SlideShare une entreprise Scribd logo
1  sur  24
Mallas Eléctricas
Topología de redes: Conceptos fundamentales NODO: Es un punto de unión entre tres o más elementos del circuito.  RAMA: Es un elemento o grupo de elementos conectados entre dos nudos. RED PLANA: Es una red que puede dibujarse sobre una superficie plana sin que se cruce ninguna rama LAZO: Es un conjunto de ramas que forman una línea cerrada, de forma que si se elimina cualquier rama del lazo, el camino queda abierto. MALLA: Este concepto se aplica normalmente a circuitos planos y es un lazo que no contiene ningún otro en su interior. En un circuito plano, existen obviamente tantas mallas como “ventanas” tiene la red.
Análisis de nodos y mallas Componentes Electrónicos
Análisis de nodos En el análisis nodal se aplica la ley de Kirchhoff de corrientes para determinar los voltajes presentes en los nodos. ,[object Object]
Defina un nodo de referencia
Etiquete los nodos restantes de 1 en adelante.
Defina los voltajes de cada nodo (excepto el de referencia)
Escriba LKC para cada nodo
Resuelva el sistema de ecuaciones resultante,[object Object]
Aplicando la ley de Kirchhoff de corrientes a cada nodo obtenemos para el nodo 1. 0.5v1 + 0.2(v1 - v2) = 3 			0.7v1 - 0.2v2 = 3 y para el nodo 2. 			v2 + 0.2(v2 - v1) = 2 			- 0.2 v1 + 1.2v2 = 2 La solución de este sistema de ecuaciones es: 			v1 = 5 V 			v2 = 2.5 V La tensión del nodo 1 respecto al dos será: (v1 – v2) = 2.5 V. con estos valores se puede determinar la potencia disipada por cualquiera de los elementos del circuito. Para circuitos que solo contienen fuentes independientes de corriente se obtiene una matriz de sistema simétrica, llamada matriz de conductancia.
El supernodo La fuente de voltaje puede considerarse como un “supernodo”. La LKC se sigue cumpliendo si se aplica a las corrientes que entran y salen de este supernodo. La fuente de voltaje suministra una ecuación para poder resolver el sistema. Supernodo 4 W
Fuentes controladas Ecuaciones  –2 v1 + 2.5 v2 – 0.5 v3            = 14 0.1v1 –  v2  + 0.5 v3 + 1.4 v4   = 0   v1                                         = –12 0.2 v1              + v3 – 1.2 v4    = –2 Solución: v1 = –12, v2 = –4, v3 = 0, v4 = –2, Supernodo v2 v1 v3 ref. Supernodo v4
Análisis de mallas El análisis de mallas se aplica a redes planas. Una red plana es aquella que se puede dibujar sin que se cruce ningún conductor. Definimos un lazo con cualquier camino cerrado que recorre solo una vez cada elemento del mismo. Se define una malla como un lazo que no contiene otros lazos.
Ejemplo Considere el circuito de la figura.  Aplicando la ley de tensiones de Kirchhoff a cada malla obtenemos:
Corriente de malla  Definimos corriente de malla como la corriente que circula alrededor del perímetro de una malla. En la figura se muestran las corrientes de malla de la red anterior. La ecuación de malla para la malla 1 es: 6i1 + 3(i1 – i2) = 42 La ecuación de malla para la malla 2 es: 3(i2 – i1) + 4i2 = 10 9i1 – 3i2 = 42 – 3i1 + 7i2 = 10 La solución es la misma que la anterior.
Supermallas La fuente de corriente se puede manejar mediante una supermalla. Las ecuaciones para la red de la derecha son: Para la supermalla: – 7 + 1(i1 – i2) + 3(i3 – i2) + i3 = 0 i1 – 4i2 + 3i3  = 7 para la malla 2: 1(i2 – i1) + 3(i2 – i3) + 2i2 = 0 – i1 + 6i2 – 3 i3 = 0 Ecuación de la fuente de corriente: i1 – i3 = 7 Solución: i1 = 9 A, i2 = 2.5 A, i3 = 2 A. i2 i1 i1 i3
[object Object],[object Object]
R1 V1 I V2 R2 Vn Rn Divisores de tensión y de corriente Divisor de tensión: Es un conjunto de dos o mas resistencias en serie, de modo que entre los elementos de cada resistencia la ddp existente es una fracción del voltaje aplicado al conjunto. Vo
R1 R2 Rn I1 In I2 Divisor de corriente: Es un conjunto de dos o mas resistencias en paralelo de modo que la corriente que circula por cada resistencia es una fracción de la intensidad de corriente total. I Para un divisor de dos resistencias
Fuentes de voltaje y de intensidad.  ,[object Object]
Fuente de corriente: es un elemento que suministra una corriente constante independientemente de la tensión existente. Con excepción del cortocircuito, toda fuente de corriente tiene una pérdida de corriente a través de su resistencia interna.,[object Object]
Método de los nodos Pasos que se deben seguir: 1.- Encontrar el número de nodos que posee la red 2.- Seleccionar uno de estos nodos como tierra 3.- Aplicar para cada uno de los nodos restantes el siguiente proceso con el fin de obtener la ecuación correspondiente a cada nodo: a) Elegido un nodo, “pintar” que de él salen todas las intensidades, por cada una de sus ramas. b) Aplicar la RKC  c) Obtener la intensidad que circula por cada rama aplicando la siguiente regla: A la tensión de cada generador atravesado se le debe anteponer el signo del polo por donde sale la corriente de él. 4.- De esta forma obtenemos un sistema de n ecuaciones con n incógnitas para una red de n+1 nodos
Principio de superposición La respuesta de un circuito lineal que contenga varias fuentes independientes puede hallarse considerando por separado cada generador y sumando luego las respuestas individuales. Debe hacerse notar que para que deje de actuar un generador de tensión debe anularse su tensión (V=0), es decir, se ha de cortocircuitar en serie con su resistencia interna; mientras que para anular un generador de corriente (I=0), se debe sustituir por un circuito abierto en paralelo con su resistencia interna.
a a R Red Lineal R VTh b Teorema de Thèvenin Cualquier red lineal puede sustituirse, respecto a un par de terminales, por un generador de tensión VTh (igual a la tensión en circuito abierto) en serie con la resistencia RTh vista desde esos terminales. RTh b Reglas de aplicación: 1.- Para determinar RThdeben cortocircuitarse todas las fuentes de tensión y sustituir por circuitos abiertos las fuentes de corriente. 2.- La tensión VThse determina calculando la ddp entre los terminales a y b cuando se aísla la red lineal del resto del circuito (ddp entre a y b en circuito abierto)

Contenu connexe

Tendances

Lab. informe de electricidad 12
Lab. informe  de electricidad 12Lab. informe  de electricidad 12
Lab. informe de electricidad 12Wilmer Martel
 
Codigo electrico nacional
Codigo electrico nacionalCodigo electrico nacional
Codigo electrico nacionalKathe Mart
 
Corriente continua & corriente alterna
Corriente continua & corriente alternaCorriente continua & corriente alterna
Corriente continua & corriente alternajoan_ballester
 
CAPACITORES EN SERIE Y PARALELO - ENERGIA DE UN CAPACITOR CARGADO
CAPACITORES EN SERIE Y PARALELO - ENERGIA DE UN CAPACITOR CARGADOCAPACITORES EN SERIE Y PARALELO - ENERGIA DE UN CAPACITOR CARGADO
CAPACITORES EN SERIE Y PARALELO - ENERGIA DE UN CAPACITOR CARGADOAriana 'Alvarado
 
Ley de kirchhoff
Ley de kirchhoffLey de kirchhoff
Ley de kirchhoffgreybili
 
Carga eléctrica, ley de coulomb
Carga eléctrica, ley de coulombCarga eléctrica, ley de coulomb
Carga eléctrica, ley de coulombArturo Lara Morales
 
conductores, semiconductores y aislantes
 conductores, semiconductores y aislantes conductores, semiconductores y aislantes
conductores, semiconductores y aislantesLuisf Muñoz
 
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1Drayen Hernandez
 
CIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUACIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUATorimat Cordova
 
Tema 2 leyes de kirchhoff
Tema 2   leyes de kirchhoffTema 2   leyes de kirchhoff
Tema 2 leyes de kirchhoffantonyrmrz
 
Corrientede desplazamiento
Corrientede desplazamientoCorrientede desplazamiento
Corrientede desplazamientoAly Olvera
 

Tendances (20)

Lab. informe de electricidad 12
Lab. informe  de electricidad 12Lab. informe  de electricidad 12
Lab. informe de electricidad 12
 
Codigo electrico nacional
Codigo electrico nacionalCodigo electrico nacional
Codigo electrico nacional
 
Corriente continua & corriente alterna
Corriente continua & corriente alternaCorriente continua & corriente alterna
Corriente continua & corriente alterna
 
CAPACITORES EN SERIE Y PARALELO - ENERGIA DE UN CAPACITOR CARGADO
CAPACITORES EN SERIE Y PARALELO - ENERGIA DE UN CAPACITOR CARGADOCAPACITORES EN SERIE Y PARALELO - ENERGIA DE UN CAPACITOR CARGADO
CAPACITORES EN SERIE Y PARALELO - ENERGIA DE UN CAPACITOR CARGADO
 
Ley de kirchhoff
Ley de kirchhoffLey de kirchhoff
Ley de kirchhoff
 
Conductores electricos
Conductores electricosConductores electricos
Conductores electricos
 
Aplicaciones del campo magnético
Aplicaciones del campo magnéticoAplicaciones del campo magnético
Aplicaciones del campo magnético
 
Carga eléctrica, ley de coulomb
Carga eléctrica, ley de coulombCarga eléctrica, ley de coulomb
Carga eléctrica, ley de coulomb
 
Conexiones trifasicas
Conexiones trifasicasConexiones trifasicas
Conexiones trifasicas
 
conductores, semiconductores y aislantes
 conductores, semiconductores y aislantes conductores, semiconductores y aislantes
conductores, semiconductores y aislantes
 
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
 
CIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUACIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUA
 
Inductancia
InductanciaInductancia
Inductancia
 
Tema 2 leyes de kirchhoff
Tema 2   leyes de kirchhoffTema 2   leyes de kirchhoff
Tema 2 leyes de kirchhoff
 
Resumen Introduccion
Resumen Introduccion Resumen Introduccion
Resumen Introduccion
 
Lab. 4 transformadores
Lab. 4   transformadoresLab. 4   transformadores
Lab. 4 transformadores
 
Informe 5 - Física III
Informe 5 - Física IIIInforme 5 - Física III
Informe 5 - Física III
 
Corrientede desplazamiento
Corrientede desplazamientoCorrientede desplazamiento
Corrientede desplazamiento
 
Inductancia
InductanciaInductancia
Inductancia
 
Modelo híbrido del bjt
Modelo híbrido del bjtModelo híbrido del bjt
Modelo híbrido del bjt
 

Similaire à Mallas eléctricas

analisissssAnálisis de nodos
analisissssAnálisis de nodosanalisissssAnálisis de nodos
analisissssAnálisis de nodosWilson Vargas
 
36655254 nodos-mallas-super-nodos-y-super-mallas
36655254 nodos-mallas-super-nodos-y-super-mallas36655254 nodos-mallas-super-nodos-y-super-mallas
36655254 nodos-mallas-super-nodos-y-super-mallasRuddyAchocalla
 
Circuitos electricos (1)
Circuitos electricos (1)Circuitos electricos (1)
Circuitos electricos (1)Andy Dextre
 
Semana2_TP103_2022-I Material de teoria de Benites electricidad.pdf
Semana2_TP103_2022-I Material de teoria de Benites electricidad.pdfSemana2_TP103_2022-I Material de teoria de Benites electricidad.pdf
Semana2_TP103_2022-I Material de teoria de Benites electricidad.pdfRODRIGOJERSONBALANDA
 
Circuitos electricos máxima potencia norton thevenin
Circuitos electricos máxima potencia norton theveninCircuitos electricos máxima potencia norton thevenin
Circuitos electricos máxima potencia norton theveninjobesop
 
Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricosMariRizcala
 
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptxBloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptxDomingoHernandez31
 
Exp cap-2-circ-electricos
Exp cap-2-circ-electricosExp cap-2-circ-electricos
Exp cap-2-circ-electricosmaria_amanta
 
Análisis nodal y mallas
Análisis nodal y mallasAnálisis nodal y mallas
Análisis nodal y mallasuniversitario
 
Electronica colombiana
Electronica colombianaElectronica colombiana
Electronica colombianajoelpoca
 

Similaire à Mallas eléctricas (20)

Mallas 091113110741-phpapp01
Mallas 091113110741-phpapp01Mallas 091113110741-phpapp01
Mallas 091113110741-phpapp01
 
analisissssAnálisis de nodos
analisissssAnálisis de nodosanalisissssAnálisis de nodos
analisissssAnálisis de nodos
 
36655254 nodos-mallas-super-nodos-y-super-mallas
36655254 nodos-mallas-super-nodos-y-super-mallas36655254 nodos-mallas-super-nodos-y-super-mallas
36655254 nodos-mallas-super-nodos-y-super-mallas
 
Act 8
Act 8Act 8
Act 8
 
Circuitos electricos (1)
Circuitos electricos (1)Circuitos electricos (1)
Circuitos electricos (1)
 
Semana2_TP103_2022-I Material de teoria de Benites electricidad.pdf
Semana2_TP103_2022-I Material de teoria de Benites electricidad.pdfSemana2_TP103_2022-I Material de teoria de Benites electricidad.pdf
Semana2_TP103_2022-I Material de teoria de Benites electricidad.pdf
 
Circuitos electricos máxima potencia norton thevenin
Circuitos electricos máxima potencia norton theveninCircuitos electricos máxima potencia norton thevenin
Circuitos electricos máxima potencia norton thevenin
 
Semana 3-clase-04-lm 1
Semana 3-clase-04-lm 1Semana 3-clase-04-lm 1
Semana 3-clase-04-lm 1
 
Circuito
CircuitoCircuito
Circuito
 
Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricos
 
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptxBloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
 
Circuitos electricos
Circuitos electricosCircuitos electricos
Circuitos electricos
 
Teoría de circuitos 2/7
Teoría de circuitos 2/7Teoría de circuitos 2/7
Teoría de circuitos 2/7
 
Teoría de circuitos 2/8
Teoría de circuitos 2/8Teoría de circuitos 2/8
Teoría de circuitos 2/8
 
Exp cap-2-circ-electricos
Exp cap-2-circ-electricosExp cap-2-circ-electricos
Exp cap-2-circ-electricos
 
Análisis nodal y mallas
Análisis nodal y mallasAnálisis nodal y mallas
Análisis nodal y mallas
 
Unidad 2.pptx
Unidad 2.pptxUnidad 2.pptx
Unidad 2.pptx
 
Electronica colombiana
Electronica colombianaElectronica colombiana
Electronica colombiana
 
teoria de mallas
teoria de mallasteoria de mallas
teoria de mallas
 
expo 2.pptx
expo 2.pptxexpo 2.pptx
expo 2.pptx
 

Dernier

ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfenelcielosiempre
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Alejandrino Halire Ccahuana
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperiomiralbaipiales2016
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxdkmeza
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxnandoapperscabanilla
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 

Dernier (20)

ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptx
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 

Mallas eléctricas

  • 2. Topología de redes: Conceptos fundamentales NODO: Es un punto de unión entre tres o más elementos del circuito. RAMA: Es un elemento o grupo de elementos conectados entre dos nudos. RED PLANA: Es una red que puede dibujarse sobre una superficie plana sin que se cruce ninguna rama LAZO: Es un conjunto de ramas que forman una línea cerrada, de forma que si se elimina cualquier rama del lazo, el camino queda abierto. MALLA: Este concepto se aplica normalmente a circuitos planos y es un lazo que no contiene ningún otro en su interior. En un circuito plano, existen obviamente tantas mallas como “ventanas” tiene la red.
  • 3. Análisis de nodos y mallas Componentes Electrónicos
  • 4.
  • 5. Defina un nodo de referencia
  • 6. Etiquete los nodos restantes de 1 en adelante.
  • 7. Defina los voltajes de cada nodo (excepto el de referencia)
  • 8. Escriba LKC para cada nodo
  • 9.
  • 10. Aplicando la ley de Kirchhoff de corrientes a cada nodo obtenemos para el nodo 1. 0.5v1 + 0.2(v1 - v2) = 3 0.7v1 - 0.2v2 = 3 y para el nodo 2. v2 + 0.2(v2 - v1) = 2 - 0.2 v1 + 1.2v2 = 2 La solución de este sistema de ecuaciones es: v1 = 5 V v2 = 2.5 V La tensión del nodo 1 respecto al dos será: (v1 – v2) = 2.5 V. con estos valores se puede determinar la potencia disipada por cualquiera de los elementos del circuito. Para circuitos que solo contienen fuentes independientes de corriente se obtiene una matriz de sistema simétrica, llamada matriz de conductancia.
  • 11. El supernodo La fuente de voltaje puede considerarse como un “supernodo”. La LKC se sigue cumpliendo si se aplica a las corrientes que entran y salen de este supernodo. La fuente de voltaje suministra una ecuación para poder resolver el sistema. Supernodo 4 W
  • 12. Fuentes controladas Ecuaciones –2 v1 + 2.5 v2 – 0.5 v3 = 14 0.1v1 – v2 + 0.5 v3 + 1.4 v4 = 0 v1 = –12 0.2 v1 + v3 – 1.2 v4 = –2 Solución: v1 = –12, v2 = –4, v3 = 0, v4 = –2, Supernodo v2 v1 v3 ref. Supernodo v4
  • 13. Análisis de mallas El análisis de mallas se aplica a redes planas. Una red plana es aquella que se puede dibujar sin que se cruce ningún conductor. Definimos un lazo con cualquier camino cerrado que recorre solo una vez cada elemento del mismo. Se define una malla como un lazo que no contiene otros lazos.
  • 14. Ejemplo Considere el circuito de la figura. Aplicando la ley de tensiones de Kirchhoff a cada malla obtenemos:
  • 15. Corriente de malla Definimos corriente de malla como la corriente que circula alrededor del perímetro de una malla. En la figura se muestran las corrientes de malla de la red anterior. La ecuación de malla para la malla 1 es: 6i1 + 3(i1 – i2) = 42 La ecuación de malla para la malla 2 es: 3(i2 – i1) + 4i2 = 10 9i1 – 3i2 = 42 – 3i1 + 7i2 = 10 La solución es la misma que la anterior.
  • 16. Supermallas La fuente de corriente se puede manejar mediante una supermalla. Las ecuaciones para la red de la derecha son: Para la supermalla: – 7 + 1(i1 – i2) + 3(i3 – i2) + i3 = 0 i1 – 4i2 + 3i3 = 7 para la malla 2: 1(i2 – i1) + 3(i2 – i3) + 2i2 = 0 – i1 + 6i2 – 3 i3 = 0 Ecuación de la fuente de corriente: i1 – i3 = 7 Solución: i1 = 9 A, i2 = 2.5 A, i3 = 2 A. i2 i1 i1 i3
  • 17.
  • 18. R1 V1 I V2 R2 Vn Rn Divisores de tensión y de corriente Divisor de tensión: Es un conjunto de dos o mas resistencias en serie, de modo que entre los elementos de cada resistencia la ddp existente es una fracción del voltaje aplicado al conjunto. Vo
  • 19. R1 R2 Rn I1 In I2 Divisor de corriente: Es un conjunto de dos o mas resistencias en paralelo de modo que la corriente que circula por cada resistencia es una fracción de la intensidad de corriente total. I Para un divisor de dos resistencias
  • 20.
  • 21.
  • 22. Método de los nodos Pasos que se deben seguir: 1.- Encontrar el número de nodos que posee la red 2.- Seleccionar uno de estos nodos como tierra 3.- Aplicar para cada uno de los nodos restantes el siguiente proceso con el fin de obtener la ecuación correspondiente a cada nodo: a) Elegido un nodo, “pintar” que de él salen todas las intensidades, por cada una de sus ramas. b) Aplicar la RKC c) Obtener la intensidad que circula por cada rama aplicando la siguiente regla: A la tensión de cada generador atravesado se le debe anteponer el signo del polo por donde sale la corriente de él. 4.- De esta forma obtenemos un sistema de n ecuaciones con n incógnitas para una red de n+1 nodos
  • 23. Principio de superposición La respuesta de un circuito lineal que contenga varias fuentes independientes puede hallarse considerando por separado cada generador y sumando luego las respuestas individuales. Debe hacerse notar que para que deje de actuar un generador de tensión debe anularse su tensión (V=0), es decir, se ha de cortocircuitar en serie con su resistencia interna; mientras que para anular un generador de corriente (I=0), se debe sustituir por un circuito abierto en paralelo con su resistencia interna.
  • 24. a a R Red Lineal R VTh b Teorema de Thèvenin Cualquier red lineal puede sustituirse, respecto a un par de terminales, por un generador de tensión VTh (igual a la tensión en circuito abierto) en serie con la resistencia RTh vista desde esos terminales. RTh b Reglas de aplicación: 1.- Para determinar RThdeben cortocircuitarse todas las fuentes de tensión y sustituir por circuitos abiertos las fuentes de corriente. 2.- La tensión VThse determina calculando la ddp entre los terminales a y b cuando se aísla la red lineal del resto del circuito (ddp entre a y b en circuito abierto)
  • 25. Teorema de Norton Cualquier red lineal puede sustituirse, respecto a un par de terminales, por un generador de corriente, IN (igual a la corriente de cortocircuito) en paralelo con la resistencia RN vista desde esos terminales. a a Red Lineal R RN R IN b b Reglas de aplicación: 1.- Para determinar RN se procede exactamente igual que para calcular RTh. De hecho, RTh =RN 2.- Para determinar IN se establece un cortocircuito entre los terminales a y b y se calcula la corriente de cortocircuito Icc resolviendo el sistema correspondiente. Entonces IN =Icc
  • 26. Teorema de máxima transferencia de potencia Una carga resistiva recibe la máxima potencia de un circuito de corriente continua lineal si la carga resistiva es igual a la resistencia de Thevenin de dicho circuito.
  • 27. a a r1 r2 rn rM ..... VM e1 e2 en b b Teorema de Millman Permite reducir una asociación de fuentes de tensión reales en paralelo a una sola fuente, es decir: