC Comparison ◮ Simulation I (toy problem): peaks normalised to unity: 87 88 89 90 91 92 93 0 0.2 0.4 0.6 0.8 1 ϑ/◦ normalisedspectrum AF-MUSIC (Ω0 = π/2) AF-MUSIC (integrated) PS-MUSIC (SBR2) PS-MUSIC (ideal) ◮ Simulation II: inaccuracies on PEVD and broadband steering vector −80 −60 −40 −20 0 20 40 60 80 −40 −30 −20 −10 0 ϑ/◦ normalisedspectrum/[dB] sources AF−MUSIC PS−MUSIC 55 / 74
  • 80. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material AoA Estimation — Conclusions ◮ We have considered the importance of SVD and EVD for narrowband source separation; ◮ narrowband matrix decomposition real the matrix rank and offer subspace decompositions on which angle-of-arrival estimation alhorithms such as MUSIC can be based; ◮ broadband problems lead to a space-time covariance or CSD matrix; ◮ such polynomial matrices cannot be decomposed by standard EVD and SVD; ◮ a polynomial EVD has been defined; ◮ iterative algorithms such as SBR2 can be used to approximate the PEVD; ◮ this permits a number of applications, such as broadband angle of arrival estimation; ◮ broadband beamforming could then be used to separate broadband sources. 56 / 74
  • 81. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband Minimum Variance Distortionless Response Beamformer ◮ Scenario: an array of M sensors receives data x[n], containing a desired signal with frequency Ωs and angle of arrival ϑs, corrupted by interferers; ◮ a narrowband beamformer applies a single coefficient to every of the M sensor signals: x1[n] x2[n] xM [n] w1 w2 wM + × × × ... e[n] 57 / 74
  • 82. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Narrowband MVDR Problem ◮ Recall the space-time covariance matrix: R[τ] = E x[n]xH [n − τ] ◮ the MVDR beamformer minimises the output power of the beamformer: min w E |e[n]|2 = min w wH R[0]w (22) s.t. aH (ϑs, Ωs)w = 1 , (23) ◮ this is subject to protecting the signal of interest by a constraint in look direction ϑs; ◮ the steering vector aϑs,Ωs defines the signal of interest’s parameters. 58 / 74
  • 83. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Broadband MVDR Beamformer ◮ Each sensor is followed by a tap delay line of dimension L, giving a total of ML coefficients in a vector v ∈ CML + e[n] z−1 z−1 z−1 × ××× x1[n] + + + w1,1 w1,2 w1,3 w1,L x1[n − L + 1]x1[n − 2] z−1 z−1 z−1 × ××× xM [n] + + + wM,1 wM,2 wM,3 wM,L xM [n − L + 1]xM [n − 2] ... ... 59 / 74
  • 84. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Broadband MVDR Beamformer ◮ A larger input vector xn ∈ CML is generated, also including lags; ◮ the general approach is similar to the narrowband system, minimising the power of e[n] = vHxn; ◮ however, we require several constraint equations to protect the signal of interest, e.g. C = [s(ϑs, Ω0), s(ϑs, Ω1) . . . s(ϑs, ΩL−1)] (24) ◮ these L constraints pin down the response to unit gain at L separate points in frequency: CH v = 1 ; (25) ◮ generally C ∈ CML×L, but simplifications can be applied if the look direction is towards broadside. 60 / 74
  • 85. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Generalised Sidelobe Canceller ◮ A quiescent beamformer vq = CH † 1 ∈ CML picks the signal of interest; ◮ the quiescent beamformer is optimal for AWGN but generally passes structured interference; ◮ the output of the blocking matrix B contains interference only, which requires [BC] to be unitary; hence B ∈ CML×(M−1)L; ◮ an adaptive noise canceller va ∈ C(M−1)L aims to remove the residual interference: vH q (z) B vH a (z) + − d[n] e[n]y[n] xn u[n] ◮ note: all dimensions are determined by {M, L}. 61 / 74
  • 86. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Polynomial Matrix MVDR Formulation ◮ Power spectral density of beamformer output: Re(z) = ˜w(z)R(z)w(z) ◮ proposed broadband MVDR beamformer formulation: min w(z) |z|=1 Re(z) dz z (26) s.t. ˜a(ϑs, z)w(z) = F(z) . (27) ◮ precision of broadband steering vector, |˜a(ϑs, z)a(ϑs, z) − 1|, depends on the length T of the fractional delay filter: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 −80 −70 −60 −50 −40 −30 −20 −10 0 normalised angular frequency Ω/(2π) 20log10|E1(ejΩ )| T=50 T=100 62 / 74
  • 87. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Generalised Sidelobe Canceller ◮ Instead of performing constrained optimisation, the GSC projects the data and performs adaptive noise cancellation: ˜wq(z) B(z) ˜wa(z) + − d[n] e[n]y[n] x[n] u[n] ◮ the quiescent vector wq(z) is generated from the constraints and passes signal plus interference; ◮ the blocking matrix B(z) has to be orthonormal to wq(z) and only pass interference. 63 / 74
  • 88. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Design Considerations ◮ The blocking matrix can be obtained by completing a paraunitary matrix from wq(z); ◮ this can be achieved by calculating a PEVD of the rank one matrix wq(z) ˜wq(z); ◮ this leads to a block matrix of order N that is typically greater than L; ◮ maximum leakage of the signal of interest through the blocking matrix: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 −55 −50 −45 −40 −35 −30 −25 normalised angular frequency Ω/(2π) 20log10|E2(ejΩ )| truncation 1e-4, N = 164 truncation 1e-3, N = 140 64 / 74
  • 89. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Computational Cost ◮ With M sensors and a TDL length of L, the complexity of a standard beamformer is dominated by the blocking matrix; ◮ in the proposed design, wa ∈ CM−1 has degree L; ◮ the quiescent vector wq(z) ∈ CM has degree T; ◮ the blocking matrix B(z) ∈ C(M−1)×M has degree N; ◮ cost comparison in multiply-accumulates (MACs): GSC cost component polynomial standard quiescent beamformer MT ML blocking matrix M(M−1)N M(M−1)L2 adaptive filter (NLMS) 2(M−1)L 2(M−1)L 65 / 74
  • 90. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Example ◮ We assume a signal of interest from ϑ = 30◦; ◮ three interferers with angles ϑi ∈ {−40◦, −10◦, 80◦} active over the frequency range Ω = 2π · [0.1; 0.45] at signal to interference ratio of -40 dB; ϑ Ω −90◦ 90◦ 0 π 0◦ −40◦ −10◦ 30◦ 80◦ ◮ M = 8 element linear uniform array is also corrupted by spatially and temporally white additive Gaussian noise at 20 dB SNR; ◮ parameters: L = 175, T = 50, and N = 140; ◮ cost per iteration: 10.7 kMACs (proposed) versus 1.72 MMACs (standard). 66 / 74
  • 91. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Quiescent Beamformer ◮ Directivity pattern of quiescent standard broadband beamformer: angle of arrival ϑ /[◦ ] 20log10|A(ϑ,ejΩ )|/[dB] Ω 2π 67 / 74
  • 92. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Quiescent Beamformer ◮ Directivity pattern of quiescent proposed broadband beamformer: angle of arrival ϑ /[◦ ] 20log10|A(ϑ,ejΩ )|/[dB] Ω 2π 68 / 74
  • 93. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Adaptation ◮ Convergence curves of the two broadband beamformers, showing the residual mean squared error (i.e. beamformer output minus signal of interest): 0 2 4 6 8 10 12 14 16 18 x 10 4 −15 −10 −5 0 meansq.res.err./[dB] discrete time index n standard broadband GSC polynomial GSC 69 / 74
  • 94. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Adapted Beamformer ◮ Directivity pattern of adapted proposed broadband beamformer: angle of arrival ϑ /[◦ ] 20log10|A(ϑ,ejΩ )|/[dB] Ω 2π 70 / 74
  • 95. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Adapted Beamformer ◮ Directivity pattern of adapted standard broadband beamformer: angle of arrival ϑ /[◦ ] 20log10|A(ϑ,ejΩ )|/[dB] Ω 2π 71 / 74
  • 96. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Gain in Look Direction ◮ Gain in look direction ϑs = 30◦ before and after adaptation: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 normalised angular frequency Ω/(2π) 20log10|A(ϑs,ejΩ )|/[dB] standard quiescent standard adapted point constraints polynomial quiescent polynomial adapted ◮ due to signal leakage, the standard broadband beamformer after adaptation only maintains the point constraints but deviates elsewhere. 72 / 74
  • 97. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Broadband Beamforming Conclusions ◮ Based on the previous AoA estimation, beamforming can help to extract source signals and thus perform “source separation”; ◮ broadband beamformers usually assume pre-steering such that the signal of interest lies at broadside; ◮ this is not always given, and difficult for arbitary array geometries; ◮ the proposed beamformer using a polynomial matrix formulation can implement abitrary constraints; ◮ the performance for such constraints is better in terms of the accuracy of the directivity pattern; ◮ because the proposed design decouples the complexities of the coefficient vector, the quiescent vector and block matrix, and the adaptive process, the cost is significantly lower than for a standard broadband adaptive beamformer. 73 / 74
  • 98. Overview PART I Basics PEVD Iter. Toolbox PART II MIMO AoA MVDR Material Additional Material ◮ Key papers: 1 J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, and J. Foster: “An EVD Algorithm for Para-Hermitian Polynomial Matrices,” IEEE Trans SP, 55(5): 2158-2169, May 2007. 2 S. Redif, J.G. McWhirter, and S. Weiss: “Design of FIR Paraunitary Filter Banks for Subband Coding Using a Polynomial Eigenvalue Decomposition,” IEEE Trans SP, 59(11): 5253-5264, Nov. 2011. 3 S. Redif, S. Weiss, and J.G. McWhirter: “Sequential matrix diagonalisation algorithms for polynomial EVD of parahermitian matrices,” IEEE Trans SP, 63(1): 81–89, Jan. 2015. ◮ If interested in the discussed methods and algorithms, please download the free Matlab PEVD toolbox from pevd-toolbox.eee.strath.ac.uk ◮ for questions, please feel free to ask: • Stephan Weiss (stephan.weiss@strath.ac.uk) or • Jamie Corr (jamie.corr@strath.ac.uk) • Fraser Coutts (fraser.coutts@strath.ac.uk) 74 / 74