SlideShare une entreprise Scribd logo
1  sur  11
Télécharger pour lire hors ligne
Física Tema Página 1
CALCULO DE MOMENTOS DE INERCIA
Se unen cuatro partículas de masa m mediante varillas sin masa, formando un rectángulo de
lados 2a y 2b. El sistema gira alrededor de un eje en el plano de la figura que pasa por su
centro. a) Hallar el momento de inercia respecto de este eje. b) Hallar el I respecto de un eje
paralelo al anterior que pase por las masas. c) Hallar el I respecto a un eje perpendicular al
anterior y que pase por una masa.
Solución: I.T.I. 02
a) Si aplicamos la definición de momento de
inercia: I = mi Ri
2
i
∑ tenemos que:
b) Para calcular el momento de inercia respecto
de los nuevos ejes podemos hacerlo aplicando
la fórmula anterior o utilizando el teorema de
Steiner:
I ʹ′x = Ix + 4mb2
I ʹ′y = Iy + 4m a2
⎫
⎬
⎪
⎭
⎪
⇒
c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que
pase por una de las masas (eje ʹ′z ) será:
I ʹ′z = 0 + m 2a( )2
+ m 2b( )2
+ m 2a( )2
+ 2b( )2
[ ]=
Lo cual podríamos haber calculado teniendo en cuenta que todas las partículas de
nuestro sistema se encuentran en un plano y podemos aplicar el teorema de los ejes
perpendiculares: I ʹ′z = I ʹ′x + I ʹ′y .
x
y
2a
2b
ʹ′y
€
ʹ′x
Ix = 4 mb
2
, Iy = 4 m a
2
I ʹ′x = 8 mb
2
, I ʹ′y = 8m a
2
8 m a2
+ b2
( )
Física Tema Página 2
Calcular el momento de inercia respecto de un eje que pase por su centro
de un disco de radio R y masa M al cual se le practica un agujero
circular de radio R/4 centrado a una distancia R/2 del centro del disco.
Solución: I.T.I. 01, 04, I.T.T. 04
Podemos tratar dicho disco como la contribución de dos piezas:
El momento de inercia respecto del eje Z de la pieza 1 será:
Iz,1 =
1
2
M1R1
2
=
1
2
σπ R1
2
( )R1
2
=
1
2
σπ R1
4
=
1
2
σ πR4
Si llamamos ʹ′Z a un eje paralelo al eje Z y que pase por el centro de la pieza 2
utilizando el teorema de Steiner podemos calcular su momento de inercia respecto del
eje Z:
Iz,2 = I ʹ′z ,2 + M2
R
2
⎛
⎝
⎞
⎠
2
=
1
2
M2R2
2
+ M2
R
2
⎛
⎝
⎞
⎠
2
=
1
2
σ πR2
2
( )R2
2
+ σπ R2
2
( )
R
2
⎛
⎝
⎞
⎠
2
=
=
1
2
σπ R2
4
+ σπ R2
2
( ) R
2
⎛
⎝
⎞
⎠
2
=
1
2
σπ
R
4
⎡
⎣⎢
⎤
⎦⎥
4
+ σπ
R
4
⎡
⎣⎢
⎤
⎦⎥
2
⎛
⎝
⎜
⎞
⎠
⎟
R
2
⎛
⎝
⎞
⎠
2
=
9
512
⎛
⎝
⎞
⎠
σπ R4
El momento de inercia de toda la placa será:
Iz = Iz,1 − Iz,2 =
1
2
ρπR
4
−
9
512
ρπR
4
=
247
512
ρπR
4
Finalmente calculando el valor de la densidad superficial σ y sustituyendo:
σ =
Mplaca
Aplaca
=
M placa
πR2
−π
R
4
⎛
⎝
⎞
⎠
2 =
16
15
Mplaca
πR2
⎛
⎝⎜
⎞
⎠⎟ ⇒
R/2R
R/4
x
y
= –x
y
1
x
y
2
Iz =
247
480
Mplaca R
2
Física Tema Página 3
Calcular los momentos de inercia respecto a su eje de simetría de los siguientes cuerpos:
a) esfera homogénea, b) cilindro hueco de paredes delgadas, c) cilindro homogéneo hueco de
radio interior a y exterior b, d) sistema formado por una barra cilíndrica de radio R y longitud
L unida a dos esferas de radio 2R.
Solución: I.T.I. 02
a) Coloquemos nuestro origen de coordenadas en el centro de la
esfera. Si dividimos nuestra esfera en diferenciales de masa dm
con forma de coraza esférica de radio r y espesor dr, todos los
puntos de dicho dm se encuentran a la misma distancia del centro,
por lo tanto si calculamos el momento de inercia polar de la esfera respecto de dicho
centro nos dará:
IO = r
2
dm∫ = r
2
ρ4πr
2
dr
0
R
∫ = ρ4π
R
5
5
=
M
4
3
π R3
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
4π
R
5
5
=
3
5
M R
2
Por simetría el momento de inercia respecto de los tres ejes coordenados X, Y y Z
tiene el mismo valor Ix = Iy = Iz , y además se verifica que:
Ix + Iy + Iz = 2IO ⇒ Ix = Iy = Iz =
b) En el cilindro hueco de paredes delgadas todos sus puntos se encuentran a la misma
distancia del eje de simetría, con lo que su momento de inercia respecto de dicho eje
será:
c) En el caso del cilindro de radio interno a y externo b
podemos dividirlo en corazas cilíndricas de radio r y
espesor dr (todos los puntos de una de estas corazas se
encuentran a la misma distancia del eje de giro). Llamando
H a la altura del cilindro, su momento de inercia será:
I = r2
dm∫ = r2
ρ 2πrH dr
a
b
∫ = ρ 2π H
1
4
b4
− a4
( )=
=
M
π b2
− a2
( )H
⎛
⎝
⎜
⎞
⎠
⎟ 2π H
1
4
b4
− a4
( )=
d) En este caso nuestro objeto se puede descomponer en un cilindro y dos esferas casi
completas. El momento de inercia de dicho objeto será por lo tanto la suma de los
momentos de inercia de las tres piezas: Iz = Iz,cilindro + 2Iz,esfera .
2
5
MR2
I = MR2
r R
1
2
M b
2
+ a
2
( )
H
dr
r
Física Tema Página 4
Para el cilindro podemos calcular su momento de inercia de forma similar a como
hicimos en el apartado anterior. Utilizando la fórmula anterior y haciendo la
sustitución b = R y a = 0, tenemos que:
Icilindro =
1
2
McilindroR2
=
1
2
ρπR2
L( )R2
=
1
2
ρπ R4
L .
Para el cálculo del momento de inercia de las dos piezas
esféricas dividámoslas en rodajas de espesor dz y radio r
como se muestra en la figura. La relación entre r y z es:
r
2
+ z
2
= 2R( )2
⇒ r
2
= 4R
2
− z
2
La cantidad de masa contenida en una de las rodajas será:
dm = ρπr
2
dz
Y la contribución de cada rodaja, considerada como un disco, al momento de inercia
respecto del eje de simetría será:
dIz,rodaja =
1
2
dmr2
=
1
2
ρπ r4
dz =
1
2
ρπ 4R2
− z2
( )
2
dz
El momento de inercia de la pieza esférica será:
Iz = dIz,rodaja∫ =
1
2
ρπ 4R2
− z2
( )2
dz
zmín.
zmáx.
⌠
⌡
⎮ =
1
2
ρπ 16R4
− 8R2
z2
+ z4
( )dz
− 3R
2R
⌠
⌡
⎮ =
=
1
2
ρπ 16R4
z −
8
3
R2
z3
+
1
5
z5⎛
⎝
⎞
⎠
⎤
⎦
⎥
− 3R
2R
=
1
2
ρπR5 256
15
+
49
5
3
⎛
⎝
⎞
⎠
La masa de esta pieza esférica será:
Mesfera = dmrodaja∫ = ρπ 4R2
− z2
( )dz
zmín.
zmáx.
∫ =
= ρπ 4R2
z −
1
3
z3⎛
⎝
⎞
⎠
⎤
⎦
⎥
− 3R
2R
= ρπ R3 16
3
+ 3 3
⎛
⎝
⎞
⎠
El momento de inercia de todo el objeto será:
Iz = Iz,cilindro + 2Iz,esfera = ρπ R
4 L
2
+
256
15
+
49
5
3
⎛
⎝
⎞
⎠R
⎧
⎨
⎩
⎫
⎬
⎭
R
2R
r
z
Z
Física Tema Página 5
Que se puede escribir en función de la masa del objeto sustituyendo la densidad en
función de ésta:
M = Mcilindro + 2Mesfera = ρπ R
2
L +
32
3
+ 6 3
⎛
⎝
⎞
⎠
R
⎧
⎨
⎩
⎫
⎬
⎭
⇒ ρ =
M
π R2
L +
32
3
+ 6 3
⎛
⎝
⎞
⎠
R
⎧
⎨
⎩
⎫
⎬
⎭
⇒
Si hubiésemos considerado desde el principio esferas completas el resultado no
hubiese diferido mucho del anterior (como se puede comprobar dando valores para L
y R) y vendría dado por:
Iz =
L
2
+
512
15
R
L +
64
3
R
⎧
⎨
⎪
⎩
⎪
⎫
⎬
⎪
⎭
⎪
MR
2
Calcular el momento de inercia de una esfera hueca respecto a un eje que pasa por su centro.
Solución: I.T.I. 01, 04, I.T.I. 04
Coloquemos nuestro origen de coordenadas en el centro de la esfera. Todos los puntos
de la esfera se encuentran a la misma distancia de dicho centro, por lo tanto si
calculamos su momento de inercia polar respecto de dicho punto nos dará: IO = MR
2
.
Por simetría el momento de inercia respecto de los tres ejes coordenados X, Y y Z tiene
el mismo valor Ix = Iy = Iz , y además se verifica que:
Ix + Iy + Iz = 2IO ⇒ Ix = Iy = Iz =
Determínese el momento de inercia de un cono circular recto respecto a: a) su eje
longitudinal, b) un eje que pasa por el vértice del cono y es perpendicular a su eje
longitudinal, c) un eje que pasa por el centro de gravedad del cono y es perpendicular a su eje
longitudinal.
Solución: I.T.I. 01, 04, I.T.T. 04
Orientemos el eje X de forma que sea el eje
longitudinal del cono, como se muestra en la
figura. Dividamos al cono en rodajas circulares
de espesor dx y radio r. La relación entre r y x es:
2
3
MR
2
x
y
z
H
Rx
Iz =
L
2
+
256
15
+
49
5
3
⎛
⎝
⎞
⎠
R
L +
32
3
+ 6 3
⎛
⎝
⎞
⎠
R
⎧
⎨
⎪⎪
⎩
⎪
⎪
⎫
⎬
⎪⎪
⎭
⎪
⎪
MR
2
Física Tema Página 6
r
x
=
R
H
⇒ r =
R
H
⎛
⎝
⎞
⎠ x
La cantidad de masa contenida en una de las rodajas será:
dm = ρπr
2
dx = ρπ
R
H
⎛
⎝
⎞
⎠
2
x
2
dx
a) El momento de inercia del cono será igual a la suma de los momentos de inercia de
todas las rodajas:
Ix = dIx∫ =
1
2
dmr2⌠
⌡
⎮ =
1
2
ρπ
R
H
⎛
⎝
⎞
⎠
4
x4
dx
0
H
⌠
⌡
⎮ =
1
10
ρπ R4
H
Para escribir el resultado en función de la masa del cono:
M = dm∫ = ρπ
R
H
⎛
⎝
⎞
⎠
2
x
2
dx
0
H
⌠
⌡
⎮ =
1
3
ρπR
2
H ⇒ ρ =
3M
πR2
H
Sustituyendo en la expresión del momento de inercia:
b) Calculemos ahora el momento de inercia respecto del eje Y. Consideremos
primeramente unos ejes ʹ′Y y ʹ′Z contenidos en el plano de cada rodaja y paralelos
respectivamente a los ejes Y y Z. Para cada rodaja tendremos:
por simetría: dI ʹ′y = dI ʹ′z
teorema de los ejes perp.: dIx = dI ʹ′y + dI ʹ′z
⎫
⎬
⎪
⎭
⎪
⇒ dI ʹ′y = dI ʹ′z =
1
2
dIx =
1
4
dmr2
Utilizando el teorema de Steiner podemos calcular el momento de inercia de cada
rodaja respecto del eje Y:
dIy = dI ʹ′y + dmx
2
=
1
4
ρπ
R
H
⎛
⎝
⎞
⎠
4
x
4
dx + ρπ
R
H
⎛
⎝
⎞
⎠
2
x
4
dx = ρπ
R
H
⎛
⎝
⎞
⎠
2
1
4
R
H
⎛
⎝
⎞
⎠
2
+1
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
x
4
dx
El momento de inercia del cono respecto del eje Y será:
Ix =
3
10
MR2
Física Tema Página 7
Iy = dIy∫ = ρπ
R
H
⎛
⎝
⎞
⎠
2
1
4
R
H
⎛
⎝
⎞
⎠
2
+1
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
x4
dx
0
H
⌠
⌡
⎮ =
=
1
5
ρπR2 1
4
R2
+ H 2⎡
⎣⎢
⎤
⎦⎥H =
c) Consideremos un eje YC.M. paralelo al eje Y y que pase por el C.M. del cono.
Sabiendo que el C.M. del cono se encuentra a una distancia de su vértice de tres
cuartos de su altura y aplicando el teorema de Steiner:
Iy = IyC.M .
+ M
3
4
H
⎛
⎝
⎞
⎠
2
⇒
Dada la semiesfera x2
+ y2
+ z2
= R2
, z ≥ 0. Calcular sus momentos de inercia Ix, Iy e Iz
Solución: I.T.I. 01, 04, I.T.T. 04
Para una esfera completa tenemos que el momento de
inercia respecto de cualquier eje que pase por su centro es:
Ix,esfera = Iy,esfera = Iz,esfera =
2
5
MesferaR2
Cada semiesfera contribuye de igual forma al momento de
inercia de la esfera completa, por lo tanto:
Ix,semiesfera = Iy,semiesfera = Iz,semiesfera =
1
2
2
5
MesferaR2⎛
⎝
⎞
⎠
=
2
5
1
2
Mesfera
⎛
⎝
⎞
⎠
R2
=
Es decir la expresión matemática resulta ser la misma, dos quintos de la masa por el
radio al cuadrado, pero teniendo en cuenta que ahora la masa de nuestra pieza es la de
una semiesfera, no la de la esfera completa.
3
5
M
1
4
R
2
+ H
2⎡
⎣⎢
⎤
⎦⎥
IyC. M .
=
3
20
M R
2
+
1
4
H
2⎡
⎣⎢
⎤
⎦⎥
y
z
x
R
2
5
MsemiesferaR2
Física Tema Página 8
x
y
z
H
R
Calcular el centro de masas de medio paraboloide (y ≥ 0) de revolución alrededor del eje X,
cuyo radio en la base es R, la altura es H, y su vértice se encuentra en el origen de
coordenadas. Calcular sus momentos de inercia Ix, Iy e Iz. Si Y’ es un eje paralelo al eje Y pero
que pasa por la base del paraboloide, calcular Iy’.
Solución: I.T.I. 04, I.T.T. 01, 04
Sea el semiparaboloide de la figura orientado a lo
largo del eje X, de altura H y radio R. Dado que el
plano XY es un plano de simetría que divide al
semiparaboloide en dos mitades simétricas, el
C.M. se encontrará en dicho plano, con lo cual la
coordenada z del C.M. será nula:
Para el cálculo de la coordenada x del C.M.
dividimos al semiparaboloide en rodajas en forma
de semidiscos de radio r y espesor dx. La
ecuación del paraboloide nos da la relación entre
la coordenada x y el radio r de los semidiscos:
x = kr
2
H = k R
2
⎫
⎬
⎪
⎭
⎪
⇒ k =
H
R2 ⇒ r =
R
2
H
x
⎛
⎝
⎜
⎞
⎠
⎟
1
2
El volumen de cada uno de los semidiscos será:
dV =
1
2
π r
2
dx =
1
2
π
R
2
H
x
⎛
⎝
⎜
⎞
⎠
⎟ dx
El volumen total del semiparaboloide será:
V = dV∫ =
1
2
π
R2
H
x
⎛
⎝
⎜
⎞
⎠
⎟dx
0
H
⌠
⌡
⎮ =
1
4
π R
2
H
La coordenada x del C.M. será:
xdV∫ =
1
2
π
R
2
H
⎛
⎝
⎜
⎞
⎠
⎟ x
2
dx
0
a
⌠
⌡
⎮ =
1
6
π R
2
H
2
⇒ xC .M . =
x dV∫
dV∫
=
€
zC.M . = 0
2
3
H
x
y
z
x
r
Física Tema Página 9
Para la coordenada y del C.M. vamos a utilizar los mismos diferenciales de volumen del
cálculo anterior, a pesar de que todos sus puntos no tengan la misma coordenada y.
Sabiendo que el C.M. de un semicírculo de radio r se encuentra a una distancia
€
4r
3π
del
diámetro, vamos a tomar esta posición como la representativa de cada una de las rodajas
utilizadas en el apartado anterior.
ysemidisco dV∫ =
4r
3π
⎛
⎝
⎞
⎠
dV
⌠
⌡
⎮ =
4r
3π
⎛
⎝
⎞
⎠
1
2
πr
2
dx
0
H
⌠
⌡
⎮ =
=
2
3
r
3
dx
0
H
⌠
⌡
⎮ =
2
3
R
2
H
x
⎛
⎝
⎜
⎞
⎠
⎟
3
2
dx
0
H
⌠
⌡
⎮
⎮
=
4
15
R
3
H
⇒ yC.M . =
ysemidisco dV∫
dV∫
=
Vamos a calcular ahora los momentos de inercia del semiparaboloide. Para simplificar
los cálculos vamos a realizarlos para el paraboloide completo y después dividiremos por
dos. Si dividimos el paraboloide en rodajas de espesor dx (igual que hacíamos en los
cálculos anteriores pero ahora las rodajas son círculos completos) la cantidad de masa
contenida en una de las rodajas será:
dm = ρπr2
dx = ρπ
R
2
H
x
⎛
⎝
⎜
⎞
⎠
⎟ dx
su momento de inercia respecto del eje X será la suma de los momentos de inercia de
todas las rodajas:
Ix, parab . = dIx∫ =
1
2
dmr
2⌠
⌡
⎮ =
1
2
ρπ
R4
H 2
⎛
⎝
⎜
⎞
⎠
⎟x
2
dx
0
H
⌠
⌡
⎮ =
1
6
ρπ R
4
H
Para escribir el resultado en función de la masa del paraboloide:
M parab. = dm∫ = ρπ
R2
H
x
⎛
⎝
⎜
⎞
⎠
⎟ dx
0
H
⌠
⌡
⎮ =
1
2
ρπR
2
H ⇒ ρ =
2M
πR2
H
Sustituyendo en la expresión del momento de inercia: Ix =
1
3
Mparab.R
2
Para el cálculo de Iy , Iz tenemos que por simetría Iy = Iz . Calculemos ahora el momento
de inercia respecto del eje Y. Consideremos primeramente unos ejes Y * y Z *
16R
15π
Física Tema Página 10
contenidos en el plano de cada rodaja y paralelos respectivamente a los ejes Y y Z. Para
cada rodaja tendremos:
por simetría: dIy* = dIz*
teorema de los ejes perp.: dIx = dIy* + dIz*
⎫
⎬
⎪
⎭
⎪
⇒ dIy* = dIz* =
1
2
dIx =
1
4
dmr
2
Utilizando el teorema de Steiner podemos calcular el momento de inercia de cada rodaja
respecto del eje Y:
dIy = dIy* + dmx2
=
1
4
ρπ
R4
H2
⎛
⎝
⎜
⎞
⎠
⎟ x2
dx + ρπ
R2
H
⎛
⎝
⎜
⎞
⎠
⎟ x3
dx
El momento de inercia del paraboloide respecto del eje Y será:
Iy, parab . = dIy∫ =
1
4
ρπ
R4
H
2
⎛
⎝
⎜
⎞
⎠
⎟ x2
dx + ρπ
R2
H
⎛
⎝
⎜
⎞
⎠
⎟ x3
dx
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
0
H
⌠
⌡
⎮ =
=
1
12
R
2
H +
1
4
H
3⎡
⎣
⎢
⎤
⎦
⎥ρπR
2
=
1
2
Mparab.
1
3
R
2
+ H
2⎡
⎣
⎢
⎤
⎦
⎥
Para el semiparaboloide los momentos de inercia pedidos serán la mitad, pero como su
masa ya es la mitad la expresión será la misma:
El área por debajo de la curva y = a(x/h)n
, con x entre 0 y h, gira alrededor del eje X y genera
un sólido de revolución homogéneo de masa m. Exprésese el momento de inercia del sólido
respecto al eje X y respecto al eje Y en términos de m, a y n.
Solución: I.T.I. 03, I.T.T. 01, 03
Vamos a dividir ese sólido de revolución en rodajas circulares de radio y y espesor dx.
La contribución al momento de inercia respecto del eje X de cada una de las rodajas
será:
dIx =
1
2
dm y2
=
1
2
ρπ y2
dx( )y2
=
1
2
ρπ y4
dx =
1
2
ρπa4 x4 n
h4 n
⎛
⎝
⎜
⎞
⎠
⎟ dx
El momento de inercia respecto del eje X de todo el sólido será:
Ix =
1
3
Msemiparab.R2
Iy = Iz =
1
2
Msemiparab.
1
3
R2
+ H 2⎡
⎣⎢
⎤
⎦⎥
Física Tema Página 11
Ix = dIx∫ =
1
2
ρπa
4 x4 n
h4 n
⎛
⎝
⎜
⎞
⎠
⎟ dx
0
h
⌠
⌡
⎮ =
1
2
ρπa
4 h
4n +1
Para ponerlo en función de su masa calculamos ésta:
m = dm = ρπ y
2
dx
0
h
∫∫ = ρπa
2 x
2n
h2n
⎛
⎝
⎜
⎞
⎠
⎟ dx
0
h
⌠
⌡
⎮ = ρπa
2 h
2n +1
⇒ ρ =
2n +1( )m
πa2
h
Sustituyendo en la expresión del momento de inercia:
Calculemos ahora el momento de inercia respecto del eje Y. Consideremos
primeramente unos ejes Y * y Z * contenidos en el plano de cada rodaja y paralelos
respectivamente a los ejes Y y Z. Para cada rodaja tendremos:
por simetría: dIy* = dIz*
teor. de los ejes perp.: dIx = dIy* + dIz*
⎫
⎬
⎪
⎭
⎪
⇒
dIy* = dIz* =
1
2
dIx =
1
4
dmy2
=
=
1
4
ρπa4 x4 n
h
4 n dx
Utilizando el teorema de Steiner podemos calcular el momento de inercia de cada rodaja
respecto del eje Y:
dIy = dIy* + dmx2
=
1
4
ρπa4 x
4 n
h4 n dx + ρπa2 x
2n+ 2
h2n
⎛
⎝
⎜
⎞
⎠
⎟dx
El momento de inercia del sólido respecto del eje Y será:
Iy = dIy∫ =
1
4
ρπa4 x4 n
h4 n
⎛
⎝⎜
⎞
⎠⎟ dx + ρπ a2 x2n+ 2
h2n
⎛
⎝⎜
⎞
⎠⎟dx
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
0
h
⌠
⌡
⎮ =
=
1
4
ρπa4 h
4n +1
+ ρπa2 h3
2n + 3
=
Ix =
1
2
2n +1
4n +1
⎛
⎝
⎞
⎠ma2
1
4
2n +1
4n +1
⎛
⎝
⎞
⎠
ma2
+
2n +1
2n + 3
⎛
⎝
⎞
⎠
mh2

Contenu connexe

Tendances

Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)icano7
 
Problemario 1 er_periodo
Problemario 1 er_periodoProblemario 1 er_periodo
Problemario 1 er_periodogiljjx
 
Productos de inercia ejes rotados
Productos de inercia ejes rotadosProductos de inercia ejes rotados
Productos de inercia ejes rotadosSegundo Espín
 
Tabla centroide-momento-inercia
Tabla centroide-momento-inerciaTabla centroide-momento-inercia
Tabla centroide-momento-inerciaJaime Pérez
 
ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011Carlos Farley Zamudio Melo
 
Solucionario mecánica clásica
Solucionario mecánica clásicaSolucionario mecánica clásica
Solucionario mecánica clásicaDavidSPZGZ
 
3. momentos de inercia
3. momentos de inercia3. momentos de inercia
3. momentos de inerciaPPPPP
 
Area en-coordenadas-polares3
Area en-coordenadas-polares3Area en-coordenadas-polares3
Area en-coordenadas-polares3joselucho2805
 
Semana 15 choque en dos dimensiones unac 2009 b
Semana 15 choque en dos dimensiones unac 2009 bSemana 15 choque en dos dimensiones unac 2009 b
Semana 15 choque en dos dimensiones unac 2009 bWalter Perez Terrel
 
Centro gravedad-centroide
Centro gravedad-centroideCentro gravedad-centroide
Centro gravedad-centroideJanina Castillo
 
Formulario resistencia-de-materiales
Formulario resistencia-de-materialesFormulario resistencia-de-materiales
Formulario resistencia-de-materialesAndres Aparicio Lopez
 
Tabla laplace
Tabla laplaceTabla laplace
Tabla laplaceJORGE
 
Clase 06 aplicaciones de ecuaciones diferenciales
Clase 06  aplicaciones de ecuaciones diferencialesClase 06  aplicaciones de ecuaciones diferenciales
Clase 06 aplicaciones de ecuaciones diferencialesJimena Rodriguez
 

Tendances (20)

Clase 3. estatica
Clase 3. estaticaClase 3. estatica
Clase 3. estatica
 
Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)
 
Problemario 1 er_periodo
Problemario 1 er_periodoProblemario 1 er_periodo
Problemario 1 er_periodo
 
Diapositivas de estatica
Diapositivas de estaticaDiapositivas de estatica
Diapositivas de estatica
 
Productos de inercia ejes rotados
Productos de inercia ejes rotadosProductos de inercia ejes rotados
Productos de inercia ejes rotados
 
Tabla centroide-momento-inercia
Tabla centroide-momento-inerciaTabla centroide-momento-inercia
Tabla centroide-momento-inercia
 
ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011
 
Tabla de-centroides
Tabla de-centroidesTabla de-centroides
Tabla de-centroides
 
Solucionario mecánica clásica
Solucionario mecánica clásicaSolucionario mecánica clásica
Solucionario mecánica clásica
 
Fisica ii guia EJERCICIOS RESUELTOS
Fisica ii guia EJERCICIOS RESUELTOSFisica ii guia EJERCICIOS RESUELTOS
Fisica ii guia EJERCICIOS RESUELTOS
 
3. momentos de inercia
3. momentos de inercia3. momentos de inercia
3. momentos de inercia
 
Area en-coordenadas-polares3
Area en-coordenadas-polares3Area en-coordenadas-polares3
Area en-coordenadas-polares3
 
Uii estatica
Uii estaticaUii estatica
Uii estatica
 
Semana 15 choque en dos dimensiones unac 2009 b
Semana 15 choque en dos dimensiones unac 2009 bSemana 15 choque en dos dimensiones unac 2009 b
Semana 15 choque en dos dimensiones unac 2009 b
 
Centro gravedad-centroide
Centro gravedad-centroideCentro gravedad-centroide
Centro gravedad-centroide
 
Cinetica del solido pdf
Cinetica del solido pdfCinetica del solido pdf
Cinetica del solido pdf
 
Formulario resistencia-de-materiales
Formulario resistencia-de-materialesFormulario resistencia-de-materiales
Formulario resistencia-de-materiales
 
Tabla laplace
Tabla laplaceTabla laplace
Tabla laplace
 
Momento de inercia
Momento de inercia Momento de inercia
Momento de inercia
 
Clase 06 aplicaciones de ecuaciones diferenciales
Clase 06  aplicaciones de ecuaciones diferencialesClase 06  aplicaciones de ecuaciones diferenciales
Clase 06 aplicaciones de ecuaciones diferenciales
 

En vedette (19)

Momentos de inercia
Momentos de inerciaMomentos de inercia
Momentos de inercia
 
Momento inercia
Momento inerciaMomento inercia
Momento inercia
 
Cálculo de momento de inercia
Cálculo de momento de inerciaCálculo de momento de inercia
Cálculo de momento de inercia
 
Tema01
Tema01Tema01
Tema01
 
Lab. nº4 momento de inercia
Lab. nº4   momento de inerciaLab. nº4   momento de inercia
Lab. nº4 momento de inercia
 
Movimiento circular y momento de inercia
Movimiento circular y momento de inerciaMovimiento circular y momento de inercia
Movimiento circular y momento de inercia
 
Tabla momento de inercia sólidos rigidos
Tabla momento de inercia sólidos rigidosTabla momento de inercia sólidos rigidos
Tabla momento de inercia sólidos rigidos
 
Inercia
InerciaInercia
Inercia
 
Momento de inercia
Momento de inerciaMomento de inercia
Momento de inercia
 
La masa
La masaLa masa
La masa
 
Inercia
InerciaInercia
Inercia
 
Capitulo 5 estatica solucionario Beer 9 edicion
Capitulo 5 estatica solucionario Beer 9 edicionCapitulo 5 estatica solucionario Beer 9 edicion
Capitulo 5 estatica solucionario Beer 9 edicion
 
Capitulo 6 estatica solucionario Beer 9 edicion
Capitulo 6 estatica solucionario Beer 9 edicionCapitulo 6 estatica solucionario Beer 9 edicion
Capitulo 6 estatica solucionario Beer 9 edicion
 
Tema5 flexion-tensiones
 Tema5 flexion-tensiones Tema5 flexion-tensiones
Tema5 flexion-tensiones
 
Torsión
TorsiónTorsión
Torsión
 
MOMENTO DE INERCIA
MOMENTO DE INERCIAMOMENTO DE INERCIA
MOMENTO DE INERCIA
 
Masa y peso
Masa y pesoMasa y peso
Masa y peso
 
Capitulo 2 solucionario de estatica Beer 9 edicion
Capitulo 2 solucionario de estatica Beer 9 edicion Capitulo 2 solucionario de estatica Beer 9 edicion
Capitulo 2 solucionario de estatica Beer 9 edicion
 
Centroides y momentos de inercia
Centroides y momentos de inerciaCentroides y momentos de inercia
Centroides y momentos de inercia
 

Similaire à Momentos de inercia

Cap5 mecánica de un cuerpo rígido
Cap5 mecánica de un cuerpo rígidoCap5 mecánica de un cuerpo rígido
Cap5 mecánica de un cuerpo rígidoFelipe Carrasco
 
Capitulo viii texto mecanica de solidos i-setiembre 2012
Capitulo viii  texto mecanica de solidos i-setiembre 2012Capitulo viii  texto mecanica de solidos i-setiembre 2012
Capitulo viii texto mecanica de solidos i-setiembre 2012Ausbel Joab Cuyo Ttito
 
dinámica de un cuerpo rígido
 dinámica de un cuerpo rígido  dinámica de un cuerpo rígido
dinámica de un cuerpo rígido PaoloEragol
 
Movimientos circulares
Movimientos circularesMovimientos circulares
Movimientos circularesSergio Barrios
 
LONGITUD DE ARCO Y ÁREA DE UNA SUPERFICIE.pptx
LONGITUD DE ARCO Y ÁREA DE UNA SUPERFICIE.pptxLONGITUD DE ARCO Y ÁREA DE UNA SUPERFICIE.pptx
LONGITUD DE ARCO Y ÁREA DE UNA SUPERFICIE.pptxHobertBarreramejia
 
Entrenamiento 2° periodo 10°
Entrenamiento 2° periodo 10°Entrenamiento 2° periodo 10°
Entrenamiento 2° periodo 10°profegorrostola
 
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.pptCinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.pptWalter Jerezano
 
SESION 8 momento de inercia.pdf
SESION 8 momento de inercia.pdfSESION 8 momento de inercia.pdf
SESION 8 momento de inercia.pdfLuisAlberto472016
 
momentos de inercia.docx
momentos de inercia.docxmomentos de inercia.docx
momentos de inercia.docxWilenny1
 
Ejercicio 8 y 10 ondas
Ejercicio 8 y 10 ondasEjercicio 8 y 10 ondas
Ejercicio 8 y 10 ondasTito Ibarra
 
Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Joe Arroyo Suárez
 

Similaire à Momentos de inercia (20)

solido.pdf
solido.pdfsolido.pdf
solido.pdf
 
Cap5 mecánica de un cuerpo rígido
Cap5 mecánica de un cuerpo rígidoCap5 mecánica de un cuerpo rígido
Cap5 mecánica de un cuerpo rígido
 
Capitulo viii texto mecanica de solidos i-setiembre 2012
Capitulo viii  texto mecanica de solidos i-setiembre 2012Capitulo viii  texto mecanica de solidos i-setiembre 2012
Capitulo viii texto mecanica de solidos i-setiembre 2012
 
dinámica de un cuerpo rígido
 dinámica de un cuerpo rígido  dinámica de un cuerpo rígido
dinámica de un cuerpo rígido
 
Movimientos circulares
Movimientos circularesMovimientos circulares
Movimientos circulares
 
Medina fisica1 cap7
Medina fisica1 cap7 Medina fisica1 cap7
Medina fisica1 cap7
 
LONGITUD DE ARCO Y ÁREA DE UNA SUPERFICIE.pptx
LONGITUD DE ARCO Y ÁREA DE UNA SUPERFICIE.pptxLONGITUD DE ARCO Y ÁREA DE UNA SUPERFICIE.pptx
LONGITUD DE ARCO Y ÁREA DE UNA SUPERFICIE.pptx
 
Cap10
Cap10Cap10
Cap10
 
6ta guia resueltos
6ta guia resueltos6ta guia resueltos
6ta guia resueltos
 
Dinamica del movimiento rotacional
Dinamica del movimiento rotacionalDinamica del movimiento rotacional
Dinamica del movimiento rotacional
 
Entrenamiento 2° periodo 10°
Entrenamiento 2° periodo 10°Entrenamiento 2° periodo 10°
Entrenamiento 2° periodo 10°
 
Centro-de-gravedad-y-momentos-de-inercia
Centro-de-gravedad-y-momentos-de-inercia Centro-de-gravedad-y-momentos-de-inercia
Centro-de-gravedad-y-momentos-de-inercia
 
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.pptCinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
 
Dinamica%20 grupo%201
Dinamica%20 grupo%201Dinamica%20 grupo%201
Dinamica%20 grupo%201
 
SESION 8 momento de inercia.pdf
SESION 8 momento de inercia.pdfSESION 8 momento de inercia.pdf
SESION 8 momento de inercia.pdf
 
momentos de inercia.docx
momentos de inercia.docxmomentos de inercia.docx
momentos de inercia.docx
 
Ejercicio 8 y 10 ondas
Ejercicio 8 y 10 ondasEjercicio 8 y 10 ondas
Ejercicio 8 y 10 ondas
 
Tarea3
Tarea3Tarea3
Tarea3
 
Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Lista de ejercicios Matemática II
Lista de ejercicios Matemática II
 
Grupo 5-1
Grupo 5-1Grupo 5-1
Grupo 5-1
 

Dernier

Método inductivo.pdf-lizzeh cuellar cardenas
Método inductivo.pdf-lizzeh cuellar cardenasMétodo inductivo.pdf-lizzeh cuellar cardenas
Método inductivo.pdf-lizzeh cuellar cardenas182136
 
Presentación de Ciencia, Cultura y Progreso.pptx
Presentación de Ciencia, Cultura y Progreso.pptxPresentación de Ciencia, Cultura y Progreso.pptx
Presentación de Ciencia, Cultura y Progreso.pptxwilliam atao contreras
 
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdfPrincipios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdfYADIRAXIMENARIASCOSV
 
gabriela marcano estructura iii historia del concreto
gabriela marcano  estructura iii historia del concretogabriela marcano  estructura iii historia del concreto
gabriela marcano estructura iii historia del concretoGabrielaMarcano12
 
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍCALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍArquitecto Chile
 
IA T3 Elaboración e interpretación de planos.pptx
IA T3 Elaboración e interpretación de planos.pptxIA T3 Elaboración e interpretación de planos.pptx
IA T3 Elaboración e interpretación de planos.pptxcecymendozaitnl
 
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...AmeliaJul
 
Poder puedo, pero no lo haré - T3chfest
Poder puedo, pero no lo haré - T3chfestPoder puedo, pero no lo haré - T3chfest
Poder puedo, pero no lo haré - T3chfestSilvia España Gil
 
TAREA 1 - Parada de Planta compresoras de gas
TAREA 1 - Parada de Planta compresoras de gasTAREA 1 - Parada de Planta compresoras de gas
TAREA 1 - Parada de Planta compresoras de gasroberto264045
 
Cuadro de las web 1.0, 2.0 y 3.0 pptx
Cuadro de las web 1.0, 2.0 y 3.0     pptxCuadro de las web 1.0, 2.0 y 3.0     pptx
Cuadro de las web 1.0, 2.0 y 3.0 pptxecarmariahurtado
 
concreto pretensado y postensado- reseña historica
concreto pretensado y postensado- reseña historicaconcreto pretensado y postensado- reseña historica
concreto pretensado y postensado- reseña historicaamira520031
 
analisis matematico 2 elon lages lima .pdf
analisis matematico 2 elon lages lima .pdfanalisis matematico 2 elon lages lima .pdf
analisis matematico 2 elon lages lima .pdfJOHELSANCHEZINCA
 
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambientalModulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambientalAcountsStore1
 
1_Tipos Básicos de Motores - funcionamientos
1_Tipos Básicos de Motores - funcionamientos1_Tipos Básicos de Motores - funcionamientos
1_Tipos Básicos de Motores - funcionamientosMaicoPinelli
 
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERUBROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERUSharonRojas28
 
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdfPPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdfANGHELO JJ. MITMA HUAMANÌ
 
Diseño de Algoritmos Paralelos con la maestra Rina
Diseño de Algoritmos Paralelos con la maestra RinaDiseño de Algoritmos Paralelos con la maestra Rina
Diseño de Algoritmos Paralelos con la maestra RinaLuisAlfredoPascualPo
 
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)EmanuelMuoz11
 
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdfMecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdfaaaaaaaaaaaaaaaaa
 
CV_SOTO_SAUL 30-01-2024 (1) arquitecto.pdf
CV_SOTO_SAUL 30-01-2024  (1) arquitecto.pdfCV_SOTO_SAUL 30-01-2024  (1) arquitecto.pdf
CV_SOTO_SAUL 30-01-2024 (1) arquitecto.pdfsd3700445
 

Dernier (20)

Método inductivo.pdf-lizzeh cuellar cardenas
Método inductivo.pdf-lizzeh cuellar cardenasMétodo inductivo.pdf-lizzeh cuellar cardenas
Método inductivo.pdf-lizzeh cuellar cardenas
 
Presentación de Ciencia, Cultura y Progreso.pptx
Presentación de Ciencia, Cultura y Progreso.pptxPresentación de Ciencia, Cultura y Progreso.pptx
Presentación de Ciencia, Cultura y Progreso.pptx
 
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdfPrincipios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
 
gabriela marcano estructura iii historia del concreto
gabriela marcano  estructura iii historia del concretogabriela marcano  estructura iii historia del concreto
gabriela marcano estructura iii historia del concreto
 
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍCALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
 
IA T3 Elaboración e interpretación de planos.pptx
IA T3 Elaboración e interpretación de planos.pptxIA T3 Elaboración e interpretación de planos.pptx
IA T3 Elaboración e interpretación de planos.pptx
 
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
 
Poder puedo, pero no lo haré - T3chfest
Poder puedo, pero no lo haré - T3chfestPoder puedo, pero no lo haré - T3chfest
Poder puedo, pero no lo haré - T3chfest
 
TAREA 1 - Parada de Planta compresoras de gas
TAREA 1 - Parada de Planta compresoras de gasTAREA 1 - Parada de Planta compresoras de gas
TAREA 1 - Parada de Planta compresoras de gas
 
Cuadro de las web 1.0, 2.0 y 3.0 pptx
Cuadro de las web 1.0, 2.0 y 3.0     pptxCuadro de las web 1.0, 2.0 y 3.0     pptx
Cuadro de las web 1.0, 2.0 y 3.0 pptx
 
concreto pretensado y postensado- reseña historica
concreto pretensado y postensado- reseña historicaconcreto pretensado y postensado- reseña historica
concreto pretensado y postensado- reseña historica
 
analisis matematico 2 elon lages lima .pdf
analisis matematico 2 elon lages lima .pdfanalisis matematico 2 elon lages lima .pdf
analisis matematico 2 elon lages lima .pdf
 
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambientalModulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
 
1_Tipos Básicos de Motores - funcionamientos
1_Tipos Básicos de Motores - funcionamientos1_Tipos Básicos de Motores - funcionamientos
1_Tipos Básicos de Motores - funcionamientos
 
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERUBROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
 
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdfPPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
 
Diseño de Algoritmos Paralelos con la maestra Rina
Diseño de Algoritmos Paralelos con la maestra RinaDiseño de Algoritmos Paralelos con la maestra Rina
Diseño de Algoritmos Paralelos con la maestra Rina
 
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
 
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdfMecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
 
CV_SOTO_SAUL 30-01-2024 (1) arquitecto.pdf
CV_SOTO_SAUL 30-01-2024  (1) arquitecto.pdfCV_SOTO_SAUL 30-01-2024  (1) arquitecto.pdf
CV_SOTO_SAUL 30-01-2024 (1) arquitecto.pdf
 

Momentos de inercia

  • 1. Física Tema Página 1 CALCULO DE MOMENTOS DE INERCIA Se unen cuatro partículas de masa m mediante varillas sin masa, formando un rectángulo de lados 2a y 2b. El sistema gira alrededor de un eje en el plano de la figura que pasa por su centro. a) Hallar el momento de inercia respecto de este eje. b) Hallar el I respecto de un eje paralelo al anterior que pase por las masas. c) Hallar el I respecto a un eje perpendicular al anterior y que pase por una masa. Solución: I.T.I. 02 a) Si aplicamos la definición de momento de inercia: I = mi Ri 2 i ∑ tenemos que: b) Para calcular el momento de inercia respecto de los nuevos ejes podemos hacerlo aplicando la fórmula anterior o utilizando el teorema de Steiner: I ʹ′x = Ix + 4mb2 I ʹ′y = Iy + 4m a2 ⎫ ⎬ ⎪ ⎭ ⎪ ⇒ c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que pase por una de las masas (eje ʹ′z ) será: I ʹ′z = 0 + m 2a( )2 + m 2b( )2 + m 2a( )2 + 2b( )2 [ ]= Lo cual podríamos haber calculado teniendo en cuenta que todas las partículas de nuestro sistema se encuentran en un plano y podemos aplicar el teorema de los ejes perpendiculares: I ʹ′z = I ʹ′x + I ʹ′y . x y 2a 2b ʹ′y € ʹ′x Ix = 4 mb 2 , Iy = 4 m a 2 I ʹ′x = 8 mb 2 , I ʹ′y = 8m a 2 8 m a2 + b2 ( )
  • 2. Física Tema Página 2 Calcular el momento de inercia respecto de un eje que pase por su centro de un disco de radio R y masa M al cual se le practica un agujero circular de radio R/4 centrado a una distancia R/2 del centro del disco. Solución: I.T.I. 01, 04, I.T.T. 04 Podemos tratar dicho disco como la contribución de dos piezas: El momento de inercia respecto del eje Z de la pieza 1 será: Iz,1 = 1 2 M1R1 2 = 1 2 σπ R1 2 ( )R1 2 = 1 2 σπ R1 4 = 1 2 σ πR4 Si llamamos ʹ′Z a un eje paralelo al eje Z y que pase por el centro de la pieza 2 utilizando el teorema de Steiner podemos calcular su momento de inercia respecto del eje Z: Iz,2 = I ʹ′z ,2 + M2 R 2 ⎛ ⎝ ⎞ ⎠ 2 = 1 2 M2R2 2 + M2 R 2 ⎛ ⎝ ⎞ ⎠ 2 = 1 2 σ πR2 2 ( )R2 2 + σπ R2 2 ( ) R 2 ⎛ ⎝ ⎞ ⎠ 2 = = 1 2 σπ R2 4 + σπ R2 2 ( ) R 2 ⎛ ⎝ ⎞ ⎠ 2 = 1 2 σπ R 4 ⎡ ⎣⎢ ⎤ ⎦⎥ 4 + σπ R 4 ⎡ ⎣⎢ ⎤ ⎦⎥ 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ R 2 ⎛ ⎝ ⎞ ⎠ 2 = 9 512 ⎛ ⎝ ⎞ ⎠ σπ R4 El momento de inercia de toda la placa será: Iz = Iz,1 − Iz,2 = 1 2 ρπR 4 − 9 512 ρπR 4 = 247 512 ρπR 4 Finalmente calculando el valor de la densidad superficial σ y sustituyendo: σ = Mplaca Aplaca = M placa πR2 −π R 4 ⎛ ⎝ ⎞ ⎠ 2 = 16 15 Mplaca πR2 ⎛ ⎝⎜ ⎞ ⎠⎟ ⇒ R/2R R/4 x y = –x y 1 x y 2 Iz = 247 480 Mplaca R 2
  • 3. Física Tema Página 3 Calcular los momentos de inercia respecto a su eje de simetría de los siguientes cuerpos: a) esfera homogénea, b) cilindro hueco de paredes delgadas, c) cilindro homogéneo hueco de radio interior a y exterior b, d) sistema formado por una barra cilíndrica de radio R y longitud L unida a dos esferas de radio 2R. Solución: I.T.I. 02 a) Coloquemos nuestro origen de coordenadas en el centro de la esfera. Si dividimos nuestra esfera en diferenciales de masa dm con forma de coraza esférica de radio r y espesor dr, todos los puntos de dicho dm se encuentran a la misma distancia del centro, por lo tanto si calculamos el momento de inercia polar de la esfera respecto de dicho centro nos dará: IO = r 2 dm∫ = r 2 ρ4πr 2 dr 0 R ∫ = ρ4π R 5 5 = M 4 3 π R3 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ 4π R 5 5 = 3 5 M R 2 Por simetría el momento de inercia respecto de los tres ejes coordenados X, Y y Z tiene el mismo valor Ix = Iy = Iz , y además se verifica que: Ix + Iy + Iz = 2IO ⇒ Ix = Iy = Iz = b) En el cilindro hueco de paredes delgadas todos sus puntos se encuentran a la misma distancia del eje de simetría, con lo que su momento de inercia respecto de dicho eje será: c) En el caso del cilindro de radio interno a y externo b podemos dividirlo en corazas cilíndricas de radio r y espesor dr (todos los puntos de una de estas corazas se encuentran a la misma distancia del eje de giro). Llamando H a la altura del cilindro, su momento de inercia será: I = r2 dm∫ = r2 ρ 2πrH dr a b ∫ = ρ 2π H 1 4 b4 − a4 ( )= = M π b2 − a2 ( )H ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 2π H 1 4 b4 − a4 ( )= d) En este caso nuestro objeto se puede descomponer en un cilindro y dos esferas casi completas. El momento de inercia de dicho objeto será por lo tanto la suma de los momentos de inercia de las tres piezas: Iz = Iz,cilindro + 2Iz,esfera . 2 5 MR2 I = MR2 r R 1 2 M b 2 + a 2 ( ) H dr r
  • 4. Física Tema Página 4 Para el cilindro podemos calcular su momento de inercia de forma similar a como hicimos en el apartado anterior. Utilizando la fórmula anterior y haciendo la sustitución b = R y a = 0, tenemos que: Icilindro = 1 2 McilindroR2 = 1 2 ρπR2 L( )R2 = 1 2 ρπ R4 L . Para el cálculo del momento de inercia de las dos piezas esféricas dividámoslas en rodajas de espesor dz y radio r como se muestra en la figura. La relación entre r y z es: r 2 + z 2 = 2R( )2 ⇒ r 2 = 4R 2 − z 2 La cantidad de masa contenida en una de las rodajas será: dm = ρπr 2 dz Y la contribución de cada rodaja, considerada como un disco, al momento de inercia respecto del eje de simetría será: dIz,rodaja = 1 2 dmr2 = 1 2 ρπ r4 dz = 1 2 ρπ 4R2 − z2 ( ) 2 dz El momento de inercia de la pieza esférica será: Iz = dIz,rodaja∫ = 1 2 ρπ 4R2 − z2 ( )2 dz zmín. zmáx. ⌠ ⌡ ⎮ = 1 2 ρπ 16R4 − 8R2 z2 + z4 ( )dz − 3R 2R ⌠ ⌡ ⎮ = = 1 2 ρπ 16R4 z − 8 3 R2 z3 + 1 5 z5⎛ ⎝ ⎞ ⎠ ⎤ ⎦ ⎥ − 3R 2R = 1 2 ρπR5 256 15 + 49 5 3 ⎛ ⎝ ⎞ ⎠ La masa de esta pieza esférica será: Mesfera = dmrodaja∫ = ρπ 4R2 − z2 ( )dz zmín. zmáx. ∫ = = ρπ 4R2 z − 1 3 z3⎛ ⎝ ⎞ ⎠ ⎤ ⎦ ⎥ − 3R 2R = ρπ R3 16 3 + 3 3 ⎛ ⎝ ⎞ ⎠ El momento de inercia de todo el objeto será: Iz = Iz,cilindro + 2Iz,esfera = ρπ R 4 L 2 + 256 15 + 49 5 3 ⎛ ⎝ ⎞ ⎠R ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ R 2R r z Z
  • 5. Física Tema Página 5 Que se puede escribir en función de la masa del objeto sustituyendo la densidad en función de ésta: M = Mcilindro + 2Mesfera = ρπ R 2 L + 32 3 + 6 3 ⎛ ⎝ ⎞ ⎠ R ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ ⇒ ρ = M π R2 L + 32 3 + 6 3 ⎛ ⎝ ⎞ ⎠ R ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ ⇒ Si hubiésemos considerado desde el principio esferas completas el resultado no hubiese diferido mucho del anterior (como se puede comprobar dando valores para L y R) y vendría dado por: Iz = L 2 + 512 15 R L + 64 3 R ⎧ ⎨ ⎪ ⎩ ⎪ ⎫ ⎬ ⎪ ⎭ ⎪ MR 2 Calcular el momento de inercia de una esfera hueca respecto a un eje que pasa por su centro. Solución: I.T.I. 01, 04, I.T.I. 04 Coloquemos nuestro origen de coordenadas en el centro de la esfera. Todos los puntos de la esfera se encuentran a la misma distancia de dicho centro, por lo tanto si calculamos su momento de inercia polar respecto de dicho punto nos dará: IO = MR 2 . Por simetría el momento de inercia respecto de los tres ejes coordenados X, Y y Z tiene el mismo valor Ix = Iy = Iz , y además se verifica que: Ix + Iy + Iz = 2IO ⇒ Ix = Iy = Iz = Determínese el momento de inercia de un cono circular recto respecto a: a) su eje longitudinal, b) un eje que pasa por el vértice del cono y es perpendicular a su eje longitudinal, c) un eje que pasa por el centro de gravedad del cono y es perpendicular a su eje longitudinal. Solución: I.T.I. 01, 04, I.T.T. 04 Orientemos el eje X de forma que sea el eje longitudinal del cono, como se muestra en la figura. Dividamos al cono en rodajas circulares de espesor dx y radio r. La relación entre r y x es: 2 3 MR 2 x y z H Rx Iz = L 2 + 256 15 + 49 5 3 ⎛ ⎝ ⎞ ⎠ R L + 32 3 + 6 3 ⎛ ⎝ ⎞ ⎠ R ⎧ ⎨ ⎪⎪ ⎩ ⎪ ⎪ ⎫ ⎬ ⎪⎪ ⎭ ⎪ ⎪ MR 2
  • 6. Física Tema Página 6 r x = R H ⇒ r = R H ⎛ ⎝ ⎞ ⎠ x La cantidad de masa contenida en una de las rodajas será: dm = ρπr 2 dx = ρπ R H ⎛ ⎝ ⎞ ⎠ 2 x 2 dx a) El momento de inercia del cono será igual a la suma de los momentos de inercia de todas las rodajas: Ix = dIx∫ = 1 2 dmr2⌠ ⌡ ⎮ = 1 2 ρπ R H ⎛ ⎝ ⎞ ⎠ 4 x4 dx 0 H ⌠ ⌡ ⎮ = 1 10 ρπ R4 H Para escribir el resultado en función de la masa del cono: M = dm∫ = ρπ R H ⎛ ⎝ ⎞ ⎠ 2 x 2 dx 0 H ⌠ ⌡ ⎮ = 1 3 ρπR 2 H ⇒ ρ = 3M πR2 H Sustituyendo en la expresión del momento de inercia: b) Calculemos ahora el momento de inercia respecto del eje Y. Consideremos primeramente unos ejes ʹ′Y y ʹ′Z contenidos en el plano de cada rodaja y paralelos respectivamente a los ejes Y y Z. Para cada rodaja tendremos: por simetría: dI ʹ′y = dI ʹ′z teorema de los ejes perp.: dIx = dI ʹ′y + dI ʹ′z ⎫ ⎬ ⎪ ⎭ ⎪ ⇒ dI ʹ′y = dI ʹ′z = 1 2 dIx = 1 4 dmr2 Utilizando el teorema de Steiner podemos calcular el momento de inercia de cada rodaja respecto del eje Y: dIy = dI ʹ′y + dmx 2 = 1 4 ρπ R H ⎛ ⎝ ⎞ ⎠ 4 x 4 dx + ρπ R H ⎛ ⎝ ⎞ ⎠ 2 x 4 dx = ρπ R H ⎛ ⎝ ⎞ ⎠ 2 1 4 R H ⎛ ⎝ ⎞ ⎠ 2 +1 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ x 4 dx El momento de inercia del cono respecto del eje Y será: Ix = 3 10 MR2
  • 7. Física Tema Página 7 Iy = dIy∫ = ρπ R H ⎛ ⎝ ⎞ ⎠ 2 1 4 R H ⎛ ⎝ ⎞ ⎠ 2 +1 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ x4 dx 0 H ⌠ ⌡ ⎮ = = 1 5 ρπR2 1 4 R2 + H 2⎡ ⎣⎢ ⎤ ⎦⎥H = c) Consideremos un eje YC.M. paralelo al eje Y y que pase por el C.M. del cono. Sabiendo que el C.M. del cono se encuentra a una distancia de su vértice de tres cuartos de su altura y aplicando el teorema de Steiner: Iy = IyC.M . + M 3 4 H ⎛ ⎝ ⎞ ⎠ 2 ⇒ Dada la semiesfera x2 + y2 + z2 = R2 , z ≥ 0. Calcular sus momentos de inercia Ix, Iy e Iz Solución: I.T.I. 01, 04, I.T.T. 04 Para una esfera completa tenemos que el momento de inercia respecto de cualquier eje que pase por su centro es: Ix,esfera = Iy,esfera = Iz,esfera = 2 5 MesferaR2 Cada semiesfera contribuye de igual forma al momento de inercia de la esfera completa, por lo tanto: Ix,semiesfera = Iy,semiesfera = Iz,semiesfera = 1 2 2 5 MesferaR2⎛ ⎝ ⎞ ⎠ = 2 5 1 2 Mesfera ⎛ ⎝ ⎞ ⎠ R2 = Es decir la expresión matemática resulta ser la misma, dos quintos de la masa por el radio al cuadrado, pero teniendo en cuenta que ahora la masa de nuestra pieza es la de una semiesfera, no la de la esfera completa. 3 5 M 1 4 R 2 + H 2⎡ ⎣⎢ ⎤ ⎦⎥ IyC. M . = 3 20 M R 2 + 1 4 H 2⎡ ⎣⎢ ⎤ ⎦⎥ y z x R 2 5 MsemiesferaR2
  • 8. Física Tema Página 8 x y z H R Calcular el centro de masas de medio paraboloide (y ≥ 0) de revolución alrededor del eje X, cuyo radio en la base es R, la altura es H, y su vértice se encuentra en el origen de coordenadas. Calcular sus momentos de inercia Ix, Iy e Iz. Si Y’ es un eje paralelo al eje Y pero que pasa por la base del paraboloide, calcular Iy’. Solución: I.T.I. 04, I.T.T. 01, 04 Sea el semiparaboloide de la figura orientado a lo largo del eje X, de altura H y radio R. Dado que el plano XY es un plano de simetría que divide al semiparaboloide en dos mitades simétricas, el C.M. se encontrará en dicho plano, con lo cual la coordenada z del C.M. será nula: Para el cálculo de la coordenada x del C.M. dividimos al semiparaboloide en rodajas en forma de semidiscos de radio r y espesor dx. La ecuación del paraboloide nos da la relación entre la coordenada x y el radio r de los semidiscos: x = kr 2 H = k R 2 ⎫ ⎬ ⎪ ⎭ ⎪ ⇒ k = H R2 ⇒ r = R 2 H x ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 1 2 El volumen de cada uno de los semidiscos será: dV = 1 2 π r 2 dx = 1 2 π R 2 H x ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ dx El volumen total del semiparaboloide será: V = dV∫ = 1 2 π R2 H x ⎛ ⎝ ⎜ ⎞ ⎠ ⎟dx 0 H ⌠ ⌡ ⎮ = 1 4 π R 2 H La coordenada x del C.M. será: xdV∫ = 1 2 π R 2 H ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ x 2 dx 0 a ⌠ ⌡ ⎮ = 1 6 π R 2 H 2 ⇒ xC .M . = x dV∫ dV∫ = € zC.M . = 0 2 3 H x y z x r
  • 9. Física Tema Página 9 Para la coordenada y del C.M. vamos a utilizar los mismos diferenciales de volumen del cálculo anterior, a pesar de que todos sus puntos no tengan la misma coordenada y. Sabiendo que el C.M. de un semicírculo de radio r se encuentra a una distancia € 4r 3π del diámetro, vamos a tomar esta posición como la representativa de cada una de las rodajas utilizadas en el apartado anterior. ysemidisco dV∫ = 4r 3π ⎛ ⎝ ⎞ ⎠ dV ⌠ ⌡ ⎮ = 4r 3π ⎛ ⎝ ⎞ ⎠ 1 2 πr 2 dx 0 H ⌠ ⌡ ⎮ = = 2 3 r 3 dx 0 H ⌠ ⌡ ⎮ = 2 3 R 2 H x ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 3 2 dx 0 H ⌠ ⌡ ⎮ ⎮ = 4 15 R 3 H ⇒ yC.M . = ysemidisco dV∫ dV∫ = Vamos a calcular ahora los momentos de inercia del semiparaboloide. Para simplificar los cálculos vamos a realizarlos para el paraboloide completo y después dividiremos por dos. Si dividimos el paraboloide en rodajas de espesor dx (igual que hacíamos en los cálculos anteriores pero ahora las rodajas son círculos completos) la cantidad de masa contenida en una de las rodajas será: dm = ρπr2 dx = ρπ R 2 H x ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ dx su momento de inercia respecto del eje X será la suma de los momentos de inercia de todas las rodajas: Ix, parab . = dIx∫ = 1 2 dmr 2⌠ ⌡ ⎮ = 1 2 ρπ R4 H 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟x 2 dx 0 H ⌠ ⌡ ⎮ = 1 6 ρπ R 4 H Para escribir el resultado en función de la masa del paraboloide: M parab. = dm∫ = ρπ R2 H x ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ dx 0 H ⌠ ⌡ ⎮ = 1 2 ρπR 2 H ⇒ ρ = 2M πR2 H Sustituyendo en la expresión del momento de inercia: Ix = 1 3 Mparab.R 2 Para el cálculo de Iy , Iz tenemos que por simetría Iy = Iz . Calculemos ahora el momento de inercia respecto del eje Y. Consideremos primeramente unos ejes Y * y Z * 16R 15π
  • 10. Física Tema Página 10 contenidos en el plano de cada rodaja y paralelos respectivamente a los ejes Y y Z. Para cada rodaja tendremos: por simetría: dIy* = dIz* teorema de los ejes perp.: dIx = dIy* + dIz* ⎫ ⎬ ⎪ ⎭ ⎪ ⇒ dIy* = dIz* = 1 2 dIx = 1 4 dmr 2 Utilizando el teorema de Steiner podemos calcular el momento de inercia de cada rodaja respecto del eje Y: dIy = dIy* + dmx2 = 1 4 ρπ R4 H2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ x2 dx + ρπ R2 H ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ x3 dx El momento de inercia del paraboloide respecto del eje Y será: Iy, parab . = dIy∫ = 1 4 ρπ R4 H 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ x2 dx + ρπ R2 H ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ x3 dx ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ 0 H ⌠ ⌡ ⎮ = = 1 12 R 2 H + 1 4 H 3⎡ ⎣ ⎢ ⎤ ⎦ ⎥ρπR 2 = 1 2 Mparab. 1 3 R 2 + H 2⎡ ⎣ ⎢ ⎤ ⎦ ⎥ Para el semiparaboloide los momentos de inercia pedidos serán la mitad, pero como su masa ya es la mitad la expresión será la misma: El área por debajo de la curva y = a(x/h)n , con x entre 0 y h, gira alrededor del eje X y genera un sólido de revolución homogéneo de masa m. Exprésese el momento de inercia del sólido respecto al eje X y respecto al eje Y en términos de m, a y n. Solución: I.T.I. 03, I.T.T. 01, 03 Vamos a dividir ese sólido de revolución en rodajas circulares de radio y y espesor dx. La contribución al momento de inercia respecto del eje X de cada una de las rodajas será: dIx = 1 2 dm y2 = 1 2 ρπ y2 dx( )y2 = 1 2 ρπ y4 dx = 1 2 ρπa4 x4 n h4 n ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ dx El momento de inercia respecto del eje X de todo el sólido será: Ix = 1 3 Msemiparab.R2 Iy = Iz = 1 2 Msemiparab. 1 3 R2 + H 2⎡ ⎣⎢ ⎤ ⎦⎥
  • 11. Física Tema Página 11 Ix = dIx∫ = 1 2 ρπa 4 x4 n h4 n ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ dx 0 h ⌠ ⌡ ⎮ = 1 2 ρπa 4 h 4n +1 Para ponerlo en función de su masa calculamos ésta: m = dm = ρπ y 2 dx 0 h ∫∫ = ρπa 2 x 2n h2n ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ dx 0 h ⌠ ⌡ ⎮ = ρπa 2 h 2n +1 ⇒ ρ = 2n +1( )m πa2 h Sustituyendo en la expresión del momento de inercia: Calculemos ahora el momento de inercia respecto del eje Y. Consideremos primeramente unos ejes Y * y Z * contenidos en el plano de cada rodaja y paralelos respectivamente a los ejes Y y Z. Para cada rodaja tendremos: por simetría: dIy* = dIz* teor. de los ejes perp.: dIx = dIy* + dIz* ⎫ ⎬ ⎪ ⎭ ⎪ ⇒ dIy* = dIz* = 1 2 dIx = 1 4 dmy2 = = 1 4 ρπa4 x4 n h 4 n dx Utilizando el teorema de Steiner podemos calcular el momento de inercia de cada rodaja respecto del eje Y: dIy = dIy* + dmx2 = 1 4 ρπa4 x 4 n h4 n dx + ρπa2 x 2n+ 2 h2n ⎛ ⎝ ⎜ ⎞ ⎠ ⎟dx El momento de inercia del sólido respecto del eje Y será: Iy = dIy∫ = 1 4 ρπa4 x4 n h4 n ⎛ ⎝⎜ ⎞ ⎠⎟ dx + ρπ a2 x2n+ 2 h2n ⎛ ⎝⎜ ⎞ ⎠⎟dx ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ 0 h ⌠ ⌡ ⎮ = = 1 4 ρπa4 h 4n +1 + ρπa2 h3 2n + 3 = Ix = 1 2 2n +1 4n +1 ⎛ ⎝ ⎞ ⎠ma2 1 4 2n +1 4n +1 ⎛ ⎝ ⎞ ⎠ ma2 + 2n +1 2n + 3 ⎛ ⎝ ⎞ ⎠ mh2