SlideShare une entreprise Scribd logo
1  sur  32
Télécharger pour lire hors ligne
Eigenvalues in a nutshell
Eigenvalues in a nutshell


     Mariquita Flores Garrido



    UDLS, March 16th 2007
Just in case…
• Scalar multiple of a vector
                                           λx
                                                               x
                     x                                                           x
                                       x
                    λx
                                                λx                 λx
         0 ≤ λ ≤1          1≤ λ                 −1 ≤ λ ≤ 0              λ ≤ −1


• Addition of vectors
                                  v1                         v1 + v2




                                                     v2
Linear Transformations

                   Ax = b        Transformation of x by A.

• Rectangular matrices

     A ∈ R m×n ⇒ f : R n a R m
                                            A          x     =   Ax


                                           mxn                   mx1

                                                      nx1
   V. gr.


      ⎛1    4⎞         ⎛5⎞
      ⎜      ⎟   ⎛1⎞   ⎜ ⎟
      ⎜2    5⎟   ⎜ ⎟ = ⎜7⎟
                 ⎜1⎟
      ⎜3    6⎟   ⎝ ⎠   ⎜9⎟
      ⎝      ⎠         ⎝ ⎠
Linear Transformations




• Square Matrices        A ∈ R n×n ⇒ f : R n a R n   (*endomorphism)


  *Stretch/Compression       *Rotation               *Reflection

           ⎛ 2 0⎞             ⎛ cos ϕ     sin ϕ ⎞              ⎛0 1⎞
           ⎜ 0 2⎟
           ⎜    ⎟             ⎜
                              ⎜ − sin ϕ         ⎟              ⎜
                                                               ⎜1 0⎟
           ⎝    ⎠             ⎝           cos ϕ ⎟
                                                ⎠              ⎝
                                                                   ⎟
                                                                   ⎠
Bonnus: Shear




  *Shear in x-direction                *Shear in y-direction

           ⎛1 k ⎞                                 ⎛ 1 0⎞
           ⎜
           ⎜0 1⎟⎟                                 ⎜
                                                  ⎜ k 1⎟
                                                       ⎟
           ⎝    ⎠                                 ⎝    ⎠



   V.gr.        Shear in x-direction



                    y                  ⎛ x⎞                y       ⎛ x + ky ⎞
                                       ⎜ ⎟
                                       ⎜ y⎟                        ⎜
                                                                   ⎜ y ⎟    ⎟
                                       ⎝ ⎠                         ⎝        ⎠




                                              x                x
Basis for a Subspace


 A basis in Rn is a set of n linearly independent vectors.

                   ⎛1⎞                              2e3
                   ⎜ ⎟
                   ⎜1⎟
                   ⎜ 2⎟
                   ⎝ ⎠
                                                    e3


                                                             e2
     ⎛1⎞     ⎛1⎞        ⎛0⎞       ⎛0⎞
     ⎜ ⎟     ⎜ ⎟        ⎜ ⎟       ⎜ ⎟          e1
     ⎜1⎟ = 1 ⎜0⎟    + 1 ⎜1⎟   + 2 ⎜0⎟
     ⎜2⎟     ⎜0⎟        ⎜0⎟       ⎜1⎟
     ⎝ ⎠     ⎝ ⎠        ⎝ ⎠       ⎝ ⎠
Basis for a Subspace




   Any set of n linearly independent vectors can be a basis

                                 V2
                                           Using canonical
                                           basis:
            ⎛ a1 ⎞
            ⎜ ⎟
            ⎜a ⎟
            ⎝ 2⎠       e2                              ⎛ a1 ⎞ ⎛ − 2 ⎞
                                      V1               ⎜ ⎟=⎜ ⎟
                                                       ⎜a ⎟ ⎜ 1 ⎟
                            e1                         ⎝ 2⎠ ⎝ ⎠


                                                                        V2




        Using V1, V2 … ?                                                     V1
                            ⎛ a1 ⎞
                            ⎜ ⎟ = ??
                            ⎜a ⎟
                            ⎝ 2⎠
EIGENVALUES


  •quot;Eigenquot; -    quot;ownquot;, quot;peculiar toquot;, quot;characteristicquot; or quot;individual“; quot;proper
  value“.


  • An invariant subspace under an endomorphism.




  • If A is n x n matrix, x ≠ 0 is called an eigenvector of A if
                                     Ax = λx
  and λ is called an eigenvalue of A.
Quiz 1


• Square Matrices (endomorphism)

 *Stretch/Compression   *Rotation              *Reflection

         ⎛ 2 0⎞          ⎛ cos ϕ     sin ϕ ⎞           ⎛0 1⎞
         ⎜ 0 2⎟
         ⎜    ⎟          ⎜
                         ⎜ − sin ϕ         ⎟           ⎜
                                                       ⎜1 0⎟
         ⎝    ⎠          ⎝           cos ϕ ⎟
                                           ⎠           ⎝
                                                           ⎟
                                                           ⎠
Eigen – slang
 • Characteristic polynomial: A degree n polynomial in λ:
                                         det(λI - A) = 0
 Scalars satisfying the eqn, are the eigenvalues of A.
 V.gr.
                              ⎛1 2⎞    1− λ         2
                              ⎜   ⎟⎯
                              ⎜3 4⎟ ⎯→                 = λ2 − 5λ − 2 = 0
                              ⎝   ⎠     3          4−λ

 • Spectrum (of A) : { λ1, λ2 , …, λn}
 • Algebraic multiplicity (of λi): number of roots equal to λi.
 • Eigenspace (of λi): Eigenvectors never come alone!

                  Ax = λx
               k ⋅ Ax = k ⋅ λx
               A(kx) = λ (kx)


 • Geometric multiplicity (of λi): number of lin. independent eigenvectors
 associated with λi.
Eigen – slang


 • Eigen – something: Something that doesn’t change under some
 transformation.

                         d [e x ]
                                  = ex
                           dx
FAQ (yeah, sure)

• How old are the eigenvalues?
They arose before matrix theory, in the context of differential equations.
Bernoulli, Euler, 18th Century.




Hilbert, 20th century.




• Do all matrices have eigenvalues?
Yes. Every n x n matrix has n eigenvalues.
• Why are the eigenvalues important?


       - Physical meaning (v.gr. string, molecular orbitals ).


       - There are other concepts relying on eigenvalues (v.gr. singular values, condition number).


       - They tell almost everything about a matrix.
Properties of a matrix reflected in its eigenvalues:


  1. A singular    ↔        λ = 0.

  2. A and AT have the same λ’s.

  3. A symmetric            Real λ’s..

  4. A skew-symmetric                  Imaginary λ’s..

  5. A symmetric positive definite              λ’s > 0

  6. A full rank    Eigenvectors form a basis for Rn.

  7. A symmetric      Eigenvectors can be chosen orthonormal.

  8. A real    Eigenvalues and eigenvectors come in conjugate pairs.

  9. A symmetric      Number of positive eigenvalues equals the number of
     positive pivots. A diagonal     λi = aii
Properties of a matrix reflected in its eigenvalues:

 10. A and M-1AM have the same λ’s.

 11. A orthogonal         all |λ | = 1

 12. A projector         λ = 1,0

 13. A Markov          λmax = 1

 14. A reflection       λ = -1,1,…,1

 15. A rank one         λ = vTu

 16. A-1      1/λ(A)

 17. A + cI      λ(A) + c

 18. A diagonal        λi = aii

 19. Eigenvectors of AAT           Basis for Col(A)

 20. Eigenvectors of ATA           Basis for Row(A)

  M
What’s the worst thing about eigenvalues?

Find them is painful; they are roots of the characteristic polynomial.



        * How long does it take to calculate the determinant of a
        25 x 25 matrix?


        * How do we find roots of polynomials?
WARNING:


 The following examples have been
simplified to be presented in a short
  talk about eigenvalues. Attendee
        discretion is advised.
Example 1: Face Identification




                  Eigenfaces: face identification technique.


  (There are also eigeneyes, eigennoses, eigenmouths, eigenears,eigenvoices,…)
EIGENFACES




                      Given a set of images, and a
                       “target face”, identify the
                          “owner” of the face.




                                          256 x 256
                                            (test)
        128 images
        (train set)
1. Preprocessing stage: linear transformations, morphing,
    warping,…


2. Representing faces: vectors (Γj) in a very high dimensional
    space.
V.gr.
                Training set: 65536 x 128 matrix
3. Centering data: take the “average” image and define every Φj


                                         Φ j = Ψ − Γj


               1 n
                                             A = [Φ1, Φ2 ,...,Φn ]
            Ψ = ∑ Γj
               n j =1
4. Eigenvectors of AAT are a basis for Col(A) (what’s the size of this matrix?), so
    instead of working with A, I can express every image in another basis.


* 5. PCA: reducing the dimension of the space. To solve the problem, the work is
    done in a smaller subspace, SL, using projections of each image onto SL.


6. It’s possible to get eigenvectors of AAT using eigenvectors of ATA.
                                  65436 x 65436                 128 x 128
Example 2: Sparse Matrix Computations
ITERATIVE METHODS


                                  Âx=b


   • Gauss-Jordan


   • If  is 105 ×105 , Gauss Jordan would take approx. 290 years.


   • Iterative methods: find some “good” matrix A and apply it to some
   initial vector until you get convergence.


   • Choosing different A determines different methods (v.gr. Jacobi,
   Gauss-Seidel, Krylov subspace methods, …).
Example 2: ITERATIVE METHODS

• Iteration
                                                        x1 = Ax 0
 A: huge matrix (    106   ×106 )
                                                        x 2 = Ax1 = A(Ax 0 ) = A 2 x 0
x0 : initial guess
                                                        M
                                                        xn = An x0

• If A has full rank, its eigenvectors form a basis for Rm

    An x0 = An (α1v1 + α 2 v2 + L + α m vm )
          = α1 An v1 + α 2 An v2 + L + α m An vm
          = α1λn v1 + α 2 λn v2 + L + α m λn vm
               1           2               m
                                                            λi < 1 ⇒ convergence

                               Convergence, number of iterations, it’s all
                                                  about eigenvalues…
Example 2: ITERATIVE METHODS
Example 3: Dynamical Systems




       ( Eigenvalues don’t have the main role here, but, who are
                      you going to complain to?)
Arnold’s Cat

  • Poincare recurrence theorem:
          “ A system having a finite amount of energy and confined to a
          finite spatial volume will, after a sufficiently long time, return
          to an arbitrarily small neighborhood of its initial state.”


  • Vladimir I. Arnold, Russian mathematician.




                                               ⎛1 1 ⎞
                                               ⎜1 2 ⎟
                                             A=⎜    ⎟
                                               ⎝    ⎠

                                            Each pixel can be assigned to a
                                              unique pair of coordinates
                                              (a two-dimensional vector)
⎛1 1 ⎞ ⎛1 0 ⎞ ⎛ 1 1⎞
A=⎜
  ⎜1 2 ⎟ = ⎜1 1 ⎟ ⋅ ⎜ 0 1⎟
       ⎟ ⎜      ⎟ ⎜      ⎟   (mod 1)
  ⎝    ⎠ ⎝      ⎠ ⎝      ⎠
1    2    3    5




20   31   37   42




46   47   59   63




77   78   79   80
⎛ .52 ⎞
           λ1 = 2.61 → ⎜     ⎟
  ⎛1 1 ⎞               ⎜ .85 ⎟
                       ⎝ ⎠       det( A) = 1
A=⎜
  ⎜1 2 ⎟
       ⎟                                            V1
  ⎝    ⎠              ⎛ −.85⎞
           λ2 = 0.38 → ⎜
                       ⎜    ⎟
                      ⎝ .52 ⎟
                            ⎠                  V2
More Applications




      •Graph theory
      •Differential Equations
      •PageRank
      •Physics
REFERENCES

 •Chen Greif. CPSC 517 Notes, UBC/CS, Spring 2007.


 •Howard Anton and Chris Rorres. Elementary Linear Algebra,
 Applications Version, 9th Ed. John Wiley & Sons, Inc. 2005


 •Humberto Madrid de la Vega. Eigenfaces: Reconocimiento digital de
 facciones mediante SVD. Memorias del XXXVII Congreso SMM, 2005.


 •Wikipedia: Eigenvalue, eigenvector and eigenspace.
 http://en.wikipedia.org/wiki/Eigenvalue

Contenu connexe

Tendances

Complex Number I - Presentation
Complex Number I - PresentationComplex Number I - Presentation
Complex Number I - Presentation
yhchung
 
Lesson 15: Diagonalization
Lesson 15: DiagonalizationLesson 15: Diagonalization
Lesson 15: Diagonalization
Matthew Leingang
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
Emiey Shaari
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
Amit Singh
 
Matrix Representation Of Graph
Matrix Representation Of GraphMatrix Representation Of Graph
Matrix Representation Of Graph
Abhishek Pachisia
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
Silvius
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3
Ron Eick
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
Matthew Leingang
 

Tendances (20)

Complex Number I - Presentation
Complex Number I - PresentationComplex Number I - Presentation
Complex Number I - Presentation
 
Lesson 15: Diagonalization
Lesson 15: DiagonalizationLesson 15: Diagonalization
Lesson 15: Diagonalization
 
Solution to Black-Scholes P.D.E. via Finite Difference Methods (MatLab)
Solution to Black-Scholes P.D.E. via Finite Difference Methods (MatLab)Solution to Black-Scholes P.D.E. via Finite Difference Methods (MatLab)
Solution to Black-Scholes P.D.E. via Finite Difference Methods (MatLab)
 
1 lesson 7 introduction to complex numbers
1 lesson 7 introduction to complex numbers1 lesson 7 introduction to complex numbers
1 lesson 7 introduction to complex numbers
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .ppt
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
 
Complex number, polar form , rectangular form
Complex number, polar form , rectangular formComplex number, polar form , rectangular form
Complex number, polar form , rectangular form
 
Matrix Representation Of Graph
Matrix Representation Of GraphMatrix Representation Of Graph
Matrix Representation Of Graph
 
Introduction to Numerical Analysis
Introduction to Numerical AnalysisIntroduction to Numerical Analysis
Introduction to Numerical Analysis
 
Difference quotient algebra
Difference quotient algebraDifference quotient algebra
Difference quotient algebra
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Calculus
CalculusCalculus
Calculus
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
 
Cs6702 graph theory and applications 2 marks questions and answers
Cs6702 graph theory and applications 2 marks questions and answersCs6702 graph theory and applications 2 marks questions and answers
Cs6702 graph theory and applications 2 marks questions and answers
 
introduction to Numerical Analysis
introduction to Numerical Analysisintroduction to Numerical Analysis
introduction to Numerical Analysis
 
Graphs of Log functions
Graphs of Log functionsGraphs of Log functions
Graphs of Log functions
 

En vedette

Eigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationEigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Christopher Gratton
 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And Eigenvectors
Matthew Leingang
 
Eigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matricesEigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matrices
Ivan Mateev
 
Nilai Egien Dan Vektor Eigen
Nilai Egien Dan Vektor EigenNilai Egien Dan Vektor Eigen
Nilai Egien Dan Vektor Eigen
Rizky Wulansari
 
Do you know matrix transformations
Do you know matrix transformationsDo you know matrix transformations
Do you know matrix transformations
Tarun Gehlot
 
eigen valuesandeigenvectors
eigen valuesandeigenvectorseigen valuesandeigenvectors
eigen valuesandeigenvectors
8laddu8
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineering
shubham211
 
Applications of Matrices
Applications of MatricesApplications of Matrices
Applications of Matrices
santhosh kumar
 
2 d transformations and homogeneous coordinates
2 d transformations and homogeneous coordinates2 d transformations and homogeneous coordinates
2 d transformations and homogeneous coordinates
Tarun Gehlot
 

En vedette (20)

Eigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationEigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to Diagonalisation
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And Eigenvectors
 
Eigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matricesEigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matrices
 
On image intensities, eigenfaces and LDA
On image intensities, eigenfaces and LDAOn image intensities, eigenfaces and LDA
On image intensities, eigenfaces and LDA
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
 
Eigen vector
Eigen vectorEigen vector
Eigen vector
 
Nilai Egien Dan Vektor Eigen
Nilai Egien Dan Vektor EigenNilai Egien Dan Vektor Eigen
Nilai Egien Dan Vektor Eigen
 
Saurashtra university library
Saurashtra university librarySaurashtra university library
Saurashtra university library
 
Eigenvalues and eigenvectors
Eigenvalues and eigenvectorsEigenvalues and eigenvectors
Eigenvalues and eigenvectors
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
Do you know matrix transformations
Do you know matrix transformationsDo you know matrix transformations
Do you know matrix transformations
 
eigen valuesandeigenvectors
eigen valuesandeigenvectorseigen valuesandeigenvectors
eigen valuesandeigenvectors
 
B.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectorsB.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectors
 
Saurashtra University Library PPT
Saurashtra University Library PPTSaurashtra University Library PPT
Saurashtra University Library PPT
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineering
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
 
Applications of Matrices
Applications of MatricesApplications of Matrices
Applications of Matrices
 
2 d transformations and homogeneous coordinates
2 d transformations and homogeneous coordinates2 d transformations and homogeneous coordinates
2 d transformations and homogeneous coordinates
 
Application of matrices in real life
Application of matrices in real lifeApplication of matrices in real life
Application of matrices in real life
 

Similaire à Eigenvalues in a Nutshell

X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphs
Nigel Simmons
 
12 X1 T07 03 Projectile Motion
12 X1 T07 03 Projectile Motion12 X1 T07 03 Projectile Motion
12 X1 T07 03 Projectile Motion
Nigel Simmons
 
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティングビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
Directus Inc.(ディレクタス)
 

Similaire à Eigenvalues in a Nutshell (12)

Understand Of Linear Algebra
Understand Of Linear AlgebraUnderstand Of Linear Algebra
Understand Of Linear Algebra
 
Protein Folding Prediction
Protein Folding PredictionProtein Folding Prediction
Protein Folding Prediction
 
Introduction about Geometric Algebra
Introduction about Geometric AlgebraIntroduction about Geometric Algebra
Introduction about Geometric Algebra
 
Proj Stat
Proj StatProj Stat
Proj Stat
 
B to \eta(') K branching ratio puzzle and OZI violation contribution
B to \eta(') K branching ratio puzzle and OZI violation contributionB to \eta(') K branching ratio puzzle and OZI violation contribution
B to \eta(') K branching ratio puzzle and OZI violation contribution
 
Quantum Logic
Quantum LogicQuantum Logic
Quantum Logic
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphs
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
 
12 X1 T07 03 Projectile Motion
12 X1 T07 03 Projectile Motion12 X1 T07 03 Projectile Motion
12 X1 T07 03 Projectile Motion
 
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティングビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
 
Shortest Path Search in Real Road Networks with pgRouting
Shortest Path Search in Real Road Networks with pgRoutingShortest Path Search in Real Road Networks with pgRouting
Shortest Path Search in Real Road Networks with pgRouting
 

Plus de guest9006ab

Plus de guest9006ab (14)

Proportional-Derivative-Integral (PID) Control
Proportional-Derivative-Integral (PID) ControlProportional-Derivative-Integral (PID) Control
Proportional-Derivative-Integral (PID) Control
 
A Brief History of Cryptography
A Brief History of CryptographyA Brief History of Cryptography
A Brief History of Cryptography
 
SMART Goals and Feedback (Project Management)
SMART Goals and Feedback (Project Management)SMART Goals and Feedback (Project Management)
SMART Goals and Feedback (Project Management)
 
C Code and the Art of Obfuscation
C Code and the Art of ObfuscationC Code and the Art of Obfuscation
C Code and the Art of Obfuscation
 
OS Mélange
OS MélangeOS Mélange
OS Mélange
 
Top Super-models of Computer Graphics
Top Super-models of Computer GraphicsTop Super-models of Computer Graphics
Top Super-models of Computer Graphics
 
Human Nature and its Consequences
Human Nature and its ConsequencesHuman Nature and its Consequences
Human Nature and its Consequences
 
Slipping the Surly Bonds
Slipping the Surly BondsSlipping the Surly Bonds
Slipping the Surly Bonds
 
Communication with Extraterrestrial Intelligence
Communication with Extraterrestrial IntelligenceCommunication with Extraterrestrial Intelligence
Communication with Extraterrestrial Intelligence
 
Canada vs. Germany: Une réflection
Canada vs. Germany: Une réflectionCanada vs. Germany: Une réflection
Canada vs. Germany: Une réflection
 
Signal Compression and JPEG
Signal Compression and JPEGSignal Compression and JPEG
Signal Compression and JPEG
 
Clouds
CloudsClouds
Clouds
 
Brain-Computer Interfaces
Brain-Computer InterfacesBrain-Computer Interfaces
Brain-Computer Interfaces
 
The ABC's of the Bible
The ABC's of the BibleThe ABC's of the Bible
The ABC's of the Bible
 

Dernier

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Dernier (20)

🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 

Eigenvalues in a Nutshell

  • 1. Eigenvalues in a nutshell Eigenvalues in a nutshell Mariquita Flores Garrido UDLS, March 16th 2007
  • 2. Just in case… • Scalar multiple of a vector λx x x x x λx λx λx 0 ≤ λ ≤1 1≤ λ −1 ≤ λ ≤ 0 λ ≤ −1 • Addition of vectors v1 v1 + v2 v2
  • 3. Linear Transformations Ax = b Transformation of x by A. • Rectangular matrices A ∈ R m×n ⇒ f : R n a R m A x = Ax mxn mx1 nx1 V. gr. ⎛1 4⎞ ⎛5⎞ ⎜ ⎟ ⎛1⎞ ⎜ ⎟ ⎜2 5⎟ ⎜ ⎟ = ⎜7⎟ ⎜1⎟ ⎜3 6⎟ ⎝ ⎠ ⎜9⎟ ⎝ ⎠ ⎝ ⎠
  • 4. Linear Transformations • Square Matrices A ∈ R n×n ⇒ f : R n a R n (*endomorphism) *Stretch/Compression *Rotation *Reflection ⎛ 2 0⎞ ⎛ cos ϕ sin ϕ ⎞ ⎛0 1⎞ ⎜ 0 2⎟ ⎜ ⎟ ⎜ ⎜ − sin ϕ ⎟ ⎜ ⎜1 0⎟ ⎝ ⎠ ⎝ cos ϕ ⎟ ⎠ ⎝ ⎟ ⎠
  • 5. Bonnus: Shear *Shear in x-direction *Shear in y-direction ⎛1 k ⎞ ⎛ 1 0⎞ ⎜ ⎜0 1⎟⎟ ⎜ ⎜ k 1⎟ ⎟ ⎝ ⎠ ⎝ ⎠ V.gr. Shear in x-direction y ⎛ x⎞ y ⎛ x + ky ⎞ ⎜ ⎟ ⎜ y⎟ ⎜ ⎜ y ⎟ ⎟ ⎝ ⎠ ⎝ ⎠ x x
  • 6. Basis for a Subspace A basis in Rn is a set of n linearly independent vectors. ⎛1⎞ 2e3 ⎜ ⎟ ⎜1⎟ ⎜ 2⎟ ⎝ ⎠ e3 e2 ⎛1⎞ ⎛1⎞ ⎛0⎞ ⎛0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ e1 ⎜1⎟ = 1 ⎜0⎟ + 1 ⎜1⎟ + 2 ⎜0⎟ ⎜2⎟ ⎜0⎟ ⎜0⎟ ⎜1⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  • 7. Basis for a Subspace Any set of n linearly independent vectors can be a basis V2 Using canonical basis: ⎛ a1 ⎞ ⎜ ⎟ ⎜a ⎟ ⎝ 2⎠ e2 ⎛ a1 ⎞ ⎛ − 2 ⎞ V1 ⎜ ⎟=⎜ ⎟ ⎜a ⎟ ⎜ 1 ⎟ e1 ⎝ 2⎠ ⎝ ⎠ V2 Using V1, V2 … ? V1 ⎛ a1 ⎞ ⎜ ⎟ = ?? ⎜a ⎟ ⎝ 2⎠
  • 8. EIGENVALUES •quot;Eigenquot; - quot;ownquot;, quot;peculiar toquot;, quot;characteristicquot; or quot;individual“; quot;proper value“. • An invariant subspace under an endomorphism. • If A is n x n matrix, x ≠ 0 is called an eigenvector of A if Ax = λx and λ is called an eigenvalue of A.
  • 9. Quiz 1 • Square Matrices (endomorphism) *Stretch/Compression *Rotation *Reflection ⎛ 2 0⎞ ⎛ cos ϕ sin ϕ ⎞ ⎛0 1⎞ ⎜ 0 2⎟ ⎜ ⎟ ⎜ ⎜ − sin ϕ ⎟ ⎜ ⎜1 0⎟ ⎝ ⎠ ⎝ cos ϕ ⎟ ⎠ ⎝ ⎟ ⎠
  • 10. Eigen – slang • Characteristic polynomial: A degree n polynomial in λ: det(λI - A) = 0 Scalars satisfying the eqn, are the eigenvalues of A. V.gr. ⎛1 2⎞ 1− λ 2 ⎜ ⎟⎯ ⎜3 4⎟ ⎯→ = λ2 − 5λ − 2 = 0 ⎝ ⎠ 3 4−λ • Spectrum (of A) : { λ1, λ2 , …, λn} • Algebraic multiplicity (of λi): number of roots equal to λi. • Eigenspace (of λi): Eigenvectors never come alone! Ax = λx k ⋅ Ax = k ⋅ λx A(kx) = λ (kx) • Geometric multiplicity (of λi): number of lin. independent eigenvectors associated with λi.
  • 11. Eigen – slang • Eigen – something: Something that doesn’t change under some transformation. d [e x ] = ex dx
  • 12. FAQ (yeah, sure) • How old are the eigenvalues? They arose before matrix theory, in the context of differential equations. Bernoulli, Euler, 18th Century. Hilbert, 20th century. • Do all matrices have eigenvalues? Yes. Every n x n matrix has n eigenvalues.
  • 13. • Why are the eigenvalues important? - Physical meaning (v.gr. string, molecular orbitals ). - There are other concepts relying on eigenvalues (v.gr. singular values, condition number). - They tell almost everything about a matrix.
  • 14. Properties of a matrix reflected in its eigenvalues: 1. A singular ↔ λ = 0. 2. A and AT have the same λ’s. 3. A symmetric Real λ’s.. 4. A skew-symmetric Imaginary λ’s.. 5. A symmetric positive definite λ’s > 0 6. A full rank Eigenvectors form a basis for Rn. 7. A symmetric Eigenvectors can be chosen orthonormal. 8. A real Eigenvalues and eigenvectors come in conjugate pairs. 9. A symmetric Number of positive eigenvalues equals the number of positive pivots. A diagonal λi = aii
  • 15. Properties of a matrix reflected in its eigenvalues: 10. A and M-1AM have the same λ’s. 11. A orthogonal all |λ | = 1 12. A projector λ = 1,0 13. A Markov λmax = 1 14. A reflection λ = -1,1,…,1 15. A rank one λ = vTu 16. A-1 1/λ(A) 17. A + cI λ(A) + c 18. A diagonal λi = aii 19. Eigenvectors of AAT Basis for Col(A) 20. Eigenvectors of ATA Basis for Row(A) M
  • 16. What’s the worst thing about eigenvalues? Find them is painful; they are roots of the characteristic polynomial. * How long does it take to calculate the determinant of a 25 x 25 matrix? * How do we find roots of polynomials?
  • 17. WARNING: The following examples have been simplified to be presented in a short talk about eigenvalues. Attendee discretion is advised.
  • 18. Example 1: Face Identification Eigenfaces: face identification technique. (There are also eigeneyes, eigennoses, eigenmouths, eigenears,eigenvoices,…)
  • 19. EIGENFACES Given a set of images, and a “target face”, identify the “owner” of the face. 256 x 256 (test) 128 images (train set)
  • 20. 1. Preprocessing stage: linear transformations, morphing, warping,… 2. Representing faces: vectors (Γj) in a very high dimensional space. V.gr. Training set: 65536 x 128 matrix 3. Centering data: take the “average” image and define every Φj Φ j = Ψ − Γj 1 n A = [Φ1, Φ2 ,...,Φn ] Ψ = ∑ Γj n j =1
  • 21. 4. Eigenvectors of AAT are a basis for Col(A) (what’s the size of this matrix?), so instead of working with A, I can express every image in another basis. * 5. PCA: reducing the dimension of the space. To solve the problem, the work is done in a smaller subspace, SL, using projections of each image onto SL. 6. It’s possible to get eigenvectors of AAT using eigenvectors of ATA. 65436 x 65436 128 x 128
  • 22. Example 2: Sparse Matrix Computations
  • 23. ITERATIVE METHODS Âx=b • Gauss-Jordan • If  is 105 ×105 , Gauss Jordan would take approx. 290 years. • Iterative methods: find some “good” matrix A and apply it to some initial vector until you get convergence. • Choosing different A determines different methods (v.gr. Jacobi, Gauss-Seidel, Krylov subspace methods, …).
  • 24. Example 2: ITERATIVE METHODS • Iteration x1 = Ax 0 A: huge matrix ( 106 ×106 ) x 2 = Ax1 = A(Ax 0 ) = A 2 x 0 x0 : initial guess M xn = An x0 • If A has full rank, its eigenvectors form a basis for Rm An x0 = An (α1v1 + α 2 v2 + L + α m vm ) = α1 An v1 + α 2 An v2 + L + α m An vm = α1λn v1 + α 2 λn v2 + L + α m λn vm 1 2 m λi < 1 ⇒ convergence Convergence, number of iterations, it’s all about eigenvalues…
  • 26. Example 3: Dynamical Systems ( Eigenvalues don’t have the main role here, but, who are you going to complain to?)
  • 27. Arnold’s Cat • Poincare recurrence theorem: “ A system having a finite amount of energy and confined to a finite spatial volume will, after a sufficiently long time, return to an arbitrarily small neighborhood of its initial state.” • Vladimir I. Arnold, Russian mathematician. ⎛1 1 ⎞ ⎜1 2 ⎟ A=⎜ ⎟ ⎝ ⎠ Each pixel can be assigned to a unique pair of coordinates (a two-dimensional vector)
  • 28. ⎛1 1 ⎞ ⎛1 0 ⎞ ⎛ 1 1⎞ A=⎜ ⎜1 2 ⎟ = ⎜1 1 ⎟ ⋅ ⎜ 0 1⎟ ⎟ ⎜ ⎟ ⎜ ⎟ (mod 1) ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  • 29. 1 2 3 5 20 31 37 42 46 47 59 63 77 78 79 80
  • 30. ⎛ .52 ⎞ λ1 = 2.61 → ⎜ ⎟ ⎛1 1 ⎞ ⎜ .85 ⎟ ⎝ ⎠ det( A) = 1 A=⎜ ⎜1 2 ⎟ ⎟ V1 ⎝ ⎠ ⎛ −.85⎞ λ2 = 0.38 → ⎜ ⎜ ⎟ ⎝ .52 ⎟ ⎠ V2
  • 31. More Applications •Graph theory •Differential Equations •PageRank •Physics
  • 32. REFERENCES •Chen Greif. CPSC 517 Notes, UBC/CS, Spring 2007. •Howard Anton and Chris Rorres. Elementary Linear Algebra, Applications Version, 9th Ed. John Wiley & Sons, Inc. 2005 •Humberto Madrid de la Vega. Eigenfaces: Reconocimiento digital de facciones mediante SVD. Memorias del XXXVII Congreso SMM, 2005. •Wikipedia: Eigenvalue, eigenvector and eigenspace. http://en.wikipedia.org/wiki/Eigenvalue