SlideShare une entreprise Scribd logo
1  sur  20
Télécharger pour lire hors ligne
On the vertical structure of the
tropospheric eddy momentum flux
Farid Ait Chaalal(1,3) and Tapio Schneider(2,3)
(1)Brown University, Providence, USA (2)ETH, Zurich, Switzerland
(3)Caltech, Pasadena, USA
19th Conference on Atmospheric and Oceanic Fluid Dynamics
17–21 June 2013, Newport, Rhode Island
Eddy momentum flux maximum in the upper troposphere
Held, 2000: upper level zonal mean flow favors linear wave
meridional propagation
Upper level enhancement not captured without nonlinear
saturation (Simmons and Hoskins, 1978; Merlis and Schneider,
2009)
10 6
m s 2
Motivation
Eddy momentum flux
convergence in the
atmosphere (colors), zonal
wind (contours, m/s) and
tropopause (grey line).
ERA 40 1980-2001
Latitude
Sigma
10
10
3030
−10
−60 −30 0 30 60
0.2
0.8
−50
0
50
10
20
20
0
0
Surface friction?
Large scale eddy-eddy interactions?
Outline
Why is eddy momentum flux concentrated in
the upper troposphere?
An idealized dry GCM
GFDL pseudospectral dynamical core
Radiation: Newtonian relaxation toward temperature
profile
Convection: relaxation of vertical lapse rate toward
0.7 ⨉ (dry adiabatic)
Uniform surface, no seasonal cycle
Run at T85 with 30 vertical sigma-levels
600 days average after 1400 days spin-up
(Schneider andWalker, 2006)
The role of surface friction
Colors: eddy momentum flux divergence
Contours and dashed lines: zonal mean flow (m/s)
Dotted line: potential temperature (K)
Grey line: tropopause (2K/km lapse rate)
Simulation with positive 90 K
pole-to-equator temperature
contrast ∆h.
Simulation with
negative ∆h = -90 K.
Poles heated, tropics cooled.
10 6
m s 2
LatitudeSigma
−10
−20
−30
−40 −40
300
320
350
−60 −30 0 30 60
0.2
0.8
−10
−5
0
5
10
Latitude
Sigma
30 30
10
10
20 20
300
320
350
−60 −30 0 30 60
0.2
0.8
−50
0
50
10 6
m s 2
Removal of eddy-eddy interactions
Quasi-linear (QL) model
(O’Gorman and Schneider, 2007)
Retained:
Wave-mean flow interaction (mean flow = zonal average)
Interaction of waves of opposite zonal wavenumber
(Reynolds stress)
Neglected:
All other eddy-eddy interactions
(Statistics equivalent to 2nd order cumulant expansion,
see Brad Marston’s talk)
Full
No
eddy-eddy
Meridonal circulation
Contours:
zonal mean flow
(m/s)
Dotted lines:
potential
temperature (K)
Grey line:
tropopause
Latitude
Sigma
30 30
2020
10
10
300
320
350
−60 −30 0 30 60
0.2
0.8
Eddy Momentum Flux Divergence
Latitude
Sigma
30 30
10
10
20 20
300
320
350
−60 −30 0 30 60
0.2
0.8
−50
0
50
Colors:
eddy momentum
flux convergence
Contours:
zonal mean flow
(m/s)
Dotted lines:
potential
temperature (K)
Grey line:
tropopause
Eddy momentum flux convergence
Full
No
eddy-eddy
10 6
m s 2
Restoring barotropic triads
Latitude
Sigma
10
10
1010
40 40
300
320
350
−60 −30 0 30 60
0.2
0.8
−50
0
50
Latitude
Sigma
30 30
10
10
20 20
300
320
350
−60 −30 0 30 60
0.2
0.8
−50
0
50
10 6
m s 2
Colors:
eddy momentum
flux convergence
Contours:
zonal mean flow
(m/s)
Dotted lines:
potential
temperature (K)
Grey line:
tropopause
Full
With
barotropic
triads
Baroclinic wave lifecycle experiments
Initialize a zonal wavenumber 6 perturbation in the
zonally averaged circulation (fully non-linear model)
Experiments run with full model, no eddy-eddy model,
and model with only barotropic triads
Why eddy momentum flux not maximum in the
upper troposphere in the QL model ?
Why enhancement captured when barotropic triads
are restored?
Also: eddy kinetic energy larger in the QL model
usually, larger momentum flux expected
Removal of eddy-eddy interactions
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5 full model
Days
W/kg
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5
Days
W/kg
only barotropic eddy−eddy
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5
Days
W/kg
no eddy−eddy
Baroclinic conversion.
Eddy available potential energy
to eddy kinetic energy
Barotropic conversion.
Zonal kinetic energy to
eddy kinetic energy
Full
No eddy-eddy Only barotropic eddy-eddy
Energy conversion
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5
Days
W/kg
only barotropic eddy−eddy
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5
DaysW/kg
no eddy−eddy
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5 full model
Days
W/kg
Colors: QG potential vorticity flux
Contours: zonal mean flow (m/s)
Arrows: QG Eliassen-Palm vector
Full No eddy-eddy Only barotropic eddy-eddy
10 5
m s 2
Latitude Latitude Latitude
Sigma
Maximum
of barotropic conversion
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5
Days
W/kg
only barotropic eddy−eddy
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5
DaysW/kg
no eddy−eddy
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
−5
0
5
10
x 10
−5 full model
Days
W/kg
Sigma
Latitude Latitude Latitude
Minimum
of baroclinic conversion
Colors: QG potential vorticity flux
Contours: zonal mean flow (m/s)
Arrows: QG Elliassen-Palm vector
Full No eddy-eddy Only barotropic eddy-eddy
10 5
m s 2
Potential vorticity rearrangement and mixing
Days
W/kg
15 20 25 30 35
−5
0
5
10
x 10
Days
W/kg
15 20 25 30 35
−5
0
5
10
x 10
For a theoretical study of critical layers (SWW solution) in the QL approximation:
Haynes and McIntyre, 1987
Full
(350 K
isentrope)
No
eddy-eddy
(320 K
isentrope)
Day 26 Day 30 Day 35
Day 17 Day 22 Day 30
PV fields on isentropes
210
PVU
Potential vorticity rearrangement and mixing
Days
W/kg
15 20 25 30 35
−5
0
5
10
x 10
15 20 25 30 35
−5
0
5
10
x 10
−5
Days
W/kg
only barotropic eddy−eddy
No
eddy-eddy
(320 K
isentrope)
Only
barotropic
eddy-eddy
(320 K
isentrope)
Day 17 Day 22 Day 30
Day 25 Day 28 Day 32
PV fields on isentropes
210
PVU
Conclusions
Surface friction not an important factor
Wave packets generated in LT propagate upward until
they reach UT and tropopause, where horizontal
propagation is favored
Vorticity rearragement and mixing through eddy-eddy
interaction near critical layers essential
Keeping only barotropic triads captures the enhancement
Understanding nonlinear barotropic critical layer
dynamics might suffice
Why is eddy momentum flux concentrated in
the upper troposphere?
Conclusions
What still favors meridional propagation of waves in the upper-
troposphere? (tropopause as a wave guide? ...)
Index of refraction
for zonal wavenumber 6 baroclinic waves.
Latitude
Sigma
30
30
1010
−60 −30 0 30 60
0.2
0.8
0
5
10
15
20
Why is eddy momentum flux concentrated in the upper
troposphere?
Full
No
eddy-eddy
Dry GCM without eddy-eddy interactions
Removal of the eddy-eddy interactions (O’Gorman and Schneider,
2007).
Advection of a quantity a = a + a0 by the meridional flow v = v + v0
(zonal mean/eddy decomposition):
@a
@t
= v
@a
@y
= v
@a
@y
v
@a0
@y
v0 @a
@y
v0 @a0
@y
transformed into
@a
@t
= v
@a
@y
v
@a0
@y
v0 @a
@y
v0
@a0
@y
Statistics of such a model are equivalent to a second order cumulant
expansion (third order cumulants set to 0 in the second order
equations).
Farid Ait-Chaalal (Caltech) Second-Order Atm. Circulation June 26, 2012 4 / 19
@a
@t
= v
@a
@y
= v
@a
@y
v
@a0
@y
v0 @a
@y
v0
@a0
@y
@a
@t
= v
@a
@y
= v
@a
@y
v
@a0
@y
v0 @a
@y
v0 @a0
@y
Removal of the eddy-eddy interactions
Latitude
Sigma
0
0
−5
−10
−30
−40
−40
300
320
350
−60 −30 0 30 60
0.2
0.8
−10
−5
0
5
10
The role of surface friction
Latitude
Sigma
0
0
−5
−10
−30
−40
−40
300
320
350
−60 −30 0 30 60
0.2
0.8
−10
−5
0
5
10
Simulation with ∆h = -90 K
Latitude
Sigma
10
5
10
5
−50
−50
−40
−30
−10
300
320
350
−60 −30 0 30 60
0.2
0.8
−10
−5
0
5
10
Colors: Eddy momentum fluxes ()
Dashed lines: winds in m/s
Dotted line: potential temperature in K
Grey line: tropopause
Friction/10 Friction Friction * 10
The role of surface friction
Colors: Eddy momentum fluxes divergence
Dashed lines: winds in m/s
Dotted line: potential temperature in K
Grey line: tropopause
Simulation with positive ∆h = 90 K Surface friction balances upper level
momentum fluxes divergence (EMFD)
Long been recognized effect on
midlatitudes eddies amplitude, jet streams
strength and location, energy conversions
(James, 1987; Robinson 1997; Chen et al.,
2007; etc...)
Can it explain upper level EMDF
e n h a n c e m e n t ? S o m e t i m e
suggested in text books (e.g.
Vallis, 2006)Latitude
Sigma
30
10
−5
−5
−10
300
320
350
−60 −30 0 30 60
0.2
0.8
−10
−5
0
5
10
5.10 6
m s 2

Contenu connexe

Tendances

DSD-INT - SWAN Advanced Course - 04 - Numerics in SWAN
DSD-INT - SWAN Advanced Course - 04 - Numerics in SWANDSD-INT - SWAN Advanced Course - 04 - Numerics in SWAN
DSD-INT - SWAN Advanced Course - 04 - Numerics in SWAN
Deltares
 
TU1.T10.2.pptx
TU1.T10.2.pptxTU1.T10.2.pptx
TU1.T10.2.pptx
grssieee
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...
irjes
 
DSD-INT - SWAN Advanced Course - 03 - Model physics in SWAN
DSD-INT - SWAN Advanced Course - 03 - Model physics in SWANDSD-INT - SWAN Advanced Course - 03 - Model physics in SWAN
DSD-INT - SWAN Advanced Course - 03 - Model physics in SWAN
Deltares
 

Tendances (20)

DSD-INT - SWAN Advanced Course - 04 - Numerics in SWAN
DSD-INT - SWAN Advanced Course - 04 - Numerics in SWANDSD-INT - SWAN Advanced Course - 04 - Numerics in SWAN
DSD-INT - SWAN Advanced Course - 04 - Numerics in SWAN
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
 
Simulation of Dispersion in a Heterogeneous Aquifer: Discussion of Steady ver...
Simulation of Dispersion in a Heterogeneous Aquifer: Discussion of Steady ver...Simulation of Dispersion in a Heterogeneous Aquifer: Discussion of Steady ver...
Simulation of Dispersion in a Heterogeneous Aquifer: Discussion of Steady ver...
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
TU1.T10.2.pptx
TU1.T10.2.pptxTU1.T10.2.pptx
TU1.T10.2.pptx
 
Seismic velocity analysis _ aghazade
Seismic velocity analysis _ aghazadeSeismic velocity analysis _ aghazade
Seismic velocity analysis _ aghazade
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
Quarter 1 Lesson 1 - Physical Quantities and Measurements
Quarter 1 Lesson 1 - Physical Quantities and MeasurementsQuarter 1 Lesson 1 - Physical Quantities and Measurements
Quarter 1 Lesson 1 - Physical Quantities and Measurements
 
Physical Quantities and Measurements
Physical Quantities and MeasurementsPhysical Quantities and Measurements
Physical Quantities and Measurements
 
Problem i ph o 26
Problem i ph o 26Problem i ph o 26
Problem i ph o 26
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...
 
Seismic velocity analysis in Anisotropic media
Seismic velocity analysis in Anisotropic mediaSeismic velocity analysis in Anisotropic media
Seismic velocity analysis in Anisotropic media
 
Gravitational Waves and Binary Systems (1) - Thibault Damour
Gravitational Waves and Binary Systems (1) - Thibault DamourGravitational Waves and Binary Systems (1) - Thibault Damour
Gravitational Waves and Binary Systems (1) - Thibault Damour
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
F0344451
F0344451F0344451
F0344451
 
DSD-INT - SWAN Advanced Course - 03 - Model physics in SWAN
DSD-INT - SWAN Advanced Course - 03 - Model physics in SWANDSD-INT - SWAN Advanced Course - 03 - Model physics in SWAN
DSD-INT - SWAN Advanced Course - 03 - Model physics in SWAN
 
The Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel
The Dynamics of Tethered Debris With Flexible Appendages and Residual FuelThe Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel
The Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel
 
Warrp sesimic_ aghazde
Warrp sesimic_ aghazdeWarrp sesimic_ aghazde
Warrp sesimic_ aghazde
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
 
Mathematical application That have an wide range impact On issue such as s...
Mathematical   application That have an  wide range impact On issue such as s...Mathematical   application That have an  wide range impact On issue such as s...
Mathematical application That have an wide range impact On issue such as s...
 

En vedette

Impact of Karlovitz and Reynolds Numbers on Vortex Evolution Through Flame
Impact of Karlovitz and Reynolds Numbers on Vortex Evolution Through FlameImpact of Karlovitz and Reynolds Numbers on Vortex Evolution Through Flame
Impact of Karlovitz and Reynolds Numbers on Vortex Evolution Through Flame
Chris Bradley
 
IGARSS2011_Paper2455_NaokoSaitoh.pdf
IGARSS2011_Paper2455_NaokoSaitoh.pdfIGARSS2011_Paper2455_NaokoSaitoh.pdf
IGARSS2011_Paper2455_NaokoSaitoh.pdf
grssieee
 
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONSEVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
grssieee
 
IGARSS2011_eguchi.ppt
IGARSS2011_eguchi.pptIGARSS2011_eguchi.ppt
IGARSS2011_eguchi.ppt
grssieee
 
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jiří Šmída
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.ppt
grssieee
 
Melting glaciers
Melting glaciersMelting glaciers
Melting glaciers
shreeshan09
 
Air refrigeration system by Bell Coleman cycle and Vortex tube
Air refrigeration system by Bell Coleman cycle and Vortex tubeAir refrigeration system by Bell Coleman cycle and Vortex tube
Air refrigeration system by Bell Coleman cycle and Vortex tube
aparnamalyala
 

En vedette (20)

Exploring_GIS_in_Glaciology
Exploring_GIS_in_GlaciologyExploring_GIS_in_Glaciology
Exploring_GIS_in_Glaciology
 
Impact of Karlovitz and Reynolds Numbers on Vortex Evolution Through Flame
Impact of Karlovitz and Reynolds Numbers on Vortex Evolution Through FlameImpact of Karlovitz and Reynolds Numbers on Vortex Evolution Through Flame
Impact of Karlovitz and Reynolds Numbers on Vortex Evolution Through Flame
 
JDonda
JDondaJDonda
JDonda
 
IGARSS2011_Paper2455_NaokoSaitoh.pdf
IGARSS2011_Paper2455_NaokoSaitoh.pdfIGARSS2011_Paper2455_NaokoSaitoh.pdf
IGARSS2011_Paper2455_NaokoSaitoh.pdf
 
Kansas City Ams 12 Feb2009
Kansas City Ams 12 Feb2009Kansas City Ams 12 Feb2009
Kansas City Ams 12 Feb2009
 
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONSEVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
EVALUATIONS OF WIND VECTORS OBSERVED BY ASCAT USING STATISTICAL DISTRIBUTIONS
 
IGARSS2011_eguchi.ppt
IGARSS2011_eguchi.pptIGARSS2011_eguchi.ppt
IGARSS2011_eguchi.ppt
 
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
Jan Kyselý, Jan Picek, Romana Beranová: Estimating extremes in climate model ...
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.ppt
 
Impact of coherent turbulence on wind turbine aeroelastic response and its si...
Impact of coherent turbulence on wind turbine aeroelastic response and its si...Impact of coherent turbulence on wind turbine aeroelastic response and its si...
Impact of coherent turbulence on wind turbine aeroelastic response and its si...
 
The stable atmospheric boundary layer a challenge for wind turbine operatio...
The stable atmospheric boundary layer   a challenge for wind turbine operatio...The stable atmospheric boundary layer   a challenge for wind turbine operatio...
The stable atmospheric boundary layer a challenge for wind turbine operatio...
 
Downscaling and its limitation on climate change impact assessments
Downscaling and its limitation on climate change impact assessmentsDownscaling and its limitation on climate change impact assessments
Downscaling and its limitation on climate change impact assessments
 
Nwtc seminar overview of the impact of turbulence on turbine dynamics, sept...
Nwtc seminar   overview of the impact of turbulence on turbine dynamics, sept...Nwtc seminar   overview of the impact of turbulence on turbine dynamics, sept...
Nwtc seminar overview of the impact of turbulence on turbine dynamics, sept...
 
Melting glaciers
Melting glaciersMelting glaciers
Melting glaciers
 
Glaciers
GlaciersGlaciers
Glaciers
 
Trento june2015 slides
Trento june2015 slidesTrento june2015 slides
Trento june2015 slides
 
Eddy current brake
Eddy current brakeEddy current brake
Eddy current brake
 
Atmospheric general circulation in an idealized dry GCM without eddy-eddy int...
Atmospheric general circulation in an idealized dry GCM without eddy-eddy int...Atmospheric general circulation in an idealized dry GCM without eddy-eddy int...
Atmospheric general circulation in an idealized dry GCM without eddy-eddy int...
 
Air refrigeration system by Bell Coleman cycle and Vortex tube
Air refrigeration system by Bell Coleman cycle and Vortex tubeAir refrigeration system by Bell Coleman cycle and Vortex tube
Air refrigeration system by Bell Coleman cycle and Vortex tube
 
VerticalWindShear
VerticalWindShearVerticalWindShear
VerticalWindShear
 

Similaire à Aofd farid

Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentation
JamesSprittles
 
TC_climate_April2016
TC_climate_April2016TC_climate_April2016
TC_climate_April2016
Flora Viale
 
RINA - AOG 2017 - Numerical Modelling of Marine Structure Behaviours in Steep...
RINA - AOG 2017 - Numerical Modelling of Marine Structure Behaviours in Steep...RINA - AOG 2017 - Numerical Modelling of Marine Structure Behaviours in Steep...
RINA - AOG 2017 - Numerical Modelling of Marine Structure Behaviours in Steep...
Nick Bentley
 
Theoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOTheoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWO
Pei-Che Chang
 
TU3.T10.5.ppt
TU3.T10.5.pptTU3.T10.5.ppt
TU3.T10.5.ppt
grssieee
 
Night Water Vapor Borel Spie 8 12 08 White
Night Water Vapor Borel Spie 8 12 08 WhiteNight Water Vapor Borel Spie 8 12 08 White
Night Water Vapor Borel Spie 8 12 08 White
Christoph Borel
 
Night Water Vapor Borel Spie 8 12 08 White
Night Water Vapor Borel Spie 8 12 08 WhiteNight Water Vapor Borel Spie 8 12 08 White
Night Water Vapor Borel Spie 8 12 08 White
guest0030172
 
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
grssieee
 
TU1.T10.4.ppt
TU1.T10.4.pptTU1.T10.4.ppt
TU1.T10.4.ppt
grssieee
 

Similaire à Aofd farid (20)

Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentation
 
Lecture 6.pdf
Lecture 6.pdfLecture 6.pdf
Lecture 6.pdf
 
TC_climate_April2016
TC_climate_April2016TC_climate_April2016
TC_climate_April2016
 
RINA - AOG 2017 - Numerical Modelling of Marine Structure Behaviours in Steep...
RINA - AOG 2017 - Numerical Modelling of Marine Structure Behaviours in Steep...RINA - AOG 2017 - Numerical Modelling of Marine Structure Behaviours in Steep...
RINA - AOG 2017 - Numerical Modelling of Marine Structure Behaviours in Steep...
 
Theoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWOTheoretic and experimental investigation of gyro-BWO
Theoretic and experimental investigation of gyro-BWO
 
Laboratorio cubeta de agua
Laboratorio cubeta de aguaLaboratorio cubeta de agua
Laboratorio cubeta de agua
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
TU3.T10.5.ppt
TU3.T10.5.pptTU3.T10.5.ppt
TU3.T10.5.ppt
 
Night Water Vapor Borel Spie 8 12 08 White
Night Water Vapor Borel Spie 8 12 08 WhiteNight Water Vapor Borel Spie 8 12 08 White
Night Water Vapor Borel Spie 8 12 08 White
 
Night Water Vapor Borel Spie 8 12 08 White
Night Water Vapor Borel Spie 8 12 08 WhiteNight Water Vapor Borel Spie 8 12 08 White
Night Water Vapor Borel Spie 8 12 08 White
 
cfd ahmed body
cfd ahmed bodycfd ahmed body
cfd ahmed body
 
Fedele.ppt
Fedele.pptFedele.ppt
Fedele.ppt
 
Directional Spreading Effect on a Wave Energy Converter
Directional Spreading Effect on a Wave Energy ConverterDirectional Spreading Effect on a Wave Energy Converter
Directional Spreading Effect on a Wave Energy Converter
 
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
 
Atmospheric Chemistry Models
Atmospheric Chemistry ModelsAtmospheric Chemistry Models
Atmospheric Chemistry Models
 
Energy Budget in Tunnel Fires – FFFS Considerations
Energy Budget in Tunnel Fires – FFFS ConsiderationsEnergy Budget in Tunnel Fires – FFFS Considerations
Energy Budget in Tunnel Fires – FFFS Considerations
 
TU1.T10.4.ppt
TU1.T10.4.pptTU1.T10.4.ppt
TU1.T10.4.ppt
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdf
 
PhD Qualifying
PhD QualifyingPhD Qualifying
PhD Qualifying
 
Basalt Presentation
Basalt PresentationBasalt Presentation
Basalt Presentation
 

Aofd farid

  • 1. On the vertical structure of the tropospheric eddy momentum flux Farid Ait Chaalal(1,3) and Tapio Schneider(2,3) (1)Brown University, Providence, USA (2)ETH, Zurich, Switzerland (3)Caltech, Pasadena, USA 19th Conference on Atmospheric and Oceanic Fluid Dynamics 17–21 June 2013, Newport, Rhode Island
  • 2. Eddy momentum flux maximum in the upper troposphere Held, 2000: upper level zonal mean flow favors linear wave meridional propagation Upper level enhancement not captured without nonlinear saturation (Simmons and Hoskins, 1978; Merlis and Schneider, 2009) 10 6 m s 2 Motivation Eddy momentum flux convergence in the atmosphere (colors), zonal wind (contours, m/s) and tropopause (grey line). ERA 40 1980-2001 Latitude Sigma 10 10 3030 −10 −60 −30 0 30 60 0.2 0.8 −50 0 50 10 20 20 0 0
  • 3. Surface friction? Large scale eddy-eddy interactions? Outline Why is eddy momentum flux concentrated in the upper troposphere?
  • 4. An idealized dry GCM GFDL pseudospectral dynamical core Radiation: Newtonian relaxation toward temperature profile Convection: relaxation of vertical lapse rate toward 0.7 ⨉ (dry adiabatic) Uniform surface, no seasonal cycle Run at T85 with 30 vertical sigma-levels 600 days average after 1400 days spin-up (Schneider andWalker, 2006)
  • 5. The role of surface friction Colors: eddy momentum flux divergence Contours and dashed lines: zonal mean flow (m/s) Dotted line: potential temperature (K) Grey line: tropopause (2K/km lapse rate) Simulation with positive 90 K pole-to-equator temperature contrast ∆h. Simulation with negative ∆h = -90 K. Poles heated, tropics cooled. 10 6 m s 2 LatitudeSigma −10 −20 −30 −40 −40 300 320 350 −60 −30 0 30 60 0.2 0.8 −10 −5 0 5 10 Latitude Sigma 30 30 10 10 20 20 300 320 350 −60 −30 0 30 60 0.2 0.8 −50 0 50 10 6 m s 2
  • 6. Removal of eddy-eddy interactions Quasi-linear (QL) model (O’Gorman and Schneider, 2007) Retained: Wave-mean flow interaction (mean flow = zonal average) Interaction of waves of opposite zonal wavenumber (Reynolds stress) Neglected: All other eddy-eddy interactions (Statistics equivalent to 2nd order cumulant expansion, see Brad Marston’s talk)
  • 7. Full No eddy-eddy Meridonal circulation Contours: zonal mean flow (m/s) Dotted lines: potential temperature (K) Grey line: tropopause Latitude Sigma 30 30 2020 10 10 300 320 350 −60 −30 0 30 60 0.2 0.8
  • 8. Eddy Momentum Flux Divergence Latitude Sigma 30 30 10 10 20 20 300 320 350 −60 −30 0 30 60 0.2 0.8 −50 0 50 Colors: eddy momentum flux convergence Contours: zonal mean flow (m/s) Dotted lines: potential temperature (K) Grey line: tropopause Eddy momentum flux convergence Full No eddy-eddy 10 6 m s 2
  • 9. Restoring barotropic triads Latitude Sigma 10 10 1010 40 40 300 320 350 −60 −30 0 30 60 0.2 0.8 −50 0 50 Latitude Sigma 30 30 10 10 20 20 300 320 350 −60 −30 0 30 60 0.2 0.8 −50 0 50 10 6 m s 2 Colors: eddy momentum flux convergence Contours: zonal mean flow (m/s) Dotted lines: potential temperature (K) Grey line: tropopause Full With barotropic triads
  • 10. Baroclinic wave lifecycle experiments Initialize a zonal wavenumber 6 perturbation in the zonally averaged circulation (fully non-linear model) Experiments run with full model, no eddy-eddy model, and model with only barotropic triads Why eddy momentum flux not maximum in the upper troposphere in the QL model ? Why enhancement captured when barotropic triads are restored? Also: eddy kinetic energy larger in the QL model usually, larger momentum flux expected Removal of eddy-eddy interactions
  • 11. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 full model Days W/kg 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 Days W/kg only barotropic eddy−eddy 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 Days W/kg no eddy−eddy Baroclinic conversion. Eddy available potential energy to eddy kinetic energy Barotropic conversion. Zonal kinetic energy to eddy kinetic energy Full No eddy-eddy Only barotropic eddy-eddy Energy conversion
  • 12. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 Days W/kg only barotropic eddy−eddy 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 DaysW/kg no eddy−eddy 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 full model Days W/kg Colors: QG potential vorticity flux Contours: zonal mean flow (m/s) Arrows: QG Eliassen-Palm vector Full No eddy-eddy Only barotropic eddy-eddy 10 5 m s 2 Latitude Latitude Latitude Sigma Maximum of barotropic conversion
  • 13. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 Days W/kg only barotropic eddy−eddy 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 DaysW/kg no eddy−eddy 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 −5 0 5 10 x 10 −5 full model Days W/kg Sigma Latitude Latitude Latitude Minimum of baroclinic conversion Colors: QG potential vorticity flux Contours: zonal mean flow (m/s) Arrows: QG Elliassen-Palm vector Full No eddy-eddy Only barotropic eddy-eddy 10 5 m s 2
  • 14. Potential vorticity rearrangement and mixing Days W/kg 15 20 25 30 35 −5 0 5 10 x 10 Days W/kg 15 20 25 30 35 −5 0 5 10 x 10 For a theoretical study of critical layers (SWW solution) in the QL approximation: Haynes and McIntyre, 1987 Full (350 K isentrope) No eddy-eddy (320 K isentrope) Day 26 Day 30 Day 35 Day 17 Day 22 Day 30 PV fields on isentropes 210 PVU
  • 15. Potential vorticity rearrangement and mixing Days W/kg 15 20 25 30 35 −5 0 5 10 x 10 15 20 25 30 35 −5 0 5 10 x 10 −5 Days W/kg only barotropic eddy−eddy No eddy-eddy (320 K isentrope) Only barotropic eddy-eddy (320 K isentrope) Day 17 Day 22 Day 30 Day 25 Day 28 Day 32 PV fields on isentropes 210 PVU
  • 16. Conclusions Surface friction not an important factor Wave packets generated in LT propagate upward until they reach UT and tropopause, where horizontal propagation is favored Vorticity rearragement and mixing through eddy-eddy interaction near critical layers essential Keeping only barotropic triads captures the enhancement Understanding nonlinear barotropic critical layer dynamics might suffice Why is eddy momentum flux concentrated in the upper troposphere?
  • 17. Conclusions What still favors meridional propagation of waves in the upper- troposphere? (tropopause as a wave guide? ...) Index of refraction for zonal wavenumber 6 baroclinic waves. Latitude Sigma 30 30 1010 −60 −30 0 30 60 0.2 0.8 0 5 10 15 20 Why is eddy momentum flux concentrated in the upper troposphere? Full No eddy-eddy
  • 18. Dry GCM without eddy-eddy interactions Removal of the eddy-eddy interactions (O’Gorman and Schneider, 2007). Advection of a quantity a = a + a0 by the meridional flow v = v + v0 (zonal mean/eddy decomposition): @a @t = v @a @y = v @a @y v @a0 @y v0 @a @y v0 @a0 @y transformed into @a @t = v @a @y v @a0 @y v0 @a @y v0 @a0 @y Statistics of such a model are equivalent to a second order cumulant expansion (third order cumulants set to 0 in the second order equations). Farid Ait-Chaalal (Caltech) Second-Order Atm. Circulation June 26, 2012 4 / 19 @a @t = v @a @y = v @a @y v @a0 @y v0 @a @y v0 @a0 @y @a @t = v @a @y = v @a @y v @a0 @y v0 @a @y v0 @a0 @y Removal of the eddy-eddy interactions
  • 19. Latitude Sigma 0 0 −5 −10 −30 −40 −40 300 320 350 −60 −30 0 30 60 0.2 0.8 −10 −5 0 5 10 The role of surface friction Latitude Sigma 0 0 −5 −10 −30 −40 −40 300 320 350 −60 −30 0 30 60 0.2 0.8 −10 −5 0 5 10 Simulation with ∆h = -90 K Latitude Sigma 10 5 10 5 −50 −50 −40 −30 −10 300 320 350 −60 −30 0 30 60 0.2 0.8 −10 −5 0 5 10 Colors: Eddy momentum fluxes () Dashed lines: winds in m/s Dotted line: potential temperature in K Grey line: tropopause Friction/10 Friction Friction * 10
  • 20. The role of surface friction Colors: Eddy momentum fluxes divergence Dashed lines: winds in m/s Dotted line: potential temperature in K Grey line: tropopause Simulation with positive ∆h = 90 K Surface friction balances upper level momentum fluxes divergence (EMFD) Long been recognized effect on midlatitudes eddies amplitude, jet streams strength and location, energy conversions (James, 1987; Robinson 1997; Chen et al., 2007; etc...) Can it explain upper level EMDF e n h a n c e m e n t ? S o m e t i m e suggested in text books (e.g. Vallis, 2006)Latitude Sigma 30 10 −5 −5 −10 300 320 350 −60 −30 0 30 60 0.2 0.8 −10 −5 0 5 10 5.10 6 m s 2