SlideShare a Scribd company logo
1 of 41
Download to read offline
LOAD RATING of RIVETED STEEL ARCH
BRIDGE MEMBERS
Dr. David V Jáuregui
Wells-Hatch Professor of Civil Engineering
New Mexico State University
Las Cruces, NM

Graduate Seminar
Sapienza University of Rome
November 28th, 2013
OUTLINE of PRESENTATION
BRIDGE BACKGROUND and DESCRIPTION
AASHTO LOAD RATING ANALYSIS
LOAD RATING of FLOOR SYSTEM
LOAD RATING of COLUMNS
LOAD RATING of ARCH RIB
FINAL LOAD RATING
CONCLUSIONS and RECOMMENDATIONS
BRIDGE BACKGROUND and DESCRIPTION
• HISTORY: the Omega Bridge was designed by Finney and
Turnispeed, fabricated by the American Bridge Company,
and erected by the Vinson Construction Company.
• ORIGINAL DESIGN (1951): based on ASD method and H-20
vehicular live load
• REHABILITATION (1992): based on LFD method and HS-20
vehicular live load
• CURRENT STUDY: determine the current capacity level of
the Omega Bridge based on the LFR method
West Road
Route

e
idg
r
aB
g
me
O
Past Inspection and Evaluation Studies

•

1973 – HNTB (Howard Needles Tammen & Bergendoff)
Corporation; conducted an in-depth bridge inspection
and structural analysis of deck and superstructure

•

1983 – Holmes and Narver (with assistance from
NMSU); assessed structural condition of original deck
and pedestrian walkway which was later replaced

•

1988 – Merrick & Company; investigated various
alternatives along with construction cost estimates for
rehabilitating the Omega Bridge (done in 1992)
51' - 312"

7' - 6"

39' - 9"
9' - 1114"
Lane 1

9' - 1114"
Lane 2

9' - 1114"
Lane 3

9' - 1114"
Lane 4

Before 1992
Rehabilitation

7' - 412"

6' - 9"

6' - 9"

7' - 412"

6' - 9"

35' - 0"

55' - 6"
8' - 0"

44' - 0"
11' - 0"
Lane 1

11' - 0"
Lane 2

11' - 0"
Lane 3

11' - 0"
Lane 4

C Bridge
L
1.5%

West
Outrigger Beam

6' - 9"

After 1992
Rehabilitation

Interior
Stringer

Exterior
Stringer

3' - 6"

1.5%

Spandrel Beam

Floor Beam

7' - 412"

6' - 9"

6' - 9"
35' - 0"

6' - 9"

7' - 412 "

6' - 9"

3' - 6"
Details of Bridge Rehabilitation
•

Increased cross-section width (11’ traffic lanes)

•

Light-weight concrete deck (28-day strength of 4.5 ksi)

•

Shear studs and cover plates installed on interior
stringers and spandrel beams

•

Exterior stringers supported by outrigger beams added
on both sides of bridge width
BRIDGE DESCRIPTION
•

LAYOUT: 814.5-foot long with a 442.5-foot arch span and six 62-foot approach spans;
three approach spans at each end of the bridge

•

CONFIGURATION: (1) Floor System: two spandrel beams; six stringers; 22 floor beams.
(2) Column System: four pairs of pier columns; two pairs of skewback columns; 14 pairs
of arch columns. (3) Arch Rib: a pair of two-hinge arch ribs.

62ft

62ft

62ft

15 spans (29.5ft each)

106.6ft

422.5ft

62ft

62ft

62ft
Arch column #

62ft

62ft

15 spans (29.5ft each)

62ft
1

2

3

4

5

6

7

8

9

10

62ft
11

12

13

62ft

62ft

14

Pier column #1
Pier column #2

Pier column #4

106.6ft

Pier column #3
46" x 3 4"

8" x 8" x 3 4" L

422.5ft

Skewback column #1

Skewback column #2

24"
71 12" x 12"

48"
4" x 4" x
6" x 4" x 3 4" L

3

8"

1

24" x 2"

L

72"

4" x 4" x 12"

Pier and Arch
Columns

24" x 12"

24"
4" x 4" x 12"

24"
48" x 12"

Skewback
Columns

Arch Rib
24.5" back-to-back
25.5"
inside to inside of PLs

48.5" back-to-back
55' - 6"
8' - 0"

44' - 0"
11' - 0"
Lane 1

11' - 0"
Lane 2

11' - 0"
Lane 3

11' - 0"
Lane 4

C Bridge
L
1.5%

Interior
Stringer

Exterior
Stringer

West
Outrigger Beam

3' - 6"

1.5%

7' - 412"

6' - 9"

Spandrel Beam

Floor Beam

6' - 9"

6' - 9"

6' - 9"

7' - 412 "

6' - 9"

25" - 6"
3'

35' - 0"
25" x 3 8"
top plate

L 8" x 6" x 9 16"

L 8" x 6" x 5 8"

48.5"

PL 48" x 3 8" x 32'-9"

Floor Beams

4" x 4" x 3 8" L

66.875"

N.A.

48.5"
66" x 3 8"
web plate

PL 48" x 3 8" x 32'-9"
31.789"

Spandrel
Beam

8" x 6" x 3 4" L
L
AASHTO LOAD RATING ANALYSIS
Components subject to single load effect

where
RF = rating factor (inventory or operating)
Rn = nominal member capacity (flexure or compression)
D = nominal dead load effect
L = nominal live load effect
I = live load impact factor = 50 / (L + 125)
γD = dead load factor = 1.3
γL = live load factor = 2.17 (inventory) or 1.3 (operating)

Components subject to combined loading
Interaction equation for columns and arch rib (discussed later)
Rating Vehicles
DESIGN LOADING: AASHTO HS-20 Truck or Lane Load
LEGAL LOADING: AASHTO Type 3, 3S2, and 3-3 Trucks
PERMIT LOADING: Emergency-One Titan Fire Truck
Rating Vehicles (cont.)
HS-20 Truck: 72 kips
32 k

32 k

36 k

36 k

8k

14 to 30 ft

14ft
AXLE NO.1

2

6ft
3

Fire Truck: 77.74 kips
18.98 k

18.98 k

5 ft
AXLE NO.1

19.89 k

5 ft

12.7 ft
2

19.89 k

3

38.87 k

38.87 k

7.2 ft
4

Legal Trucks: 50, 72, and 80 kips
(a) TYPE 3: Unit Weight = 50 kips
16 k

25 k

17 k 17 k

15 ft

4 ft

AXLE NO.1

2

25 k

6ft
3

(b) TYPE 3S2: Unit Weight = 72 kips
10 k

15.5 k 15.5 k

11 ft
AXLE NO.1

4 ft
2

36 k

15.5 k 15.5 k

22 ft

4 ft

3

4

36 k

6ft
5

(c) TYPE 3-3: Unit Weight = 80 kips
12 k

12 k 12 k

15 ft
AXLE NO.1

15 ft

4 ft
2

16 k

3

14 k 14 k

16 ft
4

4 ft
5

40 k

40 k

6ft
6
LOAD RATING of FLOOR SYSTEM
Description of Rating Model: Stringers
Section #2: Negative moment, non-composite section (no cover plates)

Interior Stringer
N1
(Abutment)

N2

N3
(Pier Col #1)

N4

N5
(Pier Col #2)

N6

N7
(Skewback Col #1)

Section #3: Positive moment, non-composite section (no cover plates)
Section #1: Positive moment, composite section (top and bottom cover plates)

Section #2: Negative moment, non-composite section (no cover plates)

Exterior Stringer
N1
(Abutment)

N2

N3
(Pier Col #1)

N4

N5
(Pier Col #2)

N6

N7
(Skewback Col #1)

Section #3: Positive moment, non-composite section (no cover plates)
Section #1: Positive moment, composite section (no cover plates)

NOTE:

The four interior stringers are W21x62 sections of ASTM A7 steel;
The two exterior stringers are W21x62 sections of ASTM A36 steel.
Load Rating Analysis Results: Stringers
Interior Stringer

Exterior Stringer
Section #3

Section #1

Section #2

Section #3

2.46

1.09

1.16

2.07

1.21

1.29

TYPE 3

3.05

1.41

1.42

2.57

1.57

1.58

TYPE 3S2

3.19

1.03

1.80

2.69

1.15

2.01

TYPE 3-3

3.84

1.25

2.03

3.23

1.39

2.26

FIRE

2.55

0.97

1.23

2.14

1.08

1.37

HS-20
Operating
Rating

Section #2

HS-20
Inventory
Rating

Section #1

4.11

1.81

1.94

3.46

2.02

2.15

TYPE 3

5.10

2.36

2.36

4.29

2.62

2.63

TYPE 3S2

5.33

1.72

3.01

4.49

1.92

3.35

TYPE 3-3

6.41

2.09

3.38

5.40

2.33

3.77

FIRE

4.25

1.62

2.05

3.58

1.80

2.28

Controls
Description of Rating Model: Floor Beams
4'-9"

3'-6"

6'-9"

6'-0"

4'-0"

7'-4.5"

Slab

6'-9"

6'-0"

4'-0"

6'-9"
35'-0"

6'-9"

6'-0"

4'-9"

7'-4.5"

6'-9"

3'-6"

Exterior Stringer

0.872 x (36 kips) per force.

Spandrel Beam
42.6 k

42.8 k

42.8 k

42.6 k
Interior Stringer

Floor beam

7'-4.5"

6'-9"

6'-9"

6'-9"

7'-4.5"
Description of Rating Model: Floor Beams (cont.)
HS-20 Live Load Effects: FB#2
-42.6 k

-42.8 k

-42.8 k

630 k-ft

-42.6 k

630 k-ft
919 k-ft

919 k-ft

Dead Load Effects: FB#2
-22.1 k

153 k-ft

-17.2 k

-17.2 k

-17.2 k

124 k-ft

-17.2 k

134 k-ft
252 k-ft

255 k-ft

136 k-ft

-19.5 k
Load Rating Analysis Results: Floor Beams
Floor Beam
0.85*

TYPE 3

1.22

1.17*

TYPE 3S2

1.13

1.16*

TYPE 3-3

1.21

1.29

0.91

0.88*

HS-20

1.46

1.41

TYPE 3

2.04

1.96

TYPE 3S2

1.89

1.94

TYPE 3-3

2.03

2.15

FIRE

Operating
Rating

0.88

FIRE

NOTE:

FB#6

HS-20
Inventory
Rating

FB#2

1.51

1.47

Floor beam FB#2
is located one
bay from the
abutment.

Floor beam FB#6
is located above
the arch span.

asterisk (*) symbol indicates the section does not satisfy the
compact requirements of the AASHTO Specification.
Description of Rating Model: Spandrel Beam
BEAM Model
SOUTH

Abutment

Pier Col #1

Pier Col #2

Skewback Col #1

Arch Col #1

Arch Col #2

Arch Col #3

FRAME Model
SOUTH

NORTH

Roller
Roller

Pinned
Pinned
Fixed

Fixed
Description of Rating Model: Spandrel Beam (cont.)
HS-20, Type 3, and Fire Trucks
Section #4: Negative moment, non-composite section
Section #2: Negative moment, composite section

Abutment

Pier Col #1

Pier Col #2

Skewback Col #1

Section #3: Positive moment, non-composite section
Section #1: Positive moment, composite section
Type 3S2 and Type 3-3 Trucks
Section #2: Negative moment, composite section
Section #4: Negative moment, non-composite section

Abutment

Pier Col #1

Pier Col #2

Section #3: Positive moment, non-composite section
Section #1: Positive moment, composite section

Skewback Col #1
Load Rating Analysis Results: Spandrel Beam
BEAM Model

FRAME Model

Section
#3

Section
#4

Section
#1

Section
#2

Section
#3

Section
#4

1.17

1.19

1.15

1.21

1.17

1.19

1.17

1.31

TYPE 3

1.57

1.67

1.53

1.69

1.57

1.67

1.55

1.83

TYPE 3S2

1.52

1.44

1.55

1.53

1.52

1.45

1.57

1.46

TYPE 3-3

1.73

1.34

1.79

1.44

1.72

1.35

1.81

1.58

FIRE

1.20

1.18

1.21

1.20

1.20

1.18

1.23

1.30

HS-20
Operating
Rating

Section
#2

HS-20
Inventory
Rating

Section
#1

1.96

1.98

1.93

2.02

1.96

1.99

1.96

2.18

TYPE 3

2.62

2.78

2.55

2.82

2.62

2.79

2.59

3.05

TYPE 3S2

2.54

2.40

2.58

2.56

2.54

2.42

2.62

2.43

TYPE 3-3

2.88

2.23

2.99

2.40

2.88

2.26

3.02

2.64

FIRE

2.01

1.96

2.01

2.00

2.01

1.97

2.05

2.16

Controls
31'

31'

31'

31'

31'

31'

29' - 6"

FB#5

FB#5

FB#4

FB#3

FB#2

FB#2

FB#2

FB#2

FB#1

Load Rating Analysis Summary: Floor System

29' - 6"

Floor Beam
6' - 9"
7' - 412"
6' - 9"
35'

6' - 9"
6' - 9"
7' - 412"
6' - 9"

C Pier Col #1
L

Exterior
Stringers

C Pier Col #2
L

C Skewback Col #1
L

Interior
Stringers
31'

31'

29' - 6"

29' - 6"

29' - 6"

29' - 6"

C Skewback Col #1
L

29' - 6"

Spandrel Beams

Floor Beam

Interior
Stringers

29' - 6"

FB#6

FB#6

FB#6

FB#6

FB#5

FB#5

FB#5

FB#4

FB#3

Load Rating Analysis Summary: Floor System (cont.)

29' - 6"

14' - 9"

Wind Bracing

Outrigger Beam
Column
LOAD RATING of COLUMNS
Description of Rating Model: Columns
BEAM-COLUMN Model (axial-bending interaction)
COLUMN Model (axial load only)

62ft

62ft

62ft

15 spans (29.5ft each)

106.6ft

422.5ft

62ft

62ft

62ft
AASHTO Interaction Equation (rewritten for side-sway case):

P
0.85A F

s cr

where

+

B M +B M
1

nt

2

M

lt

≤1

u

P = maximum axial compression
As = cross-sectional area of column
Fcr = critical buckling stress
Mu = maximum flexural strength (equal to yield moment for all columns)
Mnt = first order moment assuming no lateral end translation (i.e., non-sway case)
Mlt = first order moment due to lateral end translation (i.e., sway-case)
B1 = MAF for second order effect of Mnt (i.e., P-δ effects)
δ
C
B =
≥1
1
P
B1 = 1 since C ≤ 0.6
1−
AF
s e1

B2 = MAF for second order effect of Mlt (i.e., P-∆ effects)
∆

B2 =

1
≥1
∑P
1−
∑ As Fe2

B2 = 1 since

∑ As Fe2

is large compared to

C = equivalent moment factor
Fe1, Fe2 = Euler Buckling stress for non-sway and side-sway buckling, respectively.

∑P
Load Rating Analysis: Columns

P
0.85A F

B M +B M
1

+

nt

2

M

s cr

lt

≤1

u

B1 = B2 = 1

0.85A F

s cr

+

M

=
u

A P +A P
1 D

2 L

0.85A F

+

s cr

A M +A M
1

D

2

SF

L

≤1

y

Solve for RF

A P + A P ( RF )
1 D
2 L
0.85A F

s cr

+

A M + A M ( RF )
1 D
2 L
SF

y

=1
Load Rating Analysis Results: Columns

Column

HS-20

TYPE 3

TYPE 3S2

TYPE 3-3

FIRE

RFi,b-c

RFi,col

RFi,b-c

RFi,col

RFi,b-c

RFi,col

RFi,b-c

RFi,col

RFi,b-c

RFi,col

Pier Col #3

1.42

3.26

2.03

4.64

1.48

3.51

1.37

3.37

1.40

3.22

Pier Col #4

N/A

3.19

N/A

4.55

N/A

3.39

N/A

3.22

N/A

3.15

Arch Col #6

0.80

4.38

1.13

6.07

0.89

6.03

0.86

6.67

0.80

4.37

Arch Col #7

0.91

4.40

1.29

6.09

0.98

6.06

0.94

6.69

0.90

4.38

Arch Col #10

0.76

4.33

1.07

6.00

0.84

5.97

0.81

6.59

0.76

4.32

Arch Col #11

0.84

4.20

1.19

5.81

0.92

5.78

0.89

6.39

0.83

4.18

Arch Col #12

0.90

3.93

1.27

5.45

0.98

5.41

0.93

5.99

0.89

3.92

Arch Col #13

1.02

3.41

1.46

4.72

1.11

4.70

1.05

5.19

1.01

3.40

Arch Col #14

1.31

2.69

1.87

3.72

1.43

3.65

1.36

4.03

1.30

2.67

Skewback Col #2

2.63

4.56

3.71

6.45

3.10

5.14

3.18

5.13

2.61

4.51
LOAD RATING of ARCH RIB
Description of Rating Model: Arch Rib
RIGID Model: “rigid” behavior of riveted connections; same
as BEAM-COLUMN Model used to analyze columns
PINNED Model: “pinned” behavior of riveted connections;
same as COLUMN Model used to analyze columns
62ft

62ft

62ft

15 spans (29.5ft each)

106.6ft

422.5ft

62ft

62ft

62ft
AASHTO Interaction Equation (for solid rib arches):



1

MD + ML 
 1 − 1.18 TD + TL

AFe

+

(

where

f a fb N D + N L
+
=
Fa Fb
AFa

SFb

)







 ≤1

fa = computed axial stress
Fa = allowable axial stress
fb = computed bending stress
Fb = allowable bending stress
ND , NL = unfactored axial forces under dead and live load (plus impact)
MD , ML = unfactored, first-order bending moments under dead and live load (plus impact)
A , S = cross-sectional area and section modulus (at extreme fiber) of the arch rib
TD , TL = unfactored thrust at the quarter point under dead and live load (plus impact)
Fe = Euler buckling stress
Load Rating Analysis: Arch Rib



1

MD + ML 
 1 − 1.18 TD + TL

AFe

+

(

f a fb N D + N L
+
=
Fa Fb
AFa

SFb

)







 ≤1

Solve for RF

MD + ML (
N D + N L ( RFi )
+
AFa




1
RFi 
 1.18 TD + TL RFi
 1−

AFe


)

(

SFb

(

))








 =1
62ft

62ft

15 spans (29.5ft each)

62ft

C2
E
C1

A

62ft

D2

106.6ft

F
D1

422.5ft

Case 1: Nmax @ Point A, Mmax @ Point C2, T @ Point E
Case 2: Nmax @ Point B, Mmax @ Point D2, T @ Point F
Case 3: Mmax @ Point C1, Nmax @ Point A, T @ Point E
Case 4: Mmax @ Point D1, Nmax @ Point B, T @ Point F

B

62ft

62ft
Load Rating Analysis Results: Arch Rib
Rating
Vehicle
HS20
TYPE 3
TYPE 3S2
TYPE 3-3
FIRE

Case

RIGID Model

PINNED Model

IRi

RFi

RFo

IRi

RFi

RFo

1

0.56

2.53

4.23

0.57

2.41

4.02

3

0.63

2.14

3.57

0.69

1.77

2.96

1

0.48

3.58

5.98

0.48

3.47

5.79

3

0.53

3.05

5.10

0.58

2.53

4.23

1

0.53

2.81

4.69

0.56

2.35

3.92

3

0.60

2.32

3.87

0.66

1.80

3.01

1

0.54

2.68

4.48

0.58

2.54

4.24

3

0.62

2.21

3.68

0.69

1.91

3.19

1

0.56

2.49

4.17

0.57

2.39

3.99

3

0.63

2.12

3.54

0.70

1.76

2.93

Controls
Load Rating Analysis Summary: Columns and Arch Rib

62ft

62ft

62ft

15 spans (29.5ft each)

106.6ft

422.5ft

62ft

62ft

62ft
FINAL LOAD RATING

Bridge Component

Design
Load

Legal
Load

Permit
Load

RFo

RFi

RFo

RFi

RFo

Stringer

1.09

1.81

1.03

1.72

0.97

1.62

0.85

1.14

1.13

1.89

0.88

1.47

Spandrel beam

1.15

1.93

1.34

2.23

1.18

1.96

Pier Column
PINNED Model

RFi
Floor beam

BEAM or
FRAME Model

1.18

1.97

1.13

1.89

1.16

1.94

Arch Column

0.76

1.27

0.81

1.36

0.76

1.26

Skewback Column

2.63

4.39

3.10

5.18

2.61

4.35

Arch Rib

1.77

2.96

1.80

3.01

1.75

2.93

BEAM-COLUMN
Model
Discussion

1.

The rating factors of the columns are inversely proportional to the stiffness
of the riveted connections. In actuality, the connection stiffness may be
somewhere between fully rigid and pinned behavior and thus, the rating
factors of the columns will fall somewhere between the rating values of
BEAM-COLUMN and COLUMN models.

2.

Another important observation is that, while the rigidity of the end-column
connection helps to increase the capacity of the spandrel beam and the arch
rib, it significantly reduces the capacity of the columns.

3.

In the scope of this study, the rating factor of the arch column and the floor
beam controlled the final rating of the entire bridge. However, it is anticipated
that the rating factors of the columns may no longer control if the actual
connection stiffness is taken into account (recommended for future work to
improve column rating factors).
CONCLUSIONS and RECOMMENDATIONS
•

Column rating factors are inversely proportional to the stiffness
of the riveted connections while arch rib rating factors are
directly proportional; spandrel beam was not affected by
connection stiffness at critical sections.

•

In general, the Omega Bridge is structurally sound with some
concerns for the floor beams and arch columns.

•

Since the smallest rating factors for legal loads are RFi = 0.81
and RFo = 1.36, posting of the bridge is not required but
additional inspection and traffic monitoring may be warranted.

•

Further studies (i.e., field testing along with 3D finite element
analysis) are recommended to improve the rating factors.
THANK YOU

More Related Content

What's hot

Analysis of 3+ story building in staad pro
Analysis of 3+ story building in staad proAnalysis of 3+ story building in staad pro
Analysis of 3+ story building in staad proCADmantra Technologies
 
11-Structural Design ( Highway Engineering Dr. Sherif El-Badawy )
11-Structural Design ( Highway Engineering Dr. Sherif El-Badawy )11-Structural Design ( Highway Engineering Dr. Sherif El-Badawy )
11-Structural Design ( Highway Engineering Dr. Sherif El-Badawy )Hossam Shafiq I
 
P07011_Gupta_et_al
P07011_Gupta_et_alP07011_Gupta_et_al
P07011_Gupta_et_alPankaj Gupta
 
The static loading test bengt h. fellenius
The  static loading test   bengt h. felleniusThe  static loading test   bengt h. fellenius
The static loading test bengt h. felleniuscfpbolivia
 
Process Time & Ergonomics - Case Study
Process Time & Ergonomics - Case StudyProcess Time & Ergonomics - Case Study
Process Time & Ergonomics - Case StudyRashidi Asari
 
Presentation_CH 450_2015
Presentation_CH 450_2015Presentation_CH 450_2015
Presentation_CH 450_2015Brian Johnson
 
KOM - Unit 3 -kinematics of cam mechanisms
KOM - Unit  3 -kinematics of cam mechanismsKOM - Unit  3 -kinematics of cam mechanisms
KOM - Unit 3 -kinematics of cam mechanismskarthi keyan
 
UK ATC 2015: A Systematic Approach to Weight Saving of Trailer Towing Systems...
UK ATC 2015: A Systematic Approach to Weight Saving of Trailer Towing Systems...UK ATC 2015: A Systematic Approach to Weight Saving of Trailer Towing Systems...
UK ATC 2015: A Systematic Approach to Weight Saving of Trailer Towing Systems...Altair
 
Booster fan cr1 fn02 platform & duct support calculation note
Booster fan cr1 fn02 platform & duct support calculation noteBooster fan cr1 fn02 platform & duct support calculation note
Booster fan cr1 fn02 platform & duct support calculation noteAli Elkashef
 
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17A
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17AOverview & Application 2010 CBCvChapter 16, 16A, 17 &17A
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17AHemmatyar
 
Progressive collapse of reinforced concrete structures using ETABS
Progressive collapse of reinforced concrete structures using ETABSProgressive collapse of reinforced concrete structures using ETABS
Progressive collapse of reinforced concrete structures using ETABSArun Arun
 
Design Proposal of a 5-Storey Steel Building with Cost Analysis
Design Proposal of a 5-Storey Steel Building with Cost AnalysisDesign Proposal of a 5-Storey Steel Building with Cost Analysis
Design Proposal of a 5-Storey Steel Building with Cost AnalysisMichael Masi, Jr. Eng.
 
Supervision of piling works, ACES, 2011, Singapore
Supervision of piling works, ACES, 2011, SingaporeSupervision of piling works, ACES, 2011, Singapore
Supervision of piling works, ACES, 2011, SingaporeTong Seng Chua
 
IRJET- Collapse Analysis of Irregular Flat Slab Structure at different Seismi...
IRJET- Collapse Analysis of Irregular Flat Slab Structure at different Seismi...IRJET- Collapse Analysis of Irregular Flat Slab Structure at different Seismi...
IRJET- Collapse Analysis of Irregular Flat Slab Structure at different Seismi...IRJET Journal
 
Offshore pile design according to international practice
Offshore pile design according to international practiceOffshore pile design according to international practice
Offshore pile design according to international practiceWeb2Present
 
My project work(analysis and design of g+3 building)
My project work(analysis and design of g+3 building)My project work(analysis and design of g+3 building)
My project work(analysis and design of g+3 building)Abhilash Chandra Dey
 
IRJET- Analysis of G+20 RCC Bare Framed Structures with Different Types o...
IRJET-  	  Analysis of G+20 RCC Bare Framed Structures with Different Types o...IRJET-  	  Analysis of G+20 RCC Bare Framed Structures with Different Types o...
IRJET- Analysis of G+20 RCC Bare Framed Structures with Different Types o...IRJET Journal
 

What's hot (20)

Analysis of 3+ story building in staad pro
Analysis of 3+ story building in staad proAnalysis of 3+ story building in staad pro
Analysis of 3+ story building in staad pro
 
ICDE2008, Singapore
ICDE2008, SingaporeICDE2008, Singapore
ICDE2008, Singapore
 
Bridge loading
Bridge loadingBridge loading
Bridge loading
 
11-Structural Design ( Highway Engineering Dr. Sherif El-Badawy )
11-Structural Design ( Highway Engineering Dr. Sherif El-Badawy )11-Structural Design ( Highway Engineering Dr. Sherif El-Badawy )
11-Structural Design ( Highway Engineering Dr. Sherif El-Badawy )
 
P07011_Gupta_et_al
P07011_Gupta_et_alP07011_Gupta_et_al
P07011_Gupta_et_al
 
2911 4
2911 42911 4
2911 4
 
The static loading test bengt h. fellenius
The  static loading test   bengt h. felleniusThe  static loading test   bengt h. fellenius
The static loading test bengt h. fellenius
 
Process Time & Ergonomics - Case Study
Process Time & Ergonomics - Case StudyProcess Time & Ergonomics - Case Study
Process Time & Ergonomics - Case Study
 
Presentation_CH 450_2015
Presentation_CH 450_2015Presentation_CH 450_2015
Presentation_CH 450_2015
 
KOM - Unit 3 -kinematics of cam mechanisms
KOM - Unit  3 -kinematics of cam mechanismsKOM - Unit  3 -kinematics of cam mechanisms
KOM - Unit 3 -kinematics of cam mechanisms
 
UK ATC 2015: A Systematic Approach to Weight Saving of Trailer Towing Systems...
UK ATC 2015: A Systematic Approach to Weight Saving of Trailer Towing Systems...UK ATC 2015: A Systematic Approach to Weight Saving of Trailer Towing Systems...
UK ATC 2015: A Systematic Approach to Weight Saving of Trailer Towing Systems...
 
Booster fan cr1 fn02 platform & duct support calculation note
Booster fan cr1 fn02 platform & duct support calculation noteBooster fan cr1 fn02 platform & duct support calculation note
Booster fan cr1 fn02 platform & duct support calculation note
 
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17A
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17AOverview & Application 2010 CBCvChapter 16, 16A, 17 &17A
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17A
 
Progressive collapse of reinforced concrete structures using ETABS
Progressive collapse of reinforced concrete structures using ETABSProgressive collapse of reinforced concrete structures using ETABS
Progressive collapse of reinforced concrete structures using ETABS
 
Design Proposal of a 5-Storey Steel Building with Cost Analysis
Design Proposal of a 5-Storey Steel Building with Cost AnalysisDesign Proposal of a 5-Storey Steel Building with Cost Analysis
Design Proposal of a 5-Storey Steel Building with Cost Analysis
 
Supervision of piling works, ACES, 2011, Singapore
Supervision of piling works, ACES, 2011, SingaporeSupervision of piling works, ACES, 2011, Singapore
Supervision of piling works, ACES, 2011, Singapore
 
IRJET- Collapse Analysis of Irregular Flat Slab Structure at different Seismi...
IRJET- Collapse Analysis of Irregular Flat Slab Structure at different Seismi...IRJET- Collapse Analysis of Irregular Flat Slab Structure at different Seismi...
IRJET- Collapse Analysis of Irregular Flat Slab Structure at different Seismi...
 
Offshore pile design according to international practice
Offshore pile design according to international practiceOffshore pile design according to international practice
Offshore pile design according to international practice
 
My project work(analysis and design of g+3 building)
My project work(analysis and design of g+3 building)My project work(analysis and design of g+3 building)
My project work(analysis and design of g+3 building)
 
IRJET- Analysis of G+20 RCC Bare Framed Structures with Different Types o...
IRJET-  	  Analysis of G+20 RCC Bare Framed Structures with Different Types o...IRJET-  	  Analysis of G+20 RCC Bare Framed Structures with Different Types o...
IRJET- Analysis of G+20 RCC Bare Framed Structures with Different Types o...
 

Viewers also liked

LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...Franco Bontempi Org Didattica
 
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...Franco Bontempi Org Didattica
 
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013Franco Bontempi Org Didattica
 
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - BontempiApplicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - BontempiFranco Bontempi Org Didattica
 
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte II
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte IIVULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte II
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte IIStroNGER2012
 
Erdogmus sapienza-may2015
Erdogmus sapienza-may2015Erdogmus sapienza-may2015
Erdogmus sapienza-may2015StroNGER2012
 
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUPStroNGER2012
 
Arangio sapienza-may2015
Arangio sapienza-may2015Arangio sapienza-may2015
Arangio sapienza-may2015StroNGER2012
 
Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.StroNGER2012
 
Uso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciUso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciStroNGER2012
 
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - Cagliari
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - CagliariBontempi - Laboratorio "Azioni eccezionali sulle strutture" - Cagliari
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - CagliariStroNGER2012
 
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...StroNGER2012
 
Avila sapienza-may2015
Avila sapienza-may2015Avila sapienza-may2015
Avila sapienza-may2015StroNGER2012
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Franco Bontempi Org Didattica
 
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Franco Bontempi Org Didattica
 
L'analisi strutturale a supporto della progettazione prestazionale
L'analisi strutturale a supporto della progettazione prestazionaleL'analisi strutturale a supporto della progettazione prestazionale
L'analisi strutturale a supporto della progettazione prestazionaleFranco Bontempi Org Didattica
 
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILEANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILEFranco Bontempi Org Didattica
 
Lezione Sicurezza Strutturale Antincendio Costruzioni Metalliche 17 oct 2013
Lezione Sicurezza Strutturale Antincendio Costruzioni Metalliche 17 oct 2013Lezione Sicurezza Strutturale Antincendio Costruzioni Metalliche 17 oct 2013
Lezione Sicurezza Strutturale Antincendio Costruzioni Metalliche 17 oct 2013Franco Bontempi Org Didattica
 

Viewers also liked (20)

CM - robustezza resilienza CTA 2013
CM - robustezza resilienza CTA 2013CM - robustezza resilienza CTA 2013
CM - robustezza resilienza CTA 2013
 
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
 
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...
 
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013
 
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - BontempiApplicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
 
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte II
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte IIVULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte II
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte II
 
Erdogmus sapienza-may2015
Erdogmus sapienza-may2015Erdogmus sapienza-may2015
Erdogmus sapienza-may2015
 
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
 
Arangio sapienza-may2015
Arangio sapienza-may2015Arangio sapienza-may2015
Arangio sapienza-may2015
 
Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.
 
Uso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciUso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storici
 
Two years 2
Two years 2Two years 2
Two years 2
 
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - Cagliari
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - CagliariBontempi - Laboratorio "Azioni eccezionali sulle strutture" - Cagliari
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - Cagliari
 
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
 
Avila sapienza-may2015
Avila sapienza-may2015Avila sapienza-may2015
Avila sapienza-may2015
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
 
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
 
L'analisi strutturale a supporto della progettazione prestazionale
L'analisi strutturale a supporto della progettazione prestazionaleL'analisi strutturale a supporto della progettazione prestazionale
L'analisi strutturale a supporto della progettazione prestazionale
 
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILEANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
 
Lezione Sicurezza Strutturale Antincendio Costruzioni Metalliche 17 oct 2013
Lezione Sicurezza Strutturale Antincendio Costruzioni Metalliche 17 oct 2013Lezione Sicurezza Strutturale Antincendio Costruzioni Metalliche 17 oct 2013
Lezione Sicurezza Strutturale Antincendio Costruzioni Metalliche 17 oct 2013
 

Similar to CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)

Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Rajesh Prasad
 
Uses of Larsa 4 d and Lusas 4 D models for Implementation of Cable Stayed ...
Uses of Larsa   4 d and Lusas  4 D models for Implementation of Cable Stayed ...Uses of Larsa   4 d and Lusas  4 D models for Implementation of Cable Stayed ...
Uses of Larsa 4 d and Lusas 4 D models for Implementation of Cable Stayed ...Rajesh Prasad
 
IIBE ppt at Lucknow dt 25.05.18
IIBE ppt at Lucknow dt 25.05.18IIBE ppt at Lucknow dt 25.05.18
IIBE ppt at Lucknow dt 25.05.18Rajesh Prasad
 
IIBE ppt at Lucknow dt 25.05.18
IIBE ppt at Lucknow dt 25.05.18IIBE ppt at Lucknow dt 25.05.18
IIBE ppt at Lucknow dt 25.05.18Rajesh Prasad
 
Kearney Precast Concrete Deck Panel Bridge Project
Kearney Precast Concrete Deck Panel Bridge ProjectKearney Precast Concrete Deck Panel Bridge Project
Kearney Precast Concrete Deck Panel Bridge ProjectJill Reeves
 
Kearney Precast Concrete Deck Panel Bridge Project
Kearney Precast Concrete Deck Panel Bridge ProjectKearney Precast Concrete Deck Panel Bridge Project
Kearney Precast Concrete Deck Panel Bridge ProjectJill Reeves
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)sufiyan shaikh
 
Rfp09498 p2 pres_t05
Rfp09498 p2 pres_t05Rfp09498 p2 pres_t05
Rfp09498 p2 pres_t05rplaughl
 
Hotel Design
Hotel DesignHotel Design
Hotel Designkylejanco
 
PNGE 310Class 21Overbalanced Drilling• Mos.docx
PNGE 310Class 21Overbalanced Drilling• Mos.docxPNGE 310Class 21Overbalanced Drilling• Mos.docx
PNGE 310Class 21Overbalanced Drilling• Mos.docxstilliegeorgiana
 
Modeling of Flexible and Rigid Pavements under Aircraft Loading
Modeling of Flexible and Rigid Pavements under Aircraft LoadingModeling of Flexible and Rigid Pavements under Aircraft Loading
Modeling of Flexible and Rigid Pavements under Aircraft LoadingElise M. Mansour
 
ECS Design Project Presentation
ECS Design Project PresentationECS Design Project Presentation
ECS Design Project PresentationGuillermo Waldo
 
Slab_design_RCD_II_Lec_1_beam_column_arrangment.pptx
Slab_design_RCD_II_Lec_1_beam_column_arrangment.pptxSlab_design_RCD_II_Lec_1_beam_column_arrangment.pptx
Slab_design_RCD_II_Lec_1_beam_column_arrangment.pptxTasbeehkhan3
 
108 barreras&accesos función justificaciónseleccióncomportamiento puerto...
108  barreras&accesos función justificaciónseleccióncomportamiento puerto...108  barreras&accesos función justificaciónseleccióncomportamiento puerto...
108 barreras&accesos función justificaciónseleccióncomportamiento puerto...Sierra Francisco Justo
 
MULTI-STOREY CAR PARKING
MULTI-STOREY CAR PARKINGMULTI-STOREY CAR PARKING
MULTI-STOREY CAR PARKINGManoj Navneeth
 
Emeca SPE-USA Pile Joint Product
Emeca SPE-USA Pile Joint ProductEmeca SPE-USA Pile Joint Product
Emeca SPE-USA Pile Joint Productpdewit
 
FLSMIDTH-PROFILE
FLSMIDTH-PROFILEFLSMIDTH-PROFILE
FLSMIDTH-PROFILESarnath R
 
Design and analysis of scissor jack final report 8 sem (1)
Design and  analysis of scissor jack final report 8 sem (1)Design and  analysis of scissor jack final report 8 sem (1)
Design and analysis of scissor jack final report 8 sem (1)RAHMATULLAH MERCY FEAT
 
Chittagong City Outer Ring Road Project
Chittagong City Outer Ring Road ProjectChittagong City Outer Ring Road Project
Chittagong City Outer Ring Road ProjectRakibul Haque
 

Similar to CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified) (20)

Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
 
Uses of Larsa 4 d and Lusas 4 D models for Implementation of Cable Stayed ...
Uses of Larsa   4 d and Lusas  4 D models for Implementation of Cable Stayed ...Uses of Larsa   4 d and Lusas  4 D models for Implementation of Cable Stayed ...
Uses of Larsa 4 d and Lusas 4 D models for Implementation of Cable Stayed ...
 
IIBE ppt at Lucknow dt 25.05.18
IIBE ppt at Lucknow dt 25.05.18IIBE ppt at Lucknow dt 25.05.18
IIBE ppt at Lucknow dt 25.05.18
 
IIBE ppt at Lucknow dt 25.05.18
IIBE ppt at Lucknow dt 25.05.18IIBE ppt at Lucknow dt 25.05.18
IIBE ppt at Lucknow dt 25.05.18
 
Kearney Precast Concrete Deck Panel Bridge Project
Kearney Precast Concrete Deck Panel Bridge ProjectKearney Precast Concrete Deck Panel Bridge Project
Kearney Precast Concrete Deck Panel Bridge Project
 
Kearney Precast Concrete Deck Panel Bridge Project
Kearney Precast Concrete Deck Panel Bridge ProjectKearney Precast Concrete Deck Panel Bridge Project
Kearney Precast Concrete Deck Panel Bridge Project
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
 
Floating Bridge
Floating BridgeFloating Bridge
Floating Bridge
 
Rfp09498 p2 pres_t05
Rfp09498 p2 pres_t05Rfp09498 p2 pres_t05
Rfp09498 p2 pres_t05
 
Hotel Design
Hotel DesignHotel Design
Hotel Design
 
PNGE 310Class 21Overbalanced Drilling• Mos.docx
PNGE 310Class 21Overbalanced Drilling• Mos.docxPNGE 310Class 21Overbalanced Drilling• Mos.docx
PNGE 310Class 21Overbalanced Drilling• Mos.docx
 
Modeling of Flexible and Rigid Pavements under Aircraft Loading
Modeling of Flexible and Rigid Pavements under Aircraft LoadingModeling of Flexible and Rigid Pavements under Aircraft Loading
Modeling of Flexible and Rigid Pavements under Aircraft Loading
 
ECS Design Project Presentation
ECS Design Project PresentationECS Design Project Presentation
ECS Design Project Presentation
 
Slab_design_RCD_II_Lec_1_beam_column_arrangment.pptx
Slab_design_RCD_II_Lec_1_beam_column_arrangment.pptxSlab_design_RCD_II_Lec_1_beam_column_arrangment.pptx
Slab_design_RCD_II_Lec_1_beam_column_arrangment.pptx
 
108 barreras&accesos función justificaciónseleccióncomportamiento puerto...
108  barreras&accesos función justificaciónseleccióncomportamiento puerto...108  barreras&accesos función justificaciónseleccióncomportamiento puerto...
108 barreras&accesos función justificaciónseleccióncomportamiento puerto...
 
MULTI-STOREY CAR PARKING
MULTI-STOREY CAR PARKINGMULTI-STOREY CAR PARKING
MULTI-STOREY CAR PARKING
 
Emeca SPE-USA Pile Joint Product
Emeca SPE-USA Pile Joint ProductEmeca SPE-USA Pile Joint Product
Emeca SPE-USA Pile Joint Product
 
FLSMIDTH-PROFILE
FLSMIDTH-PROFILEFLSMIDTH-PROFILE
FLSMIDTH-PROFILE
 
Design and analysis of scissor jack final report 8 sem (1)
Design and  analysis of scissor jack final report 8 sem (1)Design and  analysis of scissor jack final report 8 sem (1)
Design and analysis of scissor jack final report 8 sem (1)
 
Chittagong City Outer Ring Road Project
Chittagong City Outer Ring Road ProjectChittagong City Outer Ring Road Project
Chittagong City Outer Ring Road Project
 

More from Franco Bontempi Org Didattica

II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfFranco Bontempi Org Didattica
 
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfFranco Bontempi Org Didattica
 
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Franco Bontempi Org Didattica
 
Soft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringSoft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringFranco Bontempi Org Didattica
 
Systemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsSystemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsFranco Bontempi Org Didattica
 
The role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresThe role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresFranco Bontempi Org Didattica
 
Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Franco Bontempi Org Didattica
 
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Franco Bontempi Org Didattica
 
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Franco Bontempi Org Didattica
 
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...Franco Bontempi Org Didattica
 

More from Franco Bontempi Org Didattica (20)

50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf
 
4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf
 
Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7
 
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
 
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
 
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
 
Soft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringSoft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoring
 
Systemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsSystemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systems
 
Elenco studenti esaminandi
Elenco studenti esaminandiElenco studenti esaminandi
Elenco studenti esaminandi
 
Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.
 
Costruzione di ponti in acciaio
Costruzione di ponti in acciaioCostruzione di ponti in acciaio
Costruzione di ponti in acciaio
 
Costruzione di Ponti - Ceradini
Costruzione di Ponti - CeradiniCostruzione di Ponti - Ceradini
Costruzione di Ponti - Ceradini
 
The role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresThe role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structures
 
Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...
 
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
 
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
 
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
 
Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.
 
Tdc prova 2022 01-26
Tdc prova 2022 01-26Tdc prova 2022 01-26
Tdc prova 2022 01-26
 
Risultati
RisultatiRisultati
Risultati
 

Recently uploaded

ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsPooky Knightsmith
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDhatriParmar
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleCeline George
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxDhatriParmar
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 

Recently uploaded (20)

ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young minds
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP Module
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 

CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)

  • 1. LOAD RATING of RIVETED STEEL ARCH BRIDGE MEMBERS Dr. David V Jáuregui Wells-Hatch Professor of Civil Engineering New Mexico State University Las Cruces, NM Graduate Seminar Sapienza University of Rome November 28th, 2013
  • 2. OUTLINE of PRESENTATION BRIDGE BACKGROUND and DESCRIPTION AASHTO LOAD RATING ANALYSIS LOAD RATING of FLOOR SYSTEM LOAD RATING of COLUMNS LOAD RATING of ARCH RIB FINAL LOAD RATING CONCLUSIONS and RECOMMENDATIONS
  • 3. BRIDGE BACKGROUND and DESCRIPTION • HISTORY: the Omega Bridge was designed by Finney and Turnispeed, fabricated by the American Bridge Company, and erected by the Vinson Construction Company. • ORIGINAL DESIGN (1951): based on ASD method and H-20 vehicular live load • REHABILITATION (1992): based on LFD method and HS-20 vehicular live load • CURRENT STUDY: determine the current capacity level of the Omega Bridge based on the LFR method
  • 5. Past Inspection and Evaluation Studies • 1973 – HNTB (Howard Needles Tammen & Bergendoff) Corporation; conducted an in-depth bridge inspection and structural analysis of deck and superstructure • 1983 – Holmes and Narver (with assistance from NMSU); assessed structural condition of original deck and pedestrian walkway which was later replaced • 1988 – Merrick & Company; investigated various alternatives along with construction cost estimates for rehabilitating the Omega Bridge (done in 1992)
  • 6. 51' - 312" 7' - 6" 39' - 9" 9' - 1114" Lane 1 9' - 1114" Lane 2 9' - 1114" Lane 3 9' - 1114" Lane 4 Before 1992 Rehabilitation 7' - 412" 6' - 9" 6' - 9" 7' - 412" 6' - 9" 35' - 0" 55' - 6" 8' - 0" 44' - 0" 11' - 0" Lane 1 11' - 0" Lane 2 11' - 0" Lane 3 11' - 0" Lane 4 C Bridge L 1.5% West Outrigger Beam 6' - 9" After 1992 Rehabilitation Interior Stringer Exterior Stringer 3' - 6" 1.5% Spandrel Beam Floor Beam 7' - 412" 6' - 9" 6' - 9" 35' - 0" 6' - 9" 7' - 412 " 6' - 9" 3' - 6"
  • 7. Details of Bridge Rehabilitation • Increased cross-section width (11’ traffic lanes) • Light-weight concrete deck (28-day strength of 4.5 ksi) • Shear studs and cover plates installed on interior stringers and spandrel beams • Exterior stringers supported by outrigger beams added on both sides of bridge width
  • 8. BRIDGE DESCRIPTION • LAYOUT: 814.5-foot long with a 442.5-foot arch span and six 62-foot approach spans; three approach spans at each end of the bridge • CONFIGURATION: (1) Floor System: two spandrel beams; six stringers; 22 floor beams. (2) Column System: four pairs of pier columns; two pairs of skewback columns; 14 pairs of arch columns. (3) Arch Rib: a pair of two-hinge arch ribs. 62ft 62ft 62ft 15 spans (29.5ft each) 106.6ft 422.5ft 62ft 62ft 62ft
  • 9. Arch column # 62ft 62ft 15 spans (29.5ft each) 62ft 1 2 3 4 5 6 7 8 9 10 62ft 11 12 13 62ft 62ft 14 Pier column #1 Pier column #2 Pier column #4 106.6ft Pier column #3 46" x 3 4" 8" x 8" x 3 4" L 422.5ft Skewback column #1 Skewback column #2 24" 71 12" x 12" 48" 4" x 4" x 6" x 4" x 3 4" L 3 8" 1 24" x 2" L 72" 4" x 4" x 12" Pier and Arch Columns 24" x 12" 24" 4" x 4" x 12" 24" 48" x 12" Skewback Columns Arch Rib 24.5" back-to-back 25.5" inside to inside of PLs 48.5" back-to-back
  • 10. 55' - 6" 8' - 0" 44' - 0" 11' - 0" Lane 1 11' - 0" Lane 2 11' - 0" Lane 3 11' - 0" Lane 4 C Bridge L 1.5% Interior Stringer Exterior Stringer West Outrigger Beam 3' - 6" 1.5% 7' - 412" 6' - 9" Spandrel Beam Floor Beam 6' - 9" 6' - 9" 6' - 9" 7' - 412 " 6' - 9" 25" - 6" 3' 35' - 0" 25" x 3 8" top plate L 8" x 6" x 9 16" L 8" x 6" x 5 8" 48.5" PL 48" x 3 8" x 32'-9" Floor Beams 4" x 4" x 3 8" L 66.875" N.A. 48.5" 66" x 3 8" web plate PL 48" x 3 8" x 32'-9" 31.789" Spandrel Beam 8" x 6" x 3 4" L L
  • 11. AASHTO LOAD RATING ANALYSIS Components subject to single load effect where RF = rating factor (inventory or operating) Rn = nominal member capacity (flexure or compression) D = nominal dead load effect L = nominal live load effect I = live load impact factor = 50 / (L + 125) γD = dead load factor = 1.3 γL = live load factor = 2.17 (inventory) or 1.3 (operating) Components subject to combined loading Interaction equation for columns and arch rib (discussed later)
  • 12. Rating Vehicles DESIGN LOADING: AASHTO HS-20 Truck or Lane Load LEGAL LOADING: AASHTO Type 3, 3S2, and 3-3 Trucks PERMIT LOADING: Emergency-One Titan Fire Truck
  • 13. Rating Vehicles (cont.) HS-20 Truck: 72 kips 32 k 32 k 36 k 36 k 8k 14 to 30 ft 14ft AXLE NO.1 2 6ft 3 Fire Truck: 77.74 kips 18.98 k 18.98 k 5 ft AXLE NO.1 19.89 k 5 ft 12.7 ft 2 19.89 k 3 38.87 k 38.87 k 7.2 ft 4 Legal Trucks: 50, 72, and 80 kips
  • 14. (a) TYPE 3: Unit Weight = 50 kips 16 k 25 k 17 k 17 k 15 ft 4 ft AXLE NO.1 2 25 k 6ft 3 (b) TYPE 3S2: Unit Weight = 72 kips 10 k 15.5 k 15.5 k 11 ft AXLE NO.1 4 ft 2 36 k 15.5 k 15.5 k 22 ft 4 ft 3 4 36 k 6ft 5 (c) TYPE 3-3: Unit Weight = 80 kips 12 k 12 k 12 k 15 ft AXLE NO.1 15 ft 4 ft 2 16 k 3 14 k 14 k 16 ft 4 4 ft 5 40 k 40 k 6ft 6
  • 15. LOAD RATING of FLOOR SYSTEM
  • 16. Description of Rating Model: Stringers Section #2: Negative moment, non-composite section (no cover plates) Interior Stringer N1 (Abutment) N2 N3 (Pier Col #1) N4 N5 (Pier Col #2) N6 N7 (Skewback Col #1) Section #3: Positive moment, non-composite section (no cover plates) Section #1: Positive moment, composite section (top and bottom cover plates) Section #2: Negative moment, non-composite section (no cover plates) Exterior Stringer N1 (Abutment) N2 N3 (Pier Col #1) N4 N5 (Pier Col #2) N6 N7 (Skewback Col #1) Section #3: Positive moment, non-composite section (no cover plates) Section #1: Positive moment, composite section (no cover plates) NOTE: The four interior stringers are W21x62 sections of ASTM A7 steel; The two exterior stringers are W21x62 sections of ASTM A36 steel.
  • 17. Load Rating Analysis Results: Stringers Interior Stringer Exterior Stringer Section #3 Section #1 Section #2 Section #3 2.46 1.09 1.16 2.07 1.21 1.29 TYPE 3 3.05 1.41 1.42 2.57 1.57 1.58 TYPE 3S2 3.19 1.03 1.80 2.69 1.15 2.01 TYPE 3-3 3.84 1.25 2.03 3.23 1.39 2.26 FIRE 2.55 0.97 1.23 2.14 1.08 1.37 HS-20 Operating Rating Section #2 HS-20 Inventory Rating Section #1 4.11 1.81 1.94 3.46 2.02 2.15 TYPE 3 5.10 2.36 2.36 4.29 2.62 2.63 TYPE 3S2 5.33 1.72 3.01 4.49 1.92 3.35 TYPE 3-3 6.41 2.09 3.38 5.40 2.33 3.77 FIRE 4.25 1.62 2.05 3.58 1.80 2.28 Controls
  • 18. Description of Rating Model: Floor Beams 4'-9" 3'-6" 6'-9" 6'-0" 4'-0" 7'-4.5" Slab 6'-9" 6'-0" 4'-0" 6'-9" 35'-0" 6'-9" 6'-0" 4'-9" 7'-4.5" 6'-9" 3'-6" Exterior Stringer 0.872 x (36 kips) per force. Spandrel Beam 42.6 k 42.8 k 42.8 k 42.6 k Interior Stringer Floor beam 7'-4.5" 6'-9" 6'-9" 6'-9" 7'-4.5"
  • 19. Description of Rating Model: Floor Beams (cont.) HS-20 Live Load Effects: FB#2 -42.6 k -42.8 k -42.8 k 630 k-ft -42.6 k 630 k-ft 919 k-ft 919 k-ft Dead Load Effects: FB#2 -22.1 k 153 k-ft -17.2 k -17.2 k -17.2 k 124 k-ft -17.2 k 134 k-ft 252 k-ft 255 k-ft 136 k-ft -19.5 k
  • 20. Load Rating Analysis Results: Floor Beams Floor Beam 0.85* TYPE 3 1.22 1.17* TYPE 3S2 1.13 1.16* TYPE 3-3 1.21 1.29 0.91 0.88* HS-20 1.46 1.41 TYPE 3 2.04 1.96 TYPE 3S2 1.89 1.94 TYPE 3-3 2.03 2.15 FIRE Operating Rating 0.88 FIRE NOTE: FB#6 HS-20 Inventory Rating FB#2 1.51 1.47 Floor beam FB#2 is located one bay from the abutment. Floor beam FB#6 is located above the arch span. asterisk (*) symbol indicates the section does not satisfy the compact requirements of the AASHTO Specification.
  • 21. Description of Rating Model: Spandrel Beam BEAM Model SOUTH Abutment Pier Col #1 Pier Col #2 Skewback Col #1 Arch Col #1 Arch Col #2 Arch Col #3 FRAME Model SOUTH NORTH Roller Roller Pinned Pinned Fixed Fixed
  • 22. Description of Rating Model: Spandrel Beam (cont.) HS-20, Type 3, and Fire Trucks Section #4: Negative moment, non-composite section Section #2: Negative moment, composite section Abutment Pier Col #1 Pier Col #2 Skewback Col #1 Section #3: Positive moment, non-composite section Section #1: Positive moment, composite section Type 3S2 and Type 3-3 Trucks Section #2: Negative moment, composite section Section #4: Negative moment, non-composite section Abutment Pier Col #1 Pier Col #2 Section #3: Positive moment, non-composite section Section #1: Positive moment, composite section Skewback Col #1
  • 23. Load Rating Analysis Results: Spandrel Beam BEAM Model FRAME Model Section #3 Section #4 Section #1 Section #2 Section #3 Section #4 1.17 1.19 1.15 1.21 1.17 1.19 1.17 1.31 TYPE 3 1.57 1.67 1.53 1.69 1.57 1.67 1.55 1.83 TYPE 3S2 1.52 1.44 1.55 1.53 1.52 1.45 1.57 1.46 TYPE 3-3 1.73 1.34 1.79 1.44 1.72 1.35 1.81 1.58 FIRE 1.20 1.18 1.21 1.20 1.20 1.18 1.23 1.30 HS-20 Operating Rating Section #2 HS-20 Inventory Rating Section #1 1.96 1.98 1.93 2.02 1.96 1.99 1.96 2.18 TYPE 3 2.62 2.78 2.55 2.82 2.62 2.79 2.59 3.05 TYPE 3S2 2.54 2.40 2.58 2.56 2.54 2.42 2.62 2.43 TYPE 3-3 2.88 2.23 2.99 2.40 2.88 2.26 3.02 2.64 FIRE 2.01 1.96 2.01 2.00 2.01 1.97 2.05 2.16 Controls
  • 24. 31' 31' 31' 31' 31' 31' 29' - 6" FB#5 FB#5 FB#4 FB#3 FB#2 FB#2 FB#2 FB#2 FB#1 Load Rating Analysis Summary: Floor System 29' - 6" Floor Beam 6' - 9" 7' - 412" 6' - 9" 35' 6' - 9" 6' - 9" 7' - 412" 6' - 9" C Pier Col #1 L Exterior Stringers C Pier Col #2 L C Skewback Col #1 L Interior Stringers
  • 25. 31' 31' 29' - 6" 29' - 6" 29' - 6" 29' - 6" C Skewback Col #1 L 29' - 6" Spandrel Beams Floor Beam Interior Stringers 29' - 6" FB#6 FB#6 FB#6 FB#6 FB#5 FB#5 FB#5 FB#4 FB#3 Load Rating Analysis Summary: Floor System (cont.) 29' - 6" 14' - 9" Wind Bracing Outrigger Beam Column
  • 26. LOAD RATING of COLUMNS
  • 27. Description of Rating Model: Columns BEAM-COLUMN Model (axial-bending interaction) COLUMN Model (axial load only) 62ft 62ft 62ft 15 spans (29.5ft each) 106.6ft 422.5ft 62ft 62ft 62ft
  • 28. AASHTO Interaction Equation (rewritten for side-sway case): P 0.85A F s cr where + B M +B M 1 nt 2 M lt ≤1 u P = maximum axial compression As = cross-sectional area of column Fcr = critical buckling stress Mu = maximum flexural strength (equal to yield moment for all columns) Mnt = first order moment assuming no lateral end translation (i.e., non-sway case) Mlt = first order moment due to lateral end translation (i.e., sway-case) B1 = MAF for second order effect of Mnt (i.e., P-δ effects) δ C B = ≥1 1 P B1 = 1 since C ≤ 0.6 1− AF s e1 B2 = MAF for second order effect of Mlt (i.e., P-∆ effects) ∆ B2 = 1 ≥1 ∑P 1− ∑ As Fe2 B2 = 1 since ∑ As Fe2 is large compared to C = equivalent moment factor Fe1, Fe2 = Euler Buckling stress for non-sway and side-sway buckling, respectively. ∑P
  • 29. Load Rating Analysis: Columns P 0.85A F B M +B M 1 + nt 2 M s cr lt ≤1 u B1 = B2 = 1 0.85A F s cr + M = u A P +A P 1 D 2 L 0.85A F + s cr A M +A M 1 D 2 SF L ≤1 y Solve for RF A P + A P ( RF ) 1 D 2 L 0.85A F s cr + A M + A M ( RF ) 1 D 2 L SF y =1
  • 30. Load Rating Analysis Results: Columns Column HS-20 TYPE 3 TYPE 3S2 TYPE 3-3 FIRE RFi,b-c RFi,col RFi,b-c RFi,col RFi,b-c RFi,col RFi,b-c RFi,col RFi,b-c RFi,col Pier Col #3 1.42 3.26 2.03 4.64 1.48 3.51 1.37 3.37 1.40 3.22 Pier Col #4 N/A 3.19 N/A 4.55 N/A 3.39 N/A 3.22 N/A 3.15 Arch Col #6 0.80 4.38 1.13 6.07 0.89 6.03 0.86 6.67 0.80 4.37 Arch Col #7 0.91 4.40 1.29 6.09 0.98 6.06 0.94 6.69 0.90 4.38 Arch Col #10 0.76 4.33 1.07 6.00 0.84 5.97 0.81 6.59 0.76 4.32 Arch Col #11 0.84 4.20 1.19 5.81 0.92 5.78 0.89 6.39 0.83 4.18 Arch Col #12 0.90 3.93 1.27 5.45 0.98 5.41 0.93 5.99 0.89 3.92 Arch Col #13 1.02 3.41 1.46 4.72 1.11 4.70 1.05 5.19 1.01 3.40 Arch Col #14 1.31 2.69 1.87 3.72 1.43 3.65 1.36 4.03 1.30 2.67 Skewback Col #2 2.63 4.56 3.71 6.45 3.10 5.14 3.18 5.13 2.61 4.51
  • 31. LOAD RATING of ARCH RIB
  • 32. Description of Rating Model: Arch Rib RIGID Model: “rigid” behavior of riveted connections; same as BEAM-COLUMN Model used to analyze columns PINNED Model: “pinned” behavior of riveted connections; same as COLUMN Model used to analyze columns 62ft 62ft 62ft 15 spans (29.5ft each) 106.6ft 422.5ft 62ft 62ft 62ft
  • 33. AASHTO Interaction Equation (for solid rib arches):   1  MD + ML   1 − 1.18 TD + TL  AFe  + ( where f a fb N D + N L + = Fa Fb AFa SFb )        ≤1 fa = computed axial stress Fa = allowable axial stress fb = computed bending stress Fb = allowable bending stress ND , NL = unfactored axial forces under dead and live load (plus impact) MD , ML = unfactored, first-order bending moments under dead and live load (plus impact) A , S = cross-sectional area and section modulus (at extreme fiber) of the arch rib TD , TL = unfactored thrust at the quarter point under dead and live load (plus impact) Fe = Euler buckling stress
  • 34. Load Rating Analysis: Arch Rib   1  MD + ML   1 − 1.18 TD + TL  AFe  + ( f a fb N D + N L + = Fa Fb AFa SFb )        ≤1 Solve for RF MD + ML ( N D + N L ( RFi ) + AFa    1 RFi   1.18 TD + TL RFi  1−  AFe  ) ( SFb ( ))         =1
  • 35. 62ft 62ft 15 spans (29.5ft each) 62ft C2 E C1 A 62ft D2 106.6ft F D1 422.5ft Case 1: Nmax @ Point A, Mmax @ Point C2, T @ Point E Case 2: Nmax @ Point B, Mmax @ Point D2, T @ Point F Case 3: Mmax @ Point C1, Nmax @ Point A, T @ Point E Case 4: Mmax @ Point D1, Nmax @ Point B, T @ Point F B 62ft 62ft
  • 36. Load Rating Analysis Results: Arch Rib Rating Vehicle HS20 TYPE 3 TYPE 3S2 TYPE 3-3 FIRE Case RIGID Model PINNED Model IRi RFi RFo IRi RFi RFo 1 0.56 2.53 4.23 0.57 2.41 4.02 3 0.63 2.14 3.57 0.69 1.77 2.96 1 0.48 3.58 5.98 0.48 3.47 5.79 3 0.53 3.05 5.10 0.58 2.53 4.23 1 0.53 2.81 4.69 0.56 2.35 3.92 3 0.60 2.32 3.87 0.66 1.80 3.01 1 0.54 2.68 4.48 0.58 2.54 4.24 3 0.62 2.21 3.68 0.69 1.91 3.19 1 0.56 2.49 4.17 0.57 2.39 3.99 3 0.63 2.12 3.54 0.70 1.76 2.93 Controls
  • 37. Load Rating Analysis Summary: Columns and Arch Rib 62ft 62ft 62ft 15 spans (29.5ft each) 106.6ft 422.5ft 62ft 62ft 62ft
  • 38. FINAL LOAD RATING Bridge Component Design Load Legal Load Permit Load RFo RFi RFo RFi RFo Stringer 1.09 1.81 1.03 1.72 0.97 1.62 0.85 1.14 1.13 1.89 0.88 1.47 Spandrel beam 1.15 1.93 1.34 2.23 1.18 1.96 Pier Column PINNED Model RFi Floor beam BEAM or FRAME Model 1.18 1.97 1.13 1.89 1.16 1.94 Arch Column 0.76 1.27 0.81 1.36 0.76 1.26 Skewback Column 2.63 4.39 3.10 5.18 2.61 4.35 Arch Rib 1.77 2.96 1.80 3.01 1.75 2.93 BEAM-COLUMN Model
  • 39. Discussion 1. The rating factors of the columns are inversely proportional to the stiffness of the riveted connections. In actuality, the connection stiffness may be somewhere between fully rigid and pinned behavior and thus, the rating factors of the columns will fall somewhere between the rating values of BEAM-COLUMN and COLUMN models. 2. Another important observation is that, while the rigidity of the end-column connection helps to increase the capacity of the spandrel beam and the arch rib, it significantly reduces the capacity of the columns. 3. In the scope of this study, the rating factor of the arch column and the floor beam controlled the final rating of the entire bridge. However, it is anticipated that the rating factors of the columns may no longer control if the actual connection stiffness is taken into account (recommended for future work to improve column rating factors).
  • 40. CONCLUSIONS and RECOMMENDATIONS • Column rating factors are inversely proportional to the stiffness of the riveted connections while arch rib rating factors are directly proportional; spandrel beam was not affected by connection stiffness at critical sections. • In general, the Omega Bridge is structurally sound with some concerns for the floor beams and arch columns. • Since the smallest rating factors for legal loads are RFi = 0.81 and RFo = 1.36, posting of the bridge is not required but additional inspection and traffic monitoring may be warranted. • Further studies (i.e., field testing along with 3D finite element analysis) are recommended to improve the rating factors.