SlideShare a Scribd company logo
1 of 98
© 2013 Pearson Education, Inc.
PowerPoint®
Lecture Slides
prepared by
Meg Flemming
Austin Community College
C H A P T E R 10
The Endocrine
System
© 2013 Pearson Education, Inc.
Chapter 10 Learning Outcomes
• 10-1
• Explain the role of intercellular communication in homeostasis, and
describe the complementary roles of the endocrine and nervous
systems.
• 10-2
• Contrast the major structural classes of hormones, and explain the
general mechanisms of hormonal action on target organs.
• 10-3
• Describe the location, hormones, and functions of the pituitary
gland.
• 10-4
• Describe the location, hormones, and functions of the thyroid gland.
• 10-5
• Describe the location, hormones, and functions of the parathyroid
glands.
© 2013 Pearson Education, Inc.
Chapter 10 Learning Outcomes
• 10-6
• Describe the location, hormones, and functions of the adrenal
glands.
• 10-7
• Describe the location of the pineal gland, and discuss the functions
of the hormone it produces.
• 10-8
• Describe the location, hormones, and functions of the pancreas.
• 10-9
• Discuss the functions of the hormones produced by the kidneys,
heart, thymus, testes, ovaries, and adipose tissue.
© 2013 Pearson Education, Inc.
Chapter 10 Learning Outcomes
• 10-10
• Explain how hormones interact to produce coordinated
physiological responses, and describe how the endocrine system
responds to stress and is affected by aging.
• 10-11
• Give examples of interactions between the endocrine system and
other organ systems.
© 2013 Pearson Education, Inc.
Intercellular Communication (10-1)
• Preserves homeostasis
• Mostly done through chemical messages
• Distant communication is coordinated by
endocrine and nervous systems
• Nervous system is fast
• Specific and short duration
• Endocrine system is slower
• Releases hormones into bloodstream that bind to target cells,
longer duration
© 2013 Pearson Education, Inc.
Nervous and Endocrine Systems Comparison
(10-1)
• Both rely on release of chemicals that bind to
specific receptors on target cells
• Both share chemical messengers
• Epinephrine (E) and norepinephrine (NE), hormones
released from adrenal medulla
• NE, a neurotransmitter when released in synapses
© 2013 Pearson Education, Inc.
Nervous and Endocrine Systems Comparison
(10-1)
• Both are regulated by negative feedback
mechanisms
• Both coordinate and regulate activities of other
cells, tissues, organs, and systems to maintain
homeostasis
© 2013 Pearson Education, Inc.
Checkpoint (10-1)
1. List four similarities between the nervous and
endocrine systems.
© 2013 Pearson Education, Inc.
The Endocrine System (10-2)
• Includes all endocrine cells and tissues
• Cells are glandular and secretory
• Secretions enter the ECF
• Cytokines are local chemical messengers
• Hormones are chemical messengers secreted
into the blood and transported to target cells
© 2013 Pearson Education, Inc.
The Structure of Hormones (10-2)
• Amino acid derivatives
• All derived from amino acid tyrosine
• E, NE, thyroid hormones, melatonin
• Peptide hormones
• Largest group
• Includes ADH, oxytocin, hypothalamic, pituitary,
pancreatic hormones
© 2013 Pearson Education, Inc.
The Structure of Hormones (10-2)
• Lipid derivatives
• Most derived from cholesterol
• Steroid hormones released by reproductive organs
and adrenal cortex
• For example, testosterone, estrogen
• Eicosanoids coordinate local cellular functions
• For example, prostaglandins
© 2013 Pearson Education, Inc.
See
Chapter
13
See
Chapter
14
See
Chapter
17
See
Chapters
11 and 18
See
Chapters
19 and 20
Hypothalamus
Production of ADH, oxytocin,
and regulatory hormones
Pituitary Gland
Anterior lobe:
ACTH, TSH, GH, PRL, FSH, LH,
and MSH
Posterior lobe:
Release of ADH and oxytocin
Thyroid Gland
Thyroxine (T4)
Triiodothyronine (T3)
Calcitonin (CT)
Adrenal Glands
Adrenal medulla:
Epinephrine (E)
Norepinephrine (NE)
Adrenal cortex:
Cortisol, corticosterone,
aldosterone, androgens
Pancreas
(Pancreatic Islets)
Insulin
Glucagon
Pineal Gland
Melatonin
Parathyroid Glands
(located on the posterior
surface of the thyroid gland)
Parathyroid hormone (PTH)
Organs with Secondary
Endocrine Functions
Heart: Secretes
• Atrial natriuretic peptide (ANP)
Thymus: (Undergoes atrophy
during adulthood)
Secretes thymosins
Adipose Tissue: Secretes
• Leptin
Digestive Tract: Secretes
numerous hormones involved
in the coordination of system
functions, glucose metabolism,
and appetite
Kidneys: Secrete
• Erythropoietin (EPO)
• Calcitriol
Gonads:
Testes (male):
Androgens (especially testosterone),
inhibin
Ovaries (female):
Estrogens, progestins, inhibin
Ovary
Testis
Figure 10-1 Organs and Tissues of the Endocrine System.
© 2013 Pearson Education, Inc.
Mechanisms of Hormonal Action (10-2)
• Hormones alter operations of target cells
• Change identities, activities, locations, or quantities of
structural proteins and enzymes
• Sensitivity of target cell to hormone depends on specific
receptors
• Receptors are located either on plasma membrane or
inside the cell
© 2013 Pearson Education, Inc.
Endocrine cells
release hormone
Hormone is distributed
throughout the body
Hormone enters
the bloodstream
Receptor
Hormone-receptor
complex
NEURAL TISSUE
No binding, no
hormonal effects
SKELETAL MUSCLE TISSUE
Binding occurs, hormonal
effects appear
Figure 10-2 The Role of Target Cell Receptors in Hormonal Action.
© 2013 Pearson Education, Inc.
Hormonal Action at the Plasma Membrane
(10-2)
• Receptors on plasma membrane
• E, NE, and peptide hormones are not lipid soluble
• Cannot diffuse through the plasma membrane
• Must use a receptor on outside of membrane
• Effect is not direct, they are first messengers that
activate second messengers in the cytoplasm
• Action is linked by G protein, an enzyme complex
© 2013 Pearson Education, Inc.
Cyclic-AMP Second Messenger System (10-2)
• Or cAMP
• First messenger activates a G protein
• Which activates enzyme adenylate cyclase
• Which converts ATP to second messenger, cAMP
• Which activates kinase enzymes inside cell
• Which phosphorylates another molecule
• Produces amplification of signal
© 2013 Pearson Education, Inc.
Intracellular Receptors (10-2)
• Receptors inside cytoplasm or nucleus
• For thyroid and steroid hormones, lipid soluble
• Forms hormone-receptor complex
• Activates or inactivates specific genes
• Alters rate of mRNA transcription
• Changes structure or function of cell
© 2013 Pearson Education, Inc.
Figure 10-3a Mechanisms of Hormone Action.
First messengers
(E, NE, peptide hormones,
and eicosanoids)
Membrane
receptor
Hormone-
receptor
complex
G protein
(inactive) G protein
(activated)
Plasma
membrane
Activates
adenylate
cyclase
Acts as
second
messenger
cAMP
Cytoplasm
Nuclear envelope
Nuclear pore
Activates kinases
Alters enzyme
activity; opens
ion channels
TARGET CELL
RESPONSE
Nucleus
DNA
Nonsteroidal hormones, such as epinephrine (E),
norepinephrine (NE), peptide hormones, and
eicosanoids, bind to membrane receptors and
activate G proteins. They exert their effects on
target cells through a second messenger, such as
cAMP, which alters the activity of enzymes
present in the cell.
© 2013 Pearson Education, Inc.
Figure 10-3b Mechanisms of Hormone Action.
Steroid
hormones
Thyroid
hormones
Cytoplasm
Hormone-
receptor
complex
Mitochondrion
and receptor
Increase in
production
Protein
synthesis Alters structural
proteins or
enzyme activity
TARGET CELL
RESPONSE
Nuclear
receptors
DNA
Change in
gene activity
Steroid hormones enter a target cell by diffusion.
Thyroid hormones are transported across the target
cell’s plasma membrane. Steroid hormones bind to
receptors in the cytoplasm or nucleus. Thyroid
hormones either bind to receptors in the nucleus or to
receptors on mitochondria. In the nucleus, both steroid
and thyroid hormone-receptor complexes directly affect
gene activity and protein synthesis. Thyroid hormones
also increase the rate of ATP production in the cell.
© 2013 Pearson Education, Inc.
Hormone Secretion and Distribution (10-2)
• Rapidly enter blood and distributed throughout
body
• Freely circulating hormones are short-lived and
inactivated when:
1. They diffuse to target cells and bind to receptors
2. They are absorbed and broken down in liver and
kidney
3. They are broken down by enzymes in plasma or
interstitial fluid
© 2013 Pearson Education, Inc.
Hormone Secretion and Distribution (10-2)
• Hormones bound to transport proteins stay in
circulation longer (steroid and thyroid hormones)
• Each hormone has an equilibrium between bound
and free forms
© 2013 Pearson Education, Inc.
Control of Endocrine Activity (10-2)
• Hormonal secretion under negative feedback
control is based on three types of stimuli
1. Humoral stimuli
• Changes in ECF composition
2. Hormonal stimuli
• Changes in circulating hormone levels
3. Neural stimuli
• Neural stimulation of a neuroglandular junction
© 2013 Pearson Education, Inc.
The Hypothalamus and Endocrine Control
(10-2)
• Coordinating centers in hypothalamus regulate
nervous and endocrine systems
• The hypothalamus
1. Acts as an endocrine gland, synthesizing ADH and
oxytocin
2. Secretes releasing and inhibiting regulatory
hormones to control anterior pituitary secretions
3. Contains ANS centers that control adrenal medullae
through sympathetic innervation
© 2013 Pearson Education, Inc.
Checkpoint (10-2)
2. Define hormone.
3. What is the primary factor that determines each cell's
sensitivities to hormones?
4. How would the presence of a molecule that blocks
adenylate cyclase affect the activity of a hormone
that produces cellular effects through cAMP?
5. Why is cAMP described as a second messenger?
6. What are the three types of stimuli that control
hormone secretion?
© 2013 Pearson Education, Inc.
The Pituitary Gland (10-3)
• Also called the hypophysis
• Protected by the sella turcica of the sphenoid bone
• Hangs from hypothalamus by infundibulum
• Anterior and posterior have very different structure
• Secretes nine hormones
• All are unique peptides or small proteins
• All use cAMP second messenger mechanism
© 2013 Pearson Education, Inc.
Figure 10-5 The Location and Anatomy of the Pituitary Gland.
LM x 77
Third
ventricle
HYPOTHALAMUS
Optic chiasm
Infundibulum
Mamillary
body
Anterior lobe
Posterior
lobe
Sphenoid
(sella turcica)
Relationship of the pituitary
gland to the hypothalamus
Tissue organization of the anterior and
posterior lobes of the pituitary gland
Pituitary gland
Secretes other
pituitary hormones
Secretes
MSH
Releases ADH
and oxytocin
Anterior
lobe
Posterior
lobe
© 2013 Pearson Education, Inc.
The Anterior Lobe of the Pituitary Gland (10-3)
• Contains epithelial endocrine cells
• Cells are surrounded by complex capillary bed
• Capillaries are part of hypophyseal portal
system
• A portal system is two capillary beds in series
connected by a communicating blood vessel
© 2013 Pearson Education, Inc.
The Hypophyseal Portal System (10-3)
• Blood arrives through hypophyseal artery
• Branches into hypophyseal (1st) capillary bed
• Regulatory hormones of hypothalamus diffuse into
capillaries and travel through portal veins
• Regulatory hormones diffuse onto target cells in
anterior lobe
• Anterior lobe cells secrete hormones into (2nd)
capillaries
© 2013 Pearson Education, Inc.
Figure 10-6 The Hypophyseal Portal System and the Blood Supply to the Pituitary Gland.
Hypothalamic nuclei
producing ADH
and oxytocin
Hypothalamic neurons
producing regulatory
hormones
HYPOTHALAMUS
Mamillary body
Hypophyseal artery
Infundibulum
Portal veins
Optic
chiasm
Capillary
beds
ANTERIOR LOBE OF
PITUITARY GLAND
Hypophyseal artery
POSTERIOR LOBE OF
PITUITARY GLAND
Endocrine cells
Hypophyseal veins
© 2013 Pearson Education, Inc.
The Seven Anterior Lobe Hormones (10-3)
1. Thyroid-stimulating hormone (TSH)
2. Adrenocorticotropic hormone (ACTH)
3. Follicle-stimulating hormone (FSH)
4. Luteinizing hormone (LH)
5. Prolactin (PRL)
6. Growth hormone (GH)
7. Melanocyte-stimulating hormone (MSH)
© 2013 Pearson Education, Inc.
Thyroid-Stimulating Hormone (10-3)
• Also called thyrotropin
• Released in response to thyrotropin-releasing hormone
(TRH) from hypothalamus
• Triggers release of thyroid hormones from thyroid
glands
• Increases in thyroid hormones cause decrease in TRH
and TSH secretion
© 2013 Pearson Education, Inc.
Adrenocorticotropic Hormone (10-3)
• Also called corticotropin
• Stimulates secretion of steroid hormones, called glucocorticoids,
from adrenal cortex
• Corticotropin-releasing hormone (CRH) from the hypothalamus
triggers release of ACTH
• Increases in glucocorticoids feed back to inhibit ACTH and CRH
secretion
• The gonadotropins, or sex hormones, are triggered by
gonadotropin-releasing hormone (GnRH) from hypothalamus
© 2013 Pearson Education, Inc.
Follicle-Stimulating Hormone and Luteinizing
Hormone (10-3)
• Follicle-stimulating hormone (FSH)
• Promotes follicle (and egg) development in females
• Promotes sperm production in males
• Luteinizing hormone (LH)
• Induces ovulation and secretion of progestins in
females
• Stimulates production of androgens such as
testosterone in males
© 2013 Pearson Education, Inc.
Prolactin (10-3)
• Stimulates mammary gland development
• In pregnancy and nursing, stimulates production of
milk
© 2013 Pearson Education, Inc.
Growth Hormone (10-3)
• Also called human growth hormone (hGH) and
somatotropin
• Stimulates cell growth and replication of all cells, but
especially skeletal muscle and chondrocytes
• Stimulates liver to release somatomedins, which
trigger an increase in amino acid uptake by cells
following a meal
• Has multiple metabolic influences
© 2013 Pearson Education, Inc.
Melanocyte-Stimulating Hormone (10-3)
• Increases activity of melanocytes in skin
• Appears to be nonfunctional in adults
• Is active in:
• Fetal development
• Very young children
• Pregnancy
• Certain diseases
© 2013 Pearson Education, Inc.
Figure 10-7a Negative Feedback Control of Endocrine Secretion.
Hypothalamus Releasing
hormone
(RH)
Hormone 1
(from
pituitary)
Endocrine
target
organ
Hormone 2
(from target
organ)
RH
Pituitary
gland
Anterior
lobe
Hormone 1
Endocrine
organ
Hormone 2
TRH
CRH
GnRH
TSH
ACTH
FSH
LH
Thyroid
gland
Adrenal
cortex
Testes
Ovaries
Thyroid
hormones
Gluco-
corticoids
Inhibin
Inhibin
Estrogens
Androgens
Progestins
Estrogens
Negative feedback KEY
Stimulation
Inhibition
Target cells
A typical pattern of regulation when multiple endocrine organs are
involved. The hypothalamus produces a releasing hormone (RH) to
stimulate hormone production by other glands; control occurs by
negative feedback.
Testes
Ovaries
© 2013 Pearson Education, Inc.
Figure 10-7b Negative Feedback Control of Endocrine Secretion.
Stimulation
PIH Stimulation
PRF
Inhibition
Inhibition
GH–IH
GH–RH
Anterior
lobe
Anterior
lobe
PRL GH
Liver
Epithelia,
adipose
tissue,
liverStimulates
mammary
glands Somatomedins
Stimulates growth of skeletal muscle,
cartilage, and many other tissues
Variations on the theme outlined in part (a). Left: The regulation of prolactin
(PRL) production by the anterior lobe. In this case, the hypothalamus produces
both a releasing factor (PRF) and an inhibiting hormone (PIH); when one is
stimulated, the other is inhibited. Right: the regulation of growth hormone (GH)
production by the anterior lobe; when GH–RH release is inhibited, GH–IH
release is stimulated.
© 2013 Pearson Education, Inc.
The Two Posterior Lobe Hormones (10-3)
• Hormones diffuse down axons of hypothalamic
neurons that extend into posterior lobe, then into
capillaries
1. Antidiuretic hormone (ADH)
2. Oxytocin (OXT)
© 2013 Pearson Education, Inc.
Antidiuretic Hormone (10-3)
• Also called vasopressin
• Stimulated by increase in ECF osmolarity or decrease in
blood volume and pressure
• Primary target is kidney to decrease water loss
• Triggers vasoconstriction to increase blood pressure
© 2013 Pearson Education, Inc.
Oxytocin (10-3)
• In women stimulates contraction of uterine
muscles during labor and delivery
• Also stimulates contraction of cells surrounding
milk secretory cells in mammary glands
• Appears to play unclear role in sexual arousal
© 2013 Pearson Education, Inc.
Figure 10-8 Pituitary Hormones and Their Targets.
Direct Control
by Nervous
System
Hypothalamus
Indirect Control through
Release of Regulatory
Hormones
Regulatory hormones are released
into the hypophyseal portal
system for delivery to the anterior
lobe of the pituitary gland
Direct Release
of Hormones
Sensory
stimulation
Osmoreceptor
stimulation
KEY TO PITUITARY HORMONES:
ACTH
TSH
GH
PRL
FSH
LH
MSH
ADH
OXT
Adrenocorticotropic hormone
Thyroid-stimulating hormone
Growth hormone
Prolactin
Follicle-stimulating hormone
Luteinizing hormone
Melanocyte-stimulating hormone
Antidiuretic hormone
Oxytocin
Anterior lobe of
pituitary glandAdrenal
medulla
Adrenal
gland
Adrenal
cortex
Epinephrine and
norepinephrine
Thyroid
gland
ACTH
TSH GH
Liver
Somatomedins
Glucocorticoids
(cortisol,
corticosterone)
Thyroid
hormones (T3, T4)
Bone, muscle,
other tissues Mammary
glands
Testes
of male
Inhibin Testosterone Estrogen Progesterone Inhibin
Ovaries
of female
Melanocytes (uncertain
significance in healthy
adults)
Females: Uterine
smooth muscle and
mammary glands
Males: Smooth
muscle in ductus
deferens and
prostate gland
Kidneys
Posterior lobe
of pituitary gland
PRL FSH LH
MSH
OXT
ADH
© 2013 Pearson Education, Inc.
Table 10-1 The Pituitary Hormones
© 2013 Pearson Education, Inc.
Checkpoint (10-3)
7. If a person were dehydrated, how would the amount of
ADH released by the posterior lobe of the pituitary gland
change?
8. A blood sample contains elevated levels of
somatomedins. Which pituitary hormone would you also
expect to be elevated?
9. What effect would elevated circulating levels of cortisol, a
hormone from the adrenal cortex, have on the pituitary
secretion of ACTH?
© 2013 Pearson Education, Inc.
The Thyroid Gland (10-4)
• Found anterior to trachea and inferior to thyroid
cartilage
• Has two lobes connected by narrow isthmus
• Contains many spherical thyroid follicles
• Defined by simple cuboidal epithelium
• Filled with viscous colloid with many proteins and
thyroid hormone molecules
© 2013 Pearson Education, Inc.
The Thyroid Follicles (10-4)
• Follicular cells make thyroid hormones that are
then stored in colloid
• TSH causes release of thyroid hormones
• Majority are transported by plasma proteins
• Derived from amino acid tyrosine, and iodine
• Thyroxine (T4) tetraiodothyronine has four atoms of
iodine
• Triiodothyronine (T3) has three iodine and is more
potent
© 2013 Pearson Education, Inc.
The Effects of Thyroid Hormones (10-4)
• Activate nearly every cell in body
• Increase rate of ATP production in mitochondria
• Activate genes coding for enzyme synthesis
• Enzymes increase rate of metabolism
• Calorigenic effect is when cell uses more energy,
measured in calories, and heat is produced
© 2013 Pearson Education, Inc.
The C Cells of the Thyroid Gland (10-4)
• Also called parafollicular cells, are found between
follicles
• Produce calcitonin (CT)
• Stimulated by increases in plasma Ca2+
• Inhibits osteoclasts in bone
• Stimulates calcium excretion by kidneys
• Essential for normal bone growth in children and last
trimester of pregnancy
© 2013 Pearson Education, Inc.
Figure 10-9 The Thyroid Gland.
Outline of
sternumLM x 260
Hyoid bone
Thyroid artery
Internal
jugular vein
Thyroid cartilage
Thyroid vein
Right lobe of
thyroid gland
Left lobe of
thyroid gland
Isthmus of
thyroid gland
Common
carotid artery
Thyroid veins
Trachea
Location and anatomy of the thyroid gland
Thyroid hormones
stored in colloid
of follicle
C cell
Cuboidal
epithelium
of follicle
Thyroid
follicles
Follicles of the thyroid gland
Histological details of the thyroid gland
© 2013 Pearson Education, Inc.
Calcium Imbalances (10-4)
• Hypercalcemia causes:
• Decreased sodium permeability of excitable membranes
• Results in less responsive muscles and nerves
• Hypocalcemia causes:
• Increased sodium permeability
• Highly excitable, spasmodic muscles and nerves
• Parathyroid glands prevent hypocalcemia
© 2013 Pearson Education, Inc.
Checkpoint (10-4)
10. Identify the hormones of the thyroid gland.
11. What signs and symptoms would you expect to
see in an individual whose diet lacks iodine?
12. When a person's thyroid gland is removed,
signs of decreased thyroid hormone
concentration do not appear until about one
week later. Why?
© 2013 Pearson Education, Inc.
The Parathyroid Glands (10-5)
• Paired, small glands embedded in posterior
surface of thyroid
• Chief cells produce parathyroid hormone (PTH)
• Stimulated by decrease in plasma Ca2+
• Activates osteoclasts in bone
• Reduces calcium excretion by kidney
• Stimulates kidney to secrete calcitriol, which increases
Ca2+
absorption in digestive tract
© 2013 Pearson Education, Inc.
Figure 10-10 The Homeostatic Regulation of Calcium Ion Concentrations.
Increased
excretion
of calcium
by kidneys
Calcium
deposition
in bone
Thyroid gland
produces
calcitonin
HOMEOSTASIS
DISTURBED
Rising calcium
levels in blood
HOMEOSTASIS
HOMEOSTASIS
RESTORED
Blood calcium
levels decline
HOMEOSTASIS
DISTURBED
Falling calcium
levels in blood
HOMEOSTASIS
RESTORED
Blood calcium
levels increase
Increased
reabsorption of
calcium by
kidneys
Calcium release
from bone
Parathyroid
glands secrete
parathyroid
hormone (PTH)
FallinglevelsofbloodcalciumRisinglevelsofbloodcalcium
Normal blood
calcium levels
(8.5–11 mg/dL)
Increased
calcitriol
product`ion by
kidneys causes
Ca2+
absorption
by digestive
system
© 2013 Pearson Education, Inc.
Left lobe of
thyroid gland
Parathyroid
glands
Figure 10-11 The Parathyroid Glands.
© 2013 Pearson Education, Inc.
Table 10-2 Hormones of the Thyroid Gland and Parathyroid Glands
© 2013 Pearson Education, Inc.
Checkpoint (10-5)
13. Identify the hormone secreted by the parathyroid
glands.
14. Removal of the parathyroid glands would result
in decreased blood concentration of what
important mineral?
© 2013 Pearson Education, Inc.
The Adrenal Gland (10-6)
• Also called the suprarenal gland
• Yellow, pyramid-shaped
• Sits on superior border of each kidney
• Two portions
1. Adrenal cortex
• Outer part
2. Adrenal medulla
• Inner part
© 2013 Pearson Education, Inc.
The Adrenal Cortex (10-6)
• Contains high levels of cholesterol and fatty acids
• Produces more than 24 steroid hormones called
corticosteroids
• Are essential for metabolic functions
• Transported in plasma bound to proteins
• Three zones of cortex produce three types
1. Mineralocorticoids
2. Glucocorticoids
3. Androgens
© 2013 Pearson Education, Inc.
LM x 140
Cortex
Medulla
An adrenal gland
in section
Left adrenal
gland
Arteries
Left renal
artery
Adrenal
cortex
Left renal
vein
Abdominal
aorta
Inferior
vena cava
A superficial view of the
left kidney and adrenal
gland
Adrenal
medulla
Zona
reticularis
Zona
fasciculata
Zona
glomer-
ulosa
Capsule
Adrenal gland
The major regions of
an adrenal gland
Figure 10-12 The Adrenal Gland.
© 2013 Pearson Education, Inc.
Mineralocorticoids (10-6)
• Also called MCs
• Produced by outer zone
• Affect electrolyte balance in body fluids
• Aldosterone – major MC
• Secreted in response to low plasma Na+
, low BP, high plasma
K+
, or presence of angiotensin II
• Triggers reabsorption of sodium ions in kidney, sweat glands,
salivary glands, and pancreas
• Secondarily triggers water reabsorption through osmosis
© 2013 Pearson Education, Inc.
Glucocorticoids (10-6)
• Also called GCs
• Produced mostly by middle zone
• Affect glucose metabolism
• Most important are cortisol, corticosterone, and
cortisone
• Secreted in response to ACTH
• Increase rates of glycolysis and glycogenesis, resulting
in increase in blood glucose levels
• Also act as anti-inflammatory
© 2013 Pearson Education, Inc.
The Androgens (10-6)
• Produced by inner zone in both males and
females
• Some converted to estrogens in plasma
• In normal amounts do not affect sexual
characteristics
• Function remains unclear
© 2013 Pearson Education, Inc.
The Adrenal Medulla (10-6)
• Highly vascular, containing cells similar to sympathetic
ganglia
• Innervated by preganglionic sympathetic fibers
• Epinephrine (E, or adrenaline) is 80 percent
• Norepinephrine (NE, or noradrenaline) is 20 percent
• Triggers metabolic changes to increase availability of energy
molecules
• Supports and prolongs overall sympathetic response
© 2013 Pearson Education, Inc.
Table 10-3 The Adrenal Hormones
© 2013 Pearson Education, Inc.
Checkpoint (10-6)
15. Identify the two regions of the adrenal gland,
and list the hormones secreted by each.
16. What effect would elevated cortisol levels have
on blood glucose levels?
© 2013 Pearson Education, Inc.
The Pineal Gland (10-7)
• Located on posterior portion of roof of third
ventricle
• Contains neurons, glial cells, and secretory cells
that produce melatonin
• Rate of secretion affected by light and day–night cycles
• May influence timing of sexual maturation
• May protect CNS with antioxidant activity
• Plays role in maintaining circadian rhythms (day–night
cycles)
© 2013 Pearson Education, Inc.
Checkpoint (10-7)
17. Increased amounts of light would inhibit the
production of which hormone by which
structure?
18. List three possible functions of melatonin.
© 2013 Pearson Education, Inc.
The Endocrine Pancreas (10-8)
• Pancreas lies between stomach and proximal
small intestine
• Contains both exocrine and endocrine cells
• Endocrine cells located in pancreatic islets
• Also called islets of Langerhans, contain:
• Alpha cells that secrete hormone glucagon
• Beta cells that secrete hormone insulin
© 2013 Pearson Education, Inc.
Figure 10-13 The Endocrine Pancreas.
Common
bile duct
Pancreatic
duct
Body of
pancreas
Lobule Tail
Pancreatic acini
(clusters of
exocrine cells)
Pancreatic islet
(islet of
Langerhans)
Capillary Pancreatic islet LM x 400
A pancreatic islet surroun-
ded by exocrine cells
Head of pancreas
Small intestine
(duodenum)
Location and gross anatomy of the
pancreas
© 2013 Pearson Education, Inc.
Pancreatic Regulation of Blood Glucose (10-8)
• Increases in blood glucose levels (BGL) activate
beta cells to release more insulin
• Stimulates glucose uptake by cells that have insulin
receptors, all cells EXCEPT:
• Neurons and red blood cells, epithelial cells of kidney tubules,
epithelial cells of intestinal lining
• Increases rates of protein synthesis and fat storage
• Result is lower BGL
© 2013 Pearson Education, Inc.
Pancreatic Regulation of Blood Glucose (10-8)
• Decreases in blood glucose levels activate alpha
cells to release more glucagon
• Mobilizes energy reserves
• Glycogen in liver and muscles broken down to glucose
• Adipose tissue releases fatty acids
• Proteins broken down to convert to glucose in the liver
• Result is higher BGL
© 2013 Pearson Education, Inc.
Pancreatic Regulation of Blood Glucose (10-8)
• Secretion of hormones is independent of direct
neural stimulus
• Indirectly affected by ANS activity and any
hormone that also influences BGL
• For example, cortisol and thyroid hormones
© 2013 Pearson Education, Inc.
Diabetes Mellitus (10-8)
• Either hyposecretion of insulin or decreased
sensitivity of insulin receptors
• Symptoms
• Hyperglycemia
• Glycosuria
• Polyuria
© 2013 Pearson Education, Inc.
Increased rate of
glucose transport
into target cells
Increased rate of
glucose utilization
and ATP generation
Increased conversion
of glucose to glycogen
(in liver, skeletal
muscle)
Increased amino
acid absorption and
protein synthesis
Increased triglyceride
synthesis in
adipose tissue
Beta cells
secrete
insulin
HOMEOSTASIS
DISTURBED
Rising blood
glucose levels
HOMEOSTASIS
RESTORED
Blood glucose
levels decrease
HOMEOSTASIS
HOMEOSTASIS
DISTURBED
Falling blood
glucose levels
HOMEOSTASIS
RESTORED
Blood glucose
levels increase
Alpha cells
secrete
glucagon Increased breakdown
of glycogen to glucose
(in liver, skeletal
muscle)
Increased breakdown
of fat to fatty acids (in
adipose tissue)
Increased synthesis
and release of
glucose (by the liver)
FallingbloodglucoselevelsRisingbloodglucoselevels
Normal blood
glucose levels
(70–110 mg/dL)
Figure 10-14 The Regulation of Blood Glucose Concentrations.
© 2013 Pearson Education, Inc.
Checkpoint (10-8)
19. Identify two important types of cells in the
pancreatic islets and the hormones produced by
each.
20. Which pancreatic hormone causes skeletal
muscle and liver cells to convert glucose to
glycogen?
21. What effect would increased levels of glucagon
have on the amount of glycogen stored in the
liver?
© 2013 Pearson Education, Inc.
The Intestines (10-9)
• Secrete local hormones that coordinate digestive
activities
• Major control over rate of digestive processes
• Can be influenced by ANS
© 2013 Pearson Education, Inc.
The Kidneys (10-9)
• Calcitriol
• Stimulated by PTH, derived from vitamin D3, increases
absorption of calcium and phosphate ions from gut
• Erythropoietin
• Stimulated by kidney hypoxia, causes RBC production
• Renin
• An enzyme that triggers hormonal chain reaction to
increase BP, blood volume
© 2013 Pearson Education, Inc.
The Heart (10-9)
• Endocrine cells in right atrium of heart
• Respond to increased blood volume entering
chamber
• Excessive stretch causes them to release atrial
natriuretic peptide (ANP)
• Promotes loss of sodium, and therefore water
• Inhibits renin release
• Results in decrease in BP and blood volume
© 2013 Pearson Education, Inc.
The Thymus (10-9)
• Located deep to sternum in mediastinum
• Very active in early childhood, atrophies in adults
• Secretes thymosins
• Aid in development and maintenance of immune
defenses
© 2013 Pearson Education, Inc.
The Gonads: The Testes (10-9)
• In males, interstitial cells produce androgens
• Most important is testosterone
• Promotes sperm production
• Maintains secretory glands of reproductive tract
• Determines secondary sex characteristics
• Stimulates protein synthesis
• Sperm production effect balanced by inhibin
© 2013 Pearson Education, Inc.
The Gonads: The Ovaries (10-9)
• In females, the ova are surrounded by follicles
• FSH triggers follicular cells to produce:
• Estrogens
• Support maturation of ova and growth of uterine lining
• Inhibin
• Provides negative feedback to FSH
© 2013 Pearson Education, Inc.
The Gonads: The Ovaries (10-9)
• Once follicle releases ovum (ovulation) the corpus
luteum is formed from follicular cells
• Releases progesterone
• Accelerates fertilized egg movement through uterine
tube
• Prepares uterus for arrival of developing embryo
• All gonadal hormones regulated by hormones of
the anterior pituitary
© 2013 Pearson Education, Inc.
Table 10-4 Hormones of the Reproductive System
© 2013 Pearson Education, Inc.
Adipose Tissue (10-9)
• Produces leptin
• Provides negative feedback control of appetite
• Binds to neurons in hypothalamus to trigger satiation
(fullness) and suppression of appetite
• Must be present for normal GnRH and gonadotropin
synthesis
• Low body fat can result in late puberty and cessation of
menstrual cycles
• Increase in body fat can increase fertility
© 2013 Pearson Education, Inc.
Checkpoint (10-9)
22. Identify the two hormones secreted by the
kidneys, and describe their functions.
23. Describe the action of renin.
24. Identify a hormone released by adipose tissue.
© 2013 Pearson Education, Inc.
Hormonal Interactions (10-10)
• ECF contains hormones that may have the same target,
resulting in four possibilities
1. Antagonistic effects
• Opposing responses
2. Synergistic effects
• Net result of two is greater that the sum of their individual effects
3. Permissive effects
• Need for one hormone to be present for another to work
4. Integrative effects
• Coordinate diverse activities
© 2013 Pearson Education, Inc.
Hormones and Growth (10-10)
• Six key hormones required for normal growth
1. GH
• Undersecretion causes dwarfism
• Oversecretion causes gigantism
2. Thyroid hormones
• Required for normal nervous system development
3. Insulin
• Required for energy supply to growing cells
© 2013 Pearson Education, Inc.
Hormones and Growth (10-10)
4. PTH
• Promotes calcium availability for normal bone growth
5. Calcitriol, same as PTH
• Lack of PTH and calcitriol can result in rickets
6. Reproductive hormones
• Can affect activity of osteoblasts and influence secondary
sex characteristic development
© 2013 Pearson Education, Inc.
Hormones and Stress (10-10)
• Stress is triggered by:
• Physical injury or disease
• Emotional responses: anxiety or depression
• Environmental conditions: extreme cold or heat
• Metabolic conditions: acute starvation
• Stress triggers:
• The general adaptation syndrome (GAS)
• Also called the stress response
© 2013 Pearson Education, Inc.
Figure 10-15 The General Adaptation Syndrome. (1 of 3)
Alarm Phase (”Fight or Flight”) ALARM
Immediate Short-Term Responses
to Crises
• Increases mental alertness
• Increases energy use by all cells
• Mobilizes glycogen and lipid reserves
• Changes circulation
• Reduces digestive activity and urine
production
• Increases sweat gland secretion
• Increases heart rate and respiratory
rate
General sympathetic
activation
Adrenal medulla
Sympathetic
stimulation
Brain
Epinephrine,
norepinephrine
The alarm phase is an immediate response to
stress, or crisis. The dominant hormone is
epinephrine, and its secretion is part of a
generalized
sympathetic
activation.
© 2013 Pearson Education, Inc.
Figure 10-15 The General Adaptation Syndrome. (2 of 3)
RESISTANCEResistance Phase
Long-Term Metabolic
Adjustments
• Mobilizes remaining energy
reserves: Lipids are
released by adipose tissue;
amino acids are released by
skeletal muscle
• Conserves glucose:
Peripheral tissues (except
neural) break down lipids to
obtain energy
• Elevates blood glucose
concentrations: Liver
synthesizes glucose from
other carbohydrates, amino
acids, and lipids
• Maintains blood volume:
Conservation of salts and
water, loss of K+
and H+
Growth Hormone
Glucocorticoids
Pancreas Glucagon
Brain
Sympathetic
stimulation
ACTH
Adrenal
cortex
Renin-angiotensin
system
Kidney
Mineralocorticoids
(with ADH)
The resistance phase begins if a stress lasts longer than
a few hours. Glucocorticoids (GCs) are the dominant
hormones of the resistance phase. GCs and other hormones
act to shift tissue metabolism away from glucose, thus
increasing its
availability
to neural
tissue.
© 2013 Pearson Education, Inc.
Figure 10-15 The General Adaptation Syndrome. (3 of 3)
EXHAUSTIONExhaustion Phase
Collapse of Vital Systems
• Exhaustion of lipid reserves
• Cumulative structural or
functional damage to vital
organs
• Inability to produce
glucocorticoids
• Failure of electrolyte
balance
The body’s lipid reserves are
sufficient to maintain the resistance
phase for weeks or even months. But
when the resistance phase ends,
homeostatic regulation breaks down
and the exhaustion phase begins.
Without immediate corrective actions,
the ensuing failure of one or more
organ systems will prove fatal.
© 2013 Pearson Education, Inc.
Hormones and Behavior (10-10)
• Hypothalamus is key hormone regulator and
monitor
• Behavior is also affected by hormonal
abnormalities
• Precocious puberty can occur when sex hormones are
released at an earlier than normal age
• CNS intellectual functions like learning, memory, and
emotions can be altered in the adult due to hormone
imbalances
© 2013 Pearson Education, Inc.
Hormones and Aging (10-10)
• Usually most hormones remain the same
throughout adulthood
• Exceptions are the reproductive hormones
• Changes to target organ receptors more likely to
occur through reduced sensitivity
© 2013 Pearson Education, Inc.
Checkpoint (10-10)
25. What type of hormonal interaction occurs when insulin
lowers blood glucose levels while glucagon elevates
blood glucose levels?
26. The lack of which hormones would inhibit skeletal
formation and development?
27. What are the dominant hormones of the resistance
phase of the general adaptation syndrome, and in what
ways do they act?
© 2013 Pearson Education, Inc.
Endocrine System Interaction with Other
Systems (10-11)
• Endocrine system provides homeostatic regulation
• Adjusts metabolic rate of most tissue
• Regulates growth and development
© 2013 Pearson Education, Inc.
Figure 10-16
Body System Endocrine System Endocrine System Body System
SYSTEM INTEGRATOR
Protects superficial endocrine organs;
epidermis synthesizes vitamin D3
Protects endocrine organs,
especially in brain, chest, and pelvic
cavity
Skeletal muscles provide
protection for some endocrine
organs
Hypothalamic hormones directly
control pituitary secretions and
indirectly control secretions of other
endocrine organs; controls adrenal
medullae; secretes ADH and oxytocin
Sex hormones stimulate sebaceous gland
activity, influence hair growth, fat distribution,
and apocrine sweat gland activity; PRL
stimulates development of mammary glands;
adrenal hormones alter dermal blood flow;
MSH stimulates melanocyte activity
Skeletal growth regulated by several
hormones; calcium mobilization regulated by
parathyroid hormone and calcitonin; sex
hormones speed growth and closure of
epiphyseal cartilages at puberty and help
maintain bone mass in adults
Hormones adjust muscle metabolism,
energy production, and growth;
regulate calcium and phosphate levels
in body fluids; speed skeletal muscle
growth
Several hormones affect neural
metabolism and brain development;
hormones help regulate fluid and
electrolyte balance; reproductive
hormones influence CNS development
and behaviors
Gonads—ovaries in females and
testes in males—are organs that
produce gametes (sex cells). LH
and FSH, hormones secreted by
the anterior lobe of the pituitary
gland, affect these organs. (The
ovaries and testes are discussed
further in Chapter 19.)
The endocrine system
provides long-term
regulation and
adjustments of
homeostatic
mechanisms that
affect many body
functions. For
example, the
endocrine system
regulates fluid and
electrolyte balance, cell and
tissue metabolism, growth and
development, and reproductive
functions. It also works with the
nervous system in responding to
stressful stimuli through the
general adaptation syndrome.
The ENDOCRINE System
Integumentary
(Page138)
Skeletal
(Page188)
Muscular
(Page241)
Nervous
(Page302)
IntegumentarySkeletalMuscularNervous
Cardiovascular
(Page467)
Lymphatic
(Page500)
Respiratory
(Page532)
Digestive
(Page572)
Urinary
(Page637)
Reproductive
(Page671)
© 2013 Pearson Education, Inc.
Checkpoint (10-11)
28. Discuss the general role of the endocrine
system in the functioning of other body systems.
29. Discuss the functional relationship between the
endocrine system and the muscular system.

More Related Content

What's hot

163 ch 16_lecture_presentation
163 ch 16_lecture_presentation163 ch 16_lecture_presentation
163 ch 16_lecture_presentationgwrandall
 
169 Ch 28_lecture_presentation
 169 Ch 28_lecture_presentation 169 Ch 28_lecture_presentation
169 Ch 28_lecture_presentationgwrandall
 
Ch 13_lecture_presentation
 Ch 13_lecture_presentation Ch 13_lecture_presentation
Ch 13_lecture_presentationTheSlaps
 
169 Ch 26_lecture_presentation
 169 Ch 26_lecture_presentation 169 Ch 26_lecture_presentation
169 Ch 26_lecture_presentationgwrandall
 
163 ch 04_lecture_presentation
163 ch 04_lecture_presentation163 ch 04_lecture_presentation
163 ch 04_lecture_presentationgwrandall
 
163 ch 07_lecture_presentation
163 ch 07_lecture_presentation163 ch 07_lecture_presentation
163 ch 07_lecture_presentationgwrandall
 
Ch 16_lecture_presentation
 Ch 16_lecture_presentation Ch 16_lecture_presentation
Ch 16_lecture_presentationTheSlaps
 
163 ch 18_lecture_presentation
163 ch 18_lecture_presentation163 ch 18_lecture_presentation
163 ch 18_lecture_presentationgwrandall
 
Physiology of Endocrine System
Physiology of Endocrine System Physiology of Endocrine System
Physiology of Endocrine System PRANJAL SHARMA
 
Dr. B Ch 19_lecture_presentation
Dr. B Ch 19_lecture_presentationDr. B Ch 19_lecture_presentation
Dr. B Ch 19_lecture_presentationTheSlaps
 
169 Ch 18_lecture_presentation
 169 Ch 18_lecture_presentation 169 Ch 18_lecture_presentation
169 Ch 18_lecture_presentationgwrandall
 
163 ch 02_lecture_presentation
163 ch 02_lecture_presentation163 ch 02_lecture_presentation
163 ch 02_lecture_presentationgwrandall
 
Ch 22_lecture_presentation
 Ch 22_lecture_presentation Ch 22_lecture_presentation
Ch 22_lecture_presentationTheSlaps
 
169 Ch 24_lecture_presentation
 169 Ch 24_lecture_presentation 169 Ch 24_lecture_presentation
169 Ch 24_lecture_presentationgwrandall
 
163 ch 08_lecture_presentation
163 ch 08_lecture_presentation163 ch 08_lecture_presentation
163 ch 08_lecture_presentationgwrandall
 
Biology in Focus - Chapter 12
Biology in Focus - Chapter 12Biology in Focus - Chapter 12
Biology in Focus - Chapter 12mpattani
 
Physiology of Blood
Physiology of BloodPhysiology of Blood
Physiology of BloodEneutron
 
163 ch 20_lecture_presentation
163 ch 20_lecture_presentation163 ch 20_lecture_presentation
163 ch 20_lecture_presentationgwrandall
 

What's hot (20)

163 ch 16_lecture_presentation
163 ch 16_lecture_presentation163 ch 16_lecture_presentation
163 ch 16_lecture_presentation
 
169 Ch 28_lecture_presentation
 169 Ch 28_lecture_presentation 169 Ch 28_lecture_presentation
169 Ch 28_lecture_presentation
 
Ch 13_lecture_presentation
 Ch 13_lecture_presentation Ch 13_lecture_presentation
Ch 13_lecture_presentation
 
169 Ch 26_lecture_presentation
 169 Ch 26_lecture_presentation 169 Ch 26_lecture_presentation
169 Ch 26_lecture_presentation
 
163 ch 04_lecture_presentation
163 ch 04_lecture_presentation163 ch 04_lecture_presentation
163 ch 04_lecture_presentation
 
163 ch 07_lecture_presentation
163 ch 07_lecture_presentation163 ch 07_lecture_presentation
163 ch 07_lecture_presentation
 
Ch 16_lecture_presentation
 Ch 16_lecture_presentation Ch 16_lecture_presentation
Ch 16_lecture_presentation
 
163 ch 18_lecture_presentation
163 ch 18_lecture_presentation163 ch 18_lecture_presentation
163 ch 18_lecture_presentation
 
Physiology of Endocrine System
Physiology of Endocrine System Physiology of Endocrine System
Physiology of Endocrine System
 
Dr. B Ch 19_lecture_presentation
Dr. B Ch 19_lecture_presentationDr. B Ch 19_lecture_presentation
Dr. B Ch 19_lecture_presentation
 
169 Ch 18_lecture_presentation
 169 Ch 18_lecture_presentation 169 Ch 18_lecture_presentation
169 Ch 18_lecture_presentation
 
163 ch 02_lecture_presentation
163 ch 02_lecture_presentation163 ch 02_lecture_presentation
163 ch 02_lecture_presentation
 
Ch 22_lecture_presentation
 Ch 22_lecture_presentation Ch 22_lecture_presentation
Ch 22_lecture_presentation
 
Reproductive system
Reproductive systemReproductive system
Reproductive system
 
169 Ch 24_lecture_presentation
 169 Ch 24_lecture_presentation 169 Ch 24_lecture_presentation
169 Ch 24_lecture_presentation
 
163 ch 08_lecture_presentation
163 ch 08_lecture_presentation163 ch 08_lecture_presentation
163 ch 08_lecture_presentation
 
Biology in Focus - Chapter 12
Biology in Focus - Chapter 12Biology in Focus - Chapter 12
Biology in Focus - Chapter 12
 
Physiology of Blood
Physiology of BloodPhysiology of Blood
Physiology of Blood
 
163 ch 20_lecture_presentation
163 ch 20_lecture_presentation163 ch 20_lecture_presentation
163 ch 20_lecture_presentation
 
Blood physiology
Blood physiology Blood physiology
Blood physiology
 

Viewers also liked

163 ch 15_lecture_presentation
163 ch 15_lecture_presentation163 ch 15_lecture_presentation
163 ch 15_lecture_presentationgwrandall
 
169 Ch 29_lecture_presentation
 169 Ch 29_lecture_presentation 169 Ch 29_lecture_presentation
169 Ch 29_lecture_presentationgwrandall
 
163 ch 03_lecture_presentation
163 ch 03_lecture_presentation163 ch 03_lecture_presentation
163 ch 03_lecture_presentationgwrandall
 
163 ch 06_lecture_presentation
163 ch 06_lecture_presentation163 ch 06_lecture_presentation
163 ch 06_lecture_presentationgwrandall
 
163 ch 17_lecture_presentation
163 ch 17_lecture_presentation163 ch 17_lecture_presentation
163 ch 17_lecture_presentationgwrandall
 
163 ch 01_lecture_presentation
163 ch 01_lecture_presentation163 ch 01_lecture_presentation
163 ch 01_lecture_presentationgwrandall
 
169 Ch 20_lecture_presentation
 169 Ch 20_lecture_presentation 169 Ch 20_lecture_presentation
169 Ch 20_lecture_presentationgwrandall
 
Hema practical 05 hema staining
Hema practical 05 hema stainingHema practical 05 hema staining
Hema practical 05 hema stainingMBBS IMS MSU
 
121 Week 10 Musculoskeletal
121 Week 10 Musculoskeletal121 Week 10 Musculoskeletal
121 Week 10 MusculoskeletalSandy Thunell
 
PEShare.co.uk Shared Resource
PEShare.co.uk Shared ResourcePEShare.co.uk Shared Resource
PEShare.co.uk Shared Resourcepeshare.co.uk
 
PEShare.co.uk Shared Resource
PEShare.co.uk Shared ResourcePEShare.co.uk Shared Resource
PEShare.co.uk Shared Resourcepeshare.co.uk
 
Miniatlas of Human Cross-Sectional Anatomy
Miniatlas of Human Cross-Sectional AnatomyMiniatlas of Human Cross-Sectional Anatomy
Miniatlas of Human Cross-Sectional AnatomyPhilip Tate
 

Viewers also liked (13)

163 ch 15_lecture_presentation
163 ch 15_lecture_presentation163 ch 15_lecture_presentation
163 ch 15_lecture_presentation
 
169 Ch 29_lecture_presentation
 169 Ch 29_lecture_presentation 169 Ch 29_lecture_presentation
169 Ch 29_lecture_presentation
 
163 ch 03_lecture_presentation
163 ch 03_lecture_presentation163 ch 03_lecture_presentation
163 ch 03_lecture_presentation
 
163 ch 06_lecture_presentation
163 ch 06_lecture_presentation163 ch 06_lecture_presentation
163 ch 06_lecture_presentation
 
163 ch 17_lecture_presentation
163 ch 17_lecture_presentation163 ch 17_lecture_presentation
163 ch 17_lecture_presentation
 
163 ch 01_lecture_presentation
163 ch 01_lecture_presentation163 ch 01_lecture_presentation
163 ch 01_lecture_presentation
 
169 Ch 20_lecture_presentation
 169 Ch 20_lecture_presentation 169 Ch 20_lecture_presentation
169 Ch 20_lecture_presentation
 
Female rprdctive
Female rprdctiveFemale rprdctive
Female rprdctive
 
Hema practical 05 hema staining
Hema practical 05 hema stainingHema practical 05 hema staining
Hema practical 05 hema staining
 
121 Week 10 Musculoskeletal
121 Week 10 Musculoskeletal121 Week 10 Musculoskeletal
121 Week 10 Musculoskeletal
 
PEShare.co.uk Shared Resource
PEShare.co.uk Shared ResourcePEShare.co.uk Shared Resource
PEShare.co.uk Shared Resource
 
PEShare.co.uk Shared Resource
PEShare.co.uk Shared ResourcePEShare.co.uk Shared Resource
PEShare.co.uk Shared Resource
 
Miniatlas of Human Cross-Sectional Anatomy
Miniatlas of Human Cross-Sectional AnatomyMiniatlas of Human Cross-Sectional Anatomy
Miniatlas of Human Cross-Sectional Anatomy
 

Similar to 163 ch 10_lecture_presentation

Endocrine online
Endocrine onlineEndocrine online
Endocrine onlinekmilaniBCC
 
Introduction to endocrine physiology ( mbbs + bds 2nd yr)
Introduction to endocrine physiology ( mbbs + bds 2nd yr)Introduction to endocrine physiology ( mbbs + bds 2nd yr)
Introduction to endocrine physiology ( mbbs + bds 2nd yr)Prakash Yadav
 
HUMAN ANATOMY AND PHYSIOLOGY: THE ENDOCRINE SYSTEM
HUMAN ANATOMY AND PHYSIOLOGY: THE ENDOCRINE SYSTEMHUMAN ANATOMY AND PHYSIOLOGY: THE ENDOCRINE SYSTEM
HUMAN ANATOMY AND PHYSIOLOGY: THE ENDOCRINE SYSTEMMeegsEstabillo2
 
Diseases of pituitary gland
Diseases of pituitary glandDiseases of pituitary gland
Diseases of pituitary glandLama K Banna
 
Endocrine system
Endocrine systemEndocrine system
Endocrine systemsom allul
 
Endocrine System
Endocrine SystemEndocrine System
Endocrine Systemthana123
 
MCB Hormone Receptor Interaction 2015.ppt
MCB Hormone Receptor Interaction 2015.pptMCB Hormone Receptor Interaction 2015.ppt
MCB Hormone Receptor Interaction 2015.pptNancy599470
 
Reproductive Hormones
Reproductive HormonesReproductive Hormones
Reproductive Hormonesdrmcbansal
 
Introduction to the Endocrine System.pptx
Introduction to the Endocrine System.pptxIntroduction to the Endocrine System.pptx
Introduction to the Endocrine System.pptxkbentainptrp
 
Endocrine System.ppt
Endocrine System.pptEndocrine System.ppt
Endocrine System.pptAbdiWakjira2
 
The endocrine system grade 10 quarter 3 science
The endocrine system grade 10 quarter 3 scienceThe endocrine system grade 10 quarter 3 science
The endocrine system grade 10 quarter 3 sciencebatokatevalerie
 

Similar to 163 ch 10_lecture_presentation (20)

Endocrine online
Endocrine onlineEndocrine online
Endocrine online
 
L 54 Endocrine system 2022.pdf
L 54 Endocrine system   2022.pdfL 54 Endocrine system   2022.pdf
L 54 Endocrine system 2022.pdf
 
Introduction to endocrine physiology ( mbbs + bds 2nd yr)
Introduction to endocrine physiology ( mbbs + bds 2nd yr)Introduction to endocrine physiology ( mbbs + bds 2nd yr)
Introduction to endocrine physiology ( mbbs + bds 2nd yr)
 
Endocrine new.ppt
Endocrine new.pptEndocrine new.ppt
Endocrine new.ppt
 
HUMAN ANATOMY AND PHYSIOLOGY: THE ENDOCRINE SYSTEM
HUMAN ANATOMY AND PHYSIOLOGY: THE ENDOCRINE SYSTEMHUMAN ANATOMY AND PHYSIOLOGY: THE ENDOCRINE SYSTEM
HUMAN ANATOMY AND PHYSIOLOGY: THE ENDOCRINE SYSTEM
 
Molecular and Cell Biology of the Endocrine System
Molecular and Cell Biology of the Endocrine SystemMolecular and Cell Biology of the Endocrine System
Molecular and Cell Biology of the Endocrine System
 
Ap+Bio+Hormones!!
Ap+Bio+Hormones!!Ap+Bio+Hormones!!
Ap+Bio+Hormones!!
 
A P+ Bio+ Hormones!!
A P+ Bio+ Hormones!!A P+ Bio+ Hormones!!
A P+ Bio+ Hormones!!
 
Diseases of pituitary gland
Diseases of pituitary glandDiseases of pituitary gland
Diseases of pituitary gland
 
Endocrine system
Endocrine systemEndocrine system
Endocrine system
 
Endocrine System
Endocrine SystemEndocrine System
Endocrine System
 
MCB Hormone Receptor Interaction 2015.ppt
MCB Hormone Receptor Interaction 2015.pptMCB Hormone Receptor Interaction 2015.ppt
MCB Hormone Receptor Interaction 2015.ppt
 
Principles of endocrine regulation
Principles of endocrine regulationPrinciples of endocrine regulation
Principles of endocrine regulation
 
Reproductive Hormones
Reproductive HormonesReproductive Hormones
Reproductive Hormones
 
Endocrine System
Endocrine SystemEndocrine System
Endocrine System
 
Introduction to the Endocrine System.pptx
Introduction to the Endocrine System.pptxIntroduction to the Endocrine System.pptx
Introduction to the Endocrine System.pptx
 
Endocrine System.ppt
Endocrine System.pptEndocrine System.ppt
Endocrine System.ppt
 
lect 2 introduction to hormones 2021
 lect 2 introduction to hormones 2021 lect 2 introduction to hormones 2021
lect 2 introduction to hormones 2021
 
The endocrine system grade 10 quarter 3 science
The endocrine system grade 10 quarter 3 scienceThe endocrine system grade 10 quarter 3 science
The endocrine system grade 10 quarter 3 science
 
Introduction to hormones
Introduction to hormones Introduction to hormones
Introduction to hormones
 

Recently uploaded

Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...chandars293
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Dipal Arora
 
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Haridwar Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
Call Girls Aurangabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426jennyeacort
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...parulsinha
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...astropune
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...parulsinha
 
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...narwatsonia7
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...perfect solution
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...chandars293
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 

Recently uploaded (20)

Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Haridwar Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service Available
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Call Girls Aurangabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
 
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
 

163 ch 10_lecture_presentation

  • 1. © 2013 Pearson Education, Inc. PowerPoint® Lecture Slides prepared by Meg Flemming Austin Community College C H A P T E R 10 The Endocrine System
  • 2. © 2013 Pearson Education, Inc. Chapter 10 Learning Outcomes • 10-1 • Explain the role of intercellular communication in homeostasis, and describe the complementary roles of the endocrine and nervous systems. • 10-2 • Contrast the major structural classes of hormones, and explain the general mechanisms of hormonal action on target organs. • 10-3 • Describe the location, hormones, and functions of the pituitary gland. • 10-4 • Describe the location, hormones, and functions of the thyroid gland. • 10-5 • Describe the location, hormones, and functions of the parathyroid glands.
  • 3. © 2013 Pearson Education, Inc. Chapter 10 Learning Outcomes • 10-6 • Describe the location, hormones, and functions of the adrenal glands. • 10-7 • Describe the location of the pineal gland, and discuss the functions of the hormone it produces. • 10-8 • Describe the location, hormones, and functions of the pancreas. • 10-9 • Discuss the functions of the hormones produced by the kidneys, heart, thymus, testes, ovaries, and adipose tissue.
  • 4. © 2013 Pearson Education, Inc. Chapter 10 Learning Outcomes • 10-10 • Explain how hormones interact to produce coordinated physiological responses, and describe how the endocrine system responds to stress and is affected by aging. • 10-11 • Give examples of interactions between the endocrine system and other organ systems.
  • 5. © 2013 Pearson Education, Inc. Intercellular Communication (10-1) • Preserves homeostasis • Mostly done through chemical messages • Distant communication is coordinated by endocrine and nervous systems • Nervous system is fast • Specific and short duration • Endocrine system is slower • Releases hormones into bloodstream that bind to target cells, longer duration
  • 6. © 2013 Pearson Education, Inc. Nervous and Endocrine Systems Comparison (10-1) • Both rely on release of chemicals that bind to specific receptors on target cells • Both share chemical messengers • Epinephrine (E) and norepinephrine (NE), hormones released from adrenal medulla • NE, a neurotransmitter when released in synapses
  • 7. © 2013 Pearson Education, Inc. Nervous and Endocrine Systems Comparison (10-1) • Both are regulated by negative feedback mechanisms • Both coordinate and regulate activities of other cells, tissues, organs, and systems to maintain homeostasis
  • 8. © 2013 Pearson Education, Inc. Checkpoint (10-1) 1. List four similarities between the nervous and endocrine systems.
  • 9. © 2013 Pearson Education, Inc. The Endocrine System (10-2) • Includes all endocrine cells and tissues • Cells are glandular and secretory • Secretions enter the ECF • Cytokines are local chemical messengers • Hormones are chemical messengers secreted into the blood and transported to target cells
  • 10. © 2013 Pearson Education, Inc. The Structure of Hormones (10-2) • Amino acid derivatives • All derived from amino acid tyrosine • E, NE, thyroid hormones, melatonin • Peptide hormones • Largest group • Includes ADH, oxytocin, hypothalamic, pituitary, pancreatic hormones
  • 11. © 2013 Pearson Education, Inc. The Structure of Hormones (10-2) • Lipid derivatives • Most derived from cholesterol • Steroid hormones released by reproductive organs and adrenal cortex • For example, testosterone, estrogen • Eicosanoids coordinate local cellular functions • For example, prostaglandins
  • 12. © 2013 Pearson Education, Inc. See Chapter 13 See Chapter 14 See Chapter 17 See Chapters 11 and 18 See Chapters 19 and 20 Hypothalamus Production of ADH, oxytocin, and regulatory hormones Pituitary Gland Anterior lobe: ACTH, TSH, GH, PRL, FSH, LH, and MSH Posterior lobe: Release of ADH and oxytocin Thyroid Gland Thyroxine (T4) Triiodothyronine (T3) Calcitonin (CT) Adrenal Glands Adrenal medulla: Epinephrine (E) Norepinephrine (NE) Adrenal cortex: Cortisol, corticosterone, aldosterone, androgens Pancreas (Pancreatic Islets) Insulin Glucagon Pineal Gland Melatonin Parathyroid Glands (located on the posterior surface of the thyroid gland) Parathyroid hormone (PTH) Organs with Secondary Endocrine Functions Heart: Secretes • Atrial natriuretic peptide (ANP) Thymus: (Undergoes atrophy during adulthood) Secretes thymosins Adipose Tissue: Secretes • Leptin Digestive Tract: Secretes numerous hormones involved in the coordination of system functions, glucose metabolism, and appetite Kidneys: Secrete • Erythropoietin (EPO) • Calcitriol Gonads: Testes (male): Androgens (especially testosterone), inhibin Ovaries (female): Estrogens, progestins, inhibin Ovary Testis Figure 10-1 Organs and Tissues of the Endocrine System.
  • 13. © 2013 Pearson Education, Inc. Mechanisms of Hormonal Action (10-2) • Hormones alter operations of target cells • Change identities, activities, locations, or quantities of structural proteins and enzymes • Sensitivity of target cell to hormone depends on specific receptors • Receptors are located either on plasma membrane or inside the cell
  • 14. © 2013 Pearson Education, Inc. Endocrine cells release hormone Hormone is distributed throughout the body Hormone enters the bloodstream Receptor Hormone-receptor complex NEURAL TISSUE No binding, no hormonal effects SKELETAL MUSCLE TISSUE Binding occurs, hormonal effects appear Figure 10-2 The Role of Target Cell Receptors in Hormonal Action.
  • 15. © 2013 Pearson Education, Inc. Hormonal Action at the Plasma Membrane (10-2) • Receptors on plasma membrane • E, NE, and peptide hormones are not lipid soluble • Cannot diffuse through the plasma membrane • Must use a receptor on outside of membrane • Effect is not direct, they are first messengers that activate second messengers in the cytoplasm • Action is linked by G protein, an enzyme complex
  • 16. © 2013 Pearson Education, Inc. Cyclic-AMP Second Messenger System (10-2) • Or cAMP • First messenger activates a G protein • Which activates enzyme adenylate cyclase • Which converts ATP to second messenger, cAMP • Which activates kinase enzymes inside cell • Which phosphorylates another molecule • Produces amplification of signal
  • 17. © 2013 Pearson Education, Inc. Intracellular Receptors (10-2) • Receptors inside cytoplasm or nucleus • For thyroid and steroid hormones, lipid soluble • Forms hormone-receptor complex • Activates or inactivates specific genes • Alters rate of mRNA transcription • Changes structure or function of cell
  • 18. © 2013 Pearson Education, Inc. Figure 10-3a Mechanisms of Hormone Action. First messengers (E, NE, peptide hormones, and eicosanoids) Membrane receptor Hormone- receptor complex G protein (inactive) G protein (activated) Plasma membrane Activates adenylate cyclase Acts as second messenger cAMP Cytoplasm Nuclear envelope Nuclear pore Activates kinases Alters enzyme activity; opens ion channels TARGET CELL RESPONSE Nucleus DNA Nonsteroidal hormones, such as epinephrine (E), norepinephrine (NE), peptide hormones, and eicosanoids, bind to membrane receptors and activate G proteins. They exert their effects on target cells through a second messenger, such as cAMP, which alters the activity of enzymes present in the cell.
  • 19. © 2013 Pearson Education, Inc. Figure 10-3b Mechanisms of Hormone Action. Steroid hormones Thyroid hormones Cytoplasm Hormone- receptor complex Mitochondrion and receptor Increase in production Protein synthesis Alters structural proteins or enzyme activity TARGET CELL RESPONSE Nuclear receptors DNA Change in gene activity Steroid hormones enter a target cell by diffusion. Thyroid hormones are transported across the target cell’s plasma membrane. Steroid hormones bind to receptors in the cytoplasm or nucleus. Thyroid hormones either bind to receptors in the nucleus or to receptors on mitochondria. In the nucleus, both steroid and thyroid hormone-receptor complexes directly affect gene activity and protein synthesis. Thyroid hormones also increase the rate of ATP production in the cell.
  • 20. © 2013 Pearson Education, Inc. Hormone Secretion and Distribution (10-2) • Rapidly enter blood and distributed throughout body • Freely circulating hormones are short-lived and inactivated when: 1. They diffuse to target cells and bind to receptors 2. They are absorbed and broken down in liver and kidney 3. They are broken down by enzymes in plasma or interstitial fluid
  • 21. © 2013 Pearson Education, Inc. Hormone Secretion and Distribution (10-2) • Hormones bound to transport proteins stay in circulation longer (steroid and thyroid hormones) • Each hormone has an equilibrium between bound and free forms
  • 22. © 2013 Pearson Education, Inc. Control of Endocrine Activity (10-2) • Hormonal secretion under negative feedback control is based on three types of stimuli 1. Humoral stimuli • Changes in ECF composition 2. Hormonal stimuli • Changes in circulating hormone levels 3. Neural stimuli • Neural stimulation of a neuroglandular junction
  • 23. © 2013 Pearson Education, Inc. The Hypothalamus and Endocrine Control (10-2) • Coordinating centers in hypothalamus regulate nervous and endocrine systems • The hypothalamus 1. Acts as an endocrine gland, synthesizing ADH and oxytocin 2. Secretes releasing and inhibiting regulatory hormones to control anterior pituitary secretions 3. Contains ANS centers that control adrenal medullae through sympathetic innervation
  • 24. © 2013 Pearson Education, Inc. Checkpoint (10-2) 2. Define hormone. 3. What is the primary factor that determines each cell's sensitivities to hormones? 4. How would the presence of a molecule that blocks adenylate cyclase affect the activity of a hormone that produces cellular effects through cAMP? 5. Why is cAMP described as a second messenger? 6. What are the three types of stimuli that control hormone secretion?
  • 25. © 2013 Pearson Education, Inc. The Pituitary Gland (10-3) • Also called the hypophysis • Protected by the sella turcica of the sphenoid bone • Hangs from hypothalamus by infundibulum • Anterior and posterior have very different structure • Secretes nine hormones • All are unique peptides or small proteins • All use cAMP second messenger mechanism
  • 26. © 2013 Pearson Education, Inc. Figure 10-5 The Location and Anatomy of the Pituitary Gland. LM x 77 Third ventricle HYPOTHALAMUS Optic chiasm Infundibulum Mamillary body Anterior lobe Posterior lobe Sphenoid (sella turcica) Relationship of the pituitary gland to the hypothalamus Tissue organization of the anterior and posterior lobes of the pituitary gland Pituitary gland Secretes other pituitary hormones Secretes MSH Releases ADH and oxytocin Anterior lobe Posterior lobe
  • 27. © 2013 Pearson Education, Inc. The Anterior Lobe of the Pituitary Gland (10-3) • Contains epithelial endocrine cells • Cells are surrounded by complex capillary bed • Capillaries are part of hypophyseal portal system • A portal system is two capillary beds in series connected by a communicating blood vessel
  • 28. © 2013 Pearson Education, Inc. The Hypophyseal Portal System (10-3) • Blood arrives through hypophyseal artery • Branches into hypophyseal (1st) capillary bed • Regulatory hormones of hypothalamus diffuse into capillaries and travel through portal veins • Regulatory hormones diffuse onto target cells in anterior lobe • Anterior lobe cells secrete hormones into (2nd) capillaries
  • 29. © 2013 Pearson Education, Inc. Figure 10-6 The Hypophyseal Portal System and the Blood Supply to the Pituitary Gland. Hypothalamic nuclei producing ADH and oxytocin Hypothalamic neurons producing regulatory hormones HYPOTHALAMUS Mamillary body Hypophyseal artery Infundibulum Portal veins Optic chiasm Capillary beds ANTERIOR LOBE OF PITUITARY GLAND Hypophyseal artery POSTERIOR LOBE OF PITUITARY GLAND Endocrine cells Hypophyseal veins
  • 30. © 2013 Pearson Education, Inc. The Seven Anterior Lobe Hormones (10-3) 1. Thyroid-stimulating hormone (TSH) 2. Adrenocorticotropic hormone (ACTH) 3. Follicle-stimulating hormone (FSH) 4. Luteinizing hormone (LH) 5. Prolactin (PRL) 6. Growth hormone (GH) 7. Melanocyte-stimulating hormone (MSH)
  • 31. © 2013 Pearson Education, Inc. Thyroid-Stimulating Hormone (10-3) • Also called thyrotropin • Released in response to thyrotropin-releasing hormone (TRH) from hypothalamus • Triggers release of thyroid hormones from thyroid glands • Increases in thyroid hormones cause decrease in TRH and TSH secretion
  • 32. © 2013 Pearson Education, Inc. Adrenocorticotropic Hormone (10-3) • Also called corticotropin • Stimulates secretion of steroid hormones, called glucocorticoids, from adrenal cortex • Corticotropin-releasing hormone (CRH) from the hypothalamus triggers release of ACTH • Increases in glucocorticoids feed back to inhibit ACTH and CRH secretion • The gonadotropins, or sex hormones, are triggered by gonadotropin-releasing hormone (GnRH) from hypothalamus
  • 33. © 2013 Pearson Education, Inc. Follicle-Stimulating Hormone and Luteinizing Hormone (10-3) • Follicle-stimulating hormone (FSH) • Promotes follicle (and egg) development in females • Promotes sperm production in males • Luteinizing hormone (LH) • Induces ovulation and secretion of progestins in females • Stimulates production of androgens such as testosterone in males
  • 34. © 2013 Pearson Education, Inc. Prolactin (10-3) • Stimulates mammary gland development • In pregnancy and nursing, stimulates production of milk
  • 35. © 2013 Pearson Education, Inc. Growth Hormone (10-3) • Also called human growth hormone (hGH) and somatotropin • Stimulates cell growth and replication of all cells, but especially skeletal muscle and chondrocytes • Stimulates liver to release somatomedins, which trigger an increase in amino acid uptake by cells following a meal • Has multiple metabolic influences
  • 36. © 2013 Pearson Education, Inc. Melanocyte-Stimulating Hormone (10-3) • Increases activity of melanocytes in skin • Appears to be nonfunctional in adults • Is active in: • Fetal development • Very young children • Pregnancy • Certain diseases
  • 37. © 2013 Pearson Education, Inc. Figure 10-7a Negative Feedback Control of Endocrine Secretion. Hypothalamus Releasing hormone (RH) Hormone 1 (from pituitary) Endocrine target organ Hormone 2 (from target organ) RH Pituitary gland Anterior lobe Hormone 1 Endocrine organ Hormone 2 TRH CRH GnRH TSH ACTH FSH LH Thyroid gland Adrenal cortex Testes Ovaries Thyroid hormones Gluco- corticoids Inhibin Inhibin Estrogens Androgens Progestins Estrogens Negative feedback KEY Stimulation Inhibition Target cells A typical pattern of regulation when multiple endocrine organs are involved. The hypothalamus produces a releasing hormone (RH) to stimulate hormone production by other glands; control occurs by negative feedback. Testes Ovaries
  • 38. © 2013 Pearson Education, Inc. Figure 10-7b Negative Feedback Control of Endocrine Secretion. Stimulation PIH Stimulation PRF Inhibition Inhibition GH–IH GH–RH Anterior lobe Anterior lobe PRL GH Liver Epithelia, adipose tissue, liverStimulates mammary glands Somatomedins Stimulates growth of skeletal muscle, cartilage, and many other tissues Variations on the theme outlined in part (a). Left: The regulation of prolactin (PRL) production by the anterior lobe. In this case, the hypothalamus produces both a releasing factor (PRF) and an inhibiting hormone (PIH); when one is stimulated, the other is inhibited. Right: the regulation of growth hormone (GH) production by the anterior lobe; when GH–RH release is inhibited, GH–IH release is stimulated.
  • 39. © 2013 Pearson Education, Inc. The Two Posterior Lobe Hormones (10-3) • Hormones diffuse down axons of hypothalamic neurons that extend into posterior lobe, then into capillaries 1. Antidiuretic hormone (ADH) 2. Oxytocin (OXT)
  • 40. © 2013 Pearson Education, Inc. Antidiuretic Hormone (10-3) • Also called vasopressin • Stimulated by increase in ECF osmolarity or decrease in blood volume and pressure • Primary target is kidney to decrease water loss • Triggers vasoconstriction to increase blood pressure
  • 41. © 2013 Pearson Education, Inc. Oxytocin (10-3) • In women stimulates contraction of uterine muscles during labor and delivery • Also stimulates contraction of cells surrounding milk secretory cells in mammary glands • Appears to play unclear role in sexual arousal
  • 42. © 2013 Pearson Education, Inc. Figure 10-8 Pituitary Hormones and Their Targets. Direct Control by Nervous System Hypothalamus Indirect Control through Release of Regulatory Hormones Regulatory hormones are released into the hypophyseal portal system for delivery to the anterior lobe of the pituitary gland Direct Release of Hormones Sensory stimulation Osmoreceptor stimulation KEY TO PITUITARY HORMONES: ACTH TSH GH PRL FSH LH MSH ADH OXT Adrenocorticotropic hormone Thyroid-stimulating hormone Growth hormone Prolactin Follicle-stimulating hormone Luteinizing hormone Melanocyte-stimulating hormone Antidiuretic hormone Oxytocin Anterior lobe of pituitary glandAdrenal medulla Adrenal gland Adrenal cortex Epinephrine and norepinephrine Thyroid gland ACTH TSH GH Liver Somatomedins Glucocorticoids (cortisol, corticosterone) Thyroid hormones (T3, T4) Bone, muscle, other tissues Mammary glands Testes of male Inhibin Testosterone Estrogen Progesterone Inhibin Ovaries of female Melanocytes (uncertain significance in healthy adults) Females: Uterine smooth muscle and mammary glands Males: Smooth muscle in ductus deferens and prostate gland Kidneys Posterior lobe of pituitary gland PRL FSH LH MSH OXT ADH
  • 43. © 2013 Pearson Education, Inc. Table 10-1 The Pituitary Hormones
  • 44. © 2013 Pearson Education, Inc. Checkpoint (10-3) 7. If a person were dehydrated, how would the amount of ADH released by the posterior lobe of the pituitary gland change? 8. A blood sample contains elevated levels of somatomedins. Which pituitary hormone would you also expect to be elevated? 9. What effect would elevated circulating levels of cortisol, a hormone from the adrenal cortex, have on the pituitary secretion of ACTH?
  • 45. © 2013 Pearson Education, Inc. The Thyroid Gland (10-4) • Found anterior to trachea and inferior to thyroid cartilage • Has two lobes connected by narrow isthmus • Contains many spherical thyroid follicles • Defined by simple cuboidal epithelium • Filled with viscous colloid with many proteins and thyroid hormone molecules
  • 46. © 2013 Pearson Education, Inc. The Thyroid Follicles (10-4) • Follicular cells make thyroid hormones that are then stored in colloid • TSH causes release of thyroid hormones • Majority are transported by plasma proteins • Derived from amino acid tyrosine, and iodine • Thyroxine (T4) tetraiodothyronine has four atoms of iodine • Triiodothyronine (T3) has three iodine and is more potent
  • 47. © 2013 Pearson Education, Inc. The Effects of Thyroid Hormones (10-4) • Activate nearly every cell in body • Increase rate of ATP production in mitochondria • Activate genes coding for enzyme synthesis • Enzymes increase rate of metabolism • Calorigenic effect is when cell uses more energy, measured in calories, and heat is produced
  • 48. © 2013 Pearson Education, Inc. The C Cells of the Thyroid Gland (10-4) • Also called parafollicular cells, are found between follicles • Produce calcitonin (CT) • Stimulated by increases in plasma Ca2+ • Inhibits osteoclasts in bone • Stimulates calcium excretion by kidneys • Essential for normal bone growth in children and last trimester of pregnancy
  • 49. © 2013 Pearson Education, Inc. Figure 10-9 The Thyroid Gland. Outline of sternumLM x 260 Hyoid bone Thyroid artery Internal jugular vein Thyroid cartilage Thyroid vein Right lobe of thyroid gland Left lobe of thyroid gland Isthmus of thyroid gland Common carotid artery Thyroid veins Trachea Location and anatomy of the thyroid gland Thyroid hormones stored in colloid of follicle C cell Cuboidal epithelium of follicle Thyroid follicles Follicles of the thyroid gland Histological details of the thyroid gland
  • 50. © 2013 Pearson Education, Inc. Calcium Imbalances (10-4) • Hypercalcemia causes: • Decreased sodium permeability of excitable membranes • Results in less responsive muscles and nerves • Hypocalcemia causes: • Increased sodium permeability • Highly excitable, spasmodic muscles and nerves • Parathyroid glands prevent hypocalcemia
  • 51. © 2013 Pearson Education, Inc. Checkpoint (10-4) 10. Identify the hormones of the thyroid gland. 11. What signs and symptoms would you expect to see in an individual whose diet lacks iodine? 12. When a person's thyroid gland is removed, signs of decreased thyroid hormone concentration do not appear until about one week later. Why?
  • 52. © 2013 Pearson Education, Inc. The Parathyroid Glands (10-5) • Paired, small glands embedded in posterior surface of thyroid • Chief cells produce parathyroid hormone (PTH) • Stimulated by decrease in plasma Ca2+ • Activates osteoclasts in bone • Reduces calcium excretion by kidney • Stimulates kidney to secrete calcitriol, which increases Ca2+ absorption in digestive tract
  • 53. © 2013 Pearson Education, Inc. Figure 10-10 The Homeostatic Regulation of Calcium Ion Concentrations. Increased excretion of calcium by kidneys Calcium deposition in bone Thyroid gland produces calcitonin HOMEOSTASIS DISTURBED Rising calcium levels in blood HOMEOSTASIS HOMEOSTASIS RESTORED Blood calcium levels decline HOMEOSTASIS DISTURBED Falling calcium levels in blood HOMEOSTASIS RESTORED Blood calcium levels increase Increased reabsorption of calcium by kidneys Calcium release from bone Parathyroid glands secrete parathyroid hormone (PTH) FallinglevelsofbloodcalciumRisinglevelsofbloodcalcium Normal blood calcium levels (8.5–11 mg/dL) Increased calcitriol product`ion by kidneys causes Ca2+ absorption by digestive system
  • 54. © 2013 Pearson Education, Inc. Left lobe of thyroid gland Parathyroid glands Figure 10-11 The Parathyroid Glands.
  • 55. © 2013 Pearson Education, Inc. Table 10-2 Hormones of the Thyroid Gland and Parathyroid Glands
  • 56. © 2013 Pearson Education, Inc. Checkpoint (10-5) 13. Identify the hormone secreted by the parathyroid glands. 14. Removal of the parathyroid glands would result in decreased blood concentration of what important mineral?
  • 57. © 2013 Pearson Education, Inc. The Adrenal Gland (10-6) • Also called the suprarenal gland • Yellow, pyramid-shaped • Sits on superior border of each kidney • Two portions 1. Adrenal cortex • Outer part 2. Adrenal medulla • Inner part
  • 58. © 2013 Pearson Education, Inc. The Adrenal Cortex (10-6) • Contains high levels of cholesterol and fatty acids • Produces more than 24 steroid hormones called corticosteroids • Are essential for metabolic functions • Transported in plasma bound to proteins • Three zones of cortex produce three types 1. Mineralocorticoids 2. Glucocorticoids 3. Androgens
  • 59. © 2013 Pearson Education, Inc. LM x 140 Cortex Medulla An adrenal gland in section Left adrenal gland Arteries Left renal artery Adrenal cortex Left renal vein Abdominal aorta Inferior vena cava A superficial view of the left kidney and adrenal gland Adrenal medulla Zona reticularis Zona fasciculata Zona glomer- ulosa Capsule Adrenal gland The major regions of an adrenal gland Figure 10-12 The Adrenal Gland.
  • 60. © 2013 Pearson Education, Inc. Mineralocorticoids (10-6) • Also called MCs • Produced by outer zone • Affect electrolyte balance in body fluids • Aldosterone – major MC • Secreted in response to low plasma Na+ , low BP, high plasma K+ , or presence of angiotensin II • Triggers reabsorption of sodium ions in kidney, sweat glands, salivary glands, and pancreas • Secondarily triggers water reabsorption through osmosis
  • 61. © 2013 Pearson Education, Inc. Glucocorticoids (10-6) • Also called GCs • Produced mostly by middle zone • Affect glucose metabolism • Most important are cortisol, corticosterone, and cortisone • Secreted in response to ACTH • Increase rates of glycolysis and glycogenesis, resulting in increase in blood glucose levels • Also act as anti-inflammatory
  • 62. © 2013 Pearson Education, Inc. The Androgens (10-6) • Produced by inner zone in both males and females • Some converted to estrogens in plasma • In normal amounts do not affect sexual characteristics • Function remains unclear
  • 63. © 2013 Pearson Education, Inc. The Adrenal Medulla (10-6) • Highly vascular, containing cells similar to sympathetic ganglia • Innervated by preganglionic sympathetic fibers • Epinephrine (E, or adrenaline) is 80 percent • Norepinephrine (NE, or noradrenaline) is 20 percent • Triggers metabolic changes to increase availability of energy molecules • Supports and prolongs overall sympathetic response
  • 64. © 2013 Pearson Education, Inc. Table 10-3 The Adrenal Hormones
  • 65. © 2013 Pearson Education, Inc. Checkpoint (10-6) 15. Identify the two regions of the adrenal gland, and list the hormones secreted by each. 16. What effect would elevated cortisol levels have on blood glucose levels?
  • 66. © 2013 Pearson Education, Inc. The Pineal Gland (10-7) • Located on posterior portion of roof of third ventricle • Contains neurons, glial cells, and secretory cells that produce melatonin • Rate of secretion affected by light and day–night cycles • May influence timing of sexual maturation • May protect CNS with antioxidant activity • Plays role in maintaining circadian rhythms (day–night cycles)
  • 67. © 2013 Pearson Education, Inc. Checkpoint (10-7) 17. Increased amounts of light would inhibit the production of which hormone by which structure? 18. List three possible functions of melatonin.
  • 68. © 2013 Pearson Education, Inc. The Endocrine Pancreas (10-8) • Pancreas lies between stomach and proximal small intestine • Contains both exocrine and endocrine cells • Endocrine cells located in pancreatic islets • Also called islets of Langerhans, contain: • Alpha cells that secrete hormone glucagon • Beta cells that secrete hormone insulin
  • 69. © 2013 Pearson Education, Inc. Figure 10-13 The Endocrine Pancreas. Common bile duct Pancreatic duct Body of pancreas Lobule Tail Pancreatic acini (clusters of exocrine cells) Pancreatic islet (islet of Langerhans) Capillary Pancreatic islet LM x 400 A pancreatic islet surroun- ded by exocrine cells Head of pancreas Small intestine (duodenum) Location and gross anatomy of the pancreas
  • 70. © 2013 Pearson Education, Inc. Pancreatic Regulation of Blood Glucose (10-8) • Increases in blood glucose levels (BGL) activate beta cells to release more insulin • Stimulates glucose uptake by cells that have insulin receptors, all cells EXCEPT: • Neurons and red blood cells, epithelial cells of kidney tubules, epithelial cells of intestinal lining • Increases rates of protein synthesis and fat storage • Result is lower BGL
  • 71. © 2013 Pearson Education, Inc. Pancreatic Regulation of Blood Glucose (10-8) • Decreases in blood glucose levels activate alpha cells to release more glucagon • Mobilizes energy reserves • Glycogen in liver and muscles broken down to glucose • Adipose tissue releases fatty acids • Proteins broken down to convert to glucose in the liver • Result is higher BGL
  • 72. © 2013 Pearson Education, Inc. Pancreatic Regulation of Blood Glucose (10-8) • Secretion of hormones is independent of direct neural stimulus • Indirectly affected by ANS activity and any hormone that also influences BGL • For example, cortisol and thyroid hormones
  • 73. © 2013 Pearson Education, Inc. Diabetes Mellitus (10-8) • Either hyposecretion of insulin or decreased sensitivity of insulin receptors • Symptoms • Hyperglycemia • Glycosuria • Polyuria
  • 74. © 2013 Pearson Education, Inc. Increased rate of glucose transport into target cells Increased rate of glucose utilization and ATP generation Increased conversion of glucose to glycogen (in liver, skeletal muscle) Increased amino acid absorption and protein synthesis Increased triglyceride synthesis in adipose tissue Beta cells secrete insulin HOMEOSTASIS DISTURBED Rising blood glucose levels HOMEOSTASIS RESTORED Blood glucose levels decrease HOMEOSTASIS HOMEOSTASIS DISTURBED Falling blood glucose levels HOMEOSTASIS RESTORED Blood glucose levels increase Alpha cells secrete glucagon Increased breakdown of glycogen to glucose (in liver, skeletal muscle) Increased breakdown of fat to fatty acids (in adipose tissue) Increased synthesis and release of glucose (by the liver) FallingbloodglucoselevelsRisingbloodglucoselevels Normal blood glucose levels (70–110 mg/dL) Figure 10-14 The Regulation of Blood Glucose Concentrations.
  • 75. © 2013 Pearson Education, Inc. Checkpoint (10-8) 19. Identify two important types of cells in the pancreatic islets and the hormones produced by each. 20. Which pancreatic hormone causes skeletal muscle and liver cells to convert glucose to glycogen? 21. What effect would increased levels of glucagon have on the amount of glycogen stored in the liver?
  • 76. © 2013 Pearson Education, Inc. The Intestines (10-9) • Secrete local hormones that coordinate digestive activities • Major control over rate of digestive processes • Can be influenced by ANS
  • 77. © 2013 Pearson Education, Inc. The Kidneys (10-9) • Calcitriol • Stimulated by PTH, derived from vitamin D3, increases absorption of calcium and phosphate ions from gut • Erythropoietin • Stimulated by kidney hypoxia, causes RBC production • Renin • An enzyme that triggers hormonal chain reaction to increase BP, blood volume
  • 78. © 2013 Pearson Education, Inc. The Heart (10-9) • Endocrine cells in right atrium of heart • Respond to increased blood volume entering chamber • Excessive stretch causes them to release atrial natriuretic peptide (ANP) • Promotes loss of sodium, and therefore water • Inhibits renin release • Results in decrease in BP and blood volume
  • 79. © 2013 Pearson Education, Inc. The Thymus (10-9) • Located deep to sternum in mediastinum • Very active in early childhood, atrophies in adults • Secretes thymosins • Aid in development and maintenance of immune defenses
  • 80. © 2013 Pearson Education, Inc. The Gonads: The Testes (10-9) • In males, interstitial cells produce androgens • Most important is testosterone • Promotes sperm production • Maintains secretory glands of reproductive tract • Determines secondary sex characteristics • Stimulates protein synthesis • Sperm production effect balanced by inhibin
  • 81. © 2013 Pearson Education, Inc. The Gonads: The Ovaries (10-9) • In females, the ova are surrounded by follicles • FSH triggers follicular cells to produce: • Estrogens • Support maturation of ova and growth of uterine lining • Inhibin • Provides negative feedback to FSH
  • 82. © 2013 Pearson Education, Inc. The Gonads: The Ovaries (10-9) • Once follicle releases ovum (ovulation) the corpus luteum is formed from follicular cells • Releases progesterone • Accelerates fertilized egg movement through uterine tube • Prepares uterus for arrival of developing embryo • All gonadal hormones regulated by hormones of the anterior pituitary
  • 83. © 2013 Pearson Education, Inc. Table 10-4 Hormones of the Reproductive System
  • 84. © 2013 Pearson Education, Inc. Adipose Tissue (10-9) • Produces leptin • Provides negative feedback control of appetite • Binds to neurons in hypothalamus to trigger satiation (fullness) and suppression of appetite • Must be present for normal GnRH and gonadotropin synthesis • Low body fat can result in late puberty and cessation of menstrual cycles • Increase in body fat can increase fertility
  • 85. © 2013 Pearson Education, Inc. Checkpoint (10-9) 22. Identify the two hormones secreted by the kidneys, and describe their functions. 23. Describe the action of renin. 24. Identify a hormone released by adipose tissue.
  • 86. © 2013 Pearson Education, Inc. Hormonal Interactions (10-10) • ECF contains hormones that may have the same target, resulting in four possibilities 1. Antagonistic effects • Opposing responses 2. Synergistic effects • Net result of two is greater that the sum of their individual effects 3. Permissive effects • Need for one hormone to be present for another to work 4. Integrative effects • Coordinate diverse activities
  • 87. © 2013 Pearson Education, Inc. Hormones and Growth (10-10) • Six key hormones required for normal growth 1. GH • Undersecretion causes dwarfism • Oversecretion causes gigantism 2. Thyroid hormones • Required for normal nervous system development 3. Insulin • Required for energy supply to growing cells
  • 88. © 2013 Pearson Education, Inc. Hormones and Growth (10-10) 4. PTH • Promotes calcium availability for normal bone growth 5. Calcitriol, same as PTH • Lack of PTH and calcitriol can result in rickets 6. Reproductive hormones • Can affect activity of osteoblasts and influence secondary sex characteristic development
  • 89. © 2013 Pearson Education, Inc. Hormones and Stress (10-10) • Stress is triggered by: • Physical injury or disease • Emotional responses: anxiety or depression • Environmental conditions: extreme cold or heat • Metabolic conditions: acute starvation • Stress triggers: • The general adaptation syndrome (GAS) • Also called the stress response
  • 90. © 2013 Pearson Education, Inc. Figure 10-15 The General Adaptation Syndrome. (1 of 3) Alarm Phase (”Fight or Flight”) ALARM Immediate Short-Term Responses to Crises • Increases mental alertness • Increases energy use by all cells • Mobilizes glycogen and lipid reserves • Changes circulation • Reduces digestive activity and urine production • Increases sweat gland secretion • Increases heart rate and respiratory rate General sympathetic activation Adrenal medulla Sympathetic stimulation Brain Epinephrine, norepinephrine The alarm phase is an immediate response to stress, or crisis. The dominant hormone is epinephrine, and its secretion is part of a generalized sympathetic activation.
  • 91. © 2013 Pearson Education, Inc. Figure 10-15 The General Adaptation Syndrome. (2 of 3) RESISTANCEResistance Phase Long-Term Metabolic Adjustments • Mobilizes remaining energy reserves: Lipids are released by adipose tissue; amino acids are released by skeletal muscle • Conserves glucose: Peripheral tissues (except neural) break down lipids to obtain energy • Elevates blood glucose concentrations: Liver synthesizes glucose from other carbohydrates, amino acids, and lipids • Maintains blood volume: Conservation of salts and water, loss of K+ and H+ Growth Hormone Glucocorticoids Pancreas Glucagon Brain Sympathetic stimulation ACTH Adrenal cortex Renin-angiotensin system Kidney Mineralocorticoids (with ADH) The resistance phase begins if a stress lasts longer than a few hours. Glucocorticoids (GCs) are the dominant hormones of the resistance phase. GCs and other hormones act to shift tissue metabolism away from glucose, thus increasing its availability to neural tissue.
  • 92. © 2013 Pearson Education, Inc. Figure 10-15 The General Adaptation Syndrome. (3 of 3) EXHAUSTIONExhaustion Phase Collapse of Vital Systems • Exhaustion of lipid reserves • Cumulative structural or functional damage to vital organs • Inability to produce glucocorticoids • Failure of electrolyte balance The body’s lipid reserves are sufficient to maintain the resistance phase for weeks or even months. But when the resistance phase ends, homeostatic regulation breaks down and the exhaustion phase begins. Without immediate corrective actions, the ensuing failure of one or more organ systems will prove fatal.
  • 93. © 2013 Pearson Education, Inc. Hormones and Behavior (10-10) • Hypothalamus is key hormone regulator and monitor • Behavior is also affected by hormonal abnormalities • Precocious puberty can occur when sex hormones are released at an earlier than normal age • CNS intellectual functions like learning, memory, and emotions can be altered in the adult due to hormone imbalances
  • 94. © 2013 Pearson Education, Inc. Hormones and Aging (10-10) • Usually most hormones remain the same throughout adulthood • Exceptions are the reproductive hormones • Changes to target organ receptors more likely to occur through reduced sensitivity
  • 95. © 2013 Pearson Education, Inc. Checkpoint (10-10) 25. What type of hormonal interaction occurs when insulin lowers blood glucose levels while glucagon elevates blood glucose levels? 26. The lack of which hormones would inhibit skeletal formation and development? 27. What are the dominant hormones of the resistance phase of the general adaptation syndrome, and in what ways do they act?
  • 96. © 2013 Pearson Education, Inc. Endocrine System Interaction with Other Systems (10-11) • Endocrine system provides homeostatic regulation • Adjusts metabolic rate of most tissue • Regulates growth and development
  • 97. © 2013 Pearson Education, Inc. Figure 10-16 Body System Endocrine System Endocrine System Body System SYSTEM INTEGRATOR Protects superficial endocrine organs; epidermis synthesizes vitamin D3 Protects endocrine organs, especially in brain, chest, and pelvic cavity Skeletal muscles provide protection for some endocrine organs Hypothalamic hormones directly control pituitary secretions and indirectly control secretions of other endocrine organs; controls adrenal medullae; secretes ADH and oxytocin Sex hormones stimulate sebaceous gland activity, influence hair growth, fat distribution, and apocrine sweat gland activity; PRL stimulates development of mammary glands; adrenal hormones alter dermal blood flow; MSH stimulates melanocyte activity Skeletal growth regulated by several hormones; calcium mobilization regulated by parathyroid hormone and calcitonin; sex hormones speed growth and closure of epiphyseal cartilages at puberty and help maintain bone mass in adults Hormones adjust muscle metabolism, energy production, and growth; regulate calcium and phosphate levels in body fluids; speed skeletal muscle growth Several hormones affect neural metabolism and brain development; hormones help regulate fluid and electrolyte balance; reproductive hormones influence CNS development and behaviors Gonads—ovaries in females and testes in males—are organs that produce gametes (sex cells). LH and FSH, hormones secreted by the anterior lobe of the pituitary gland, affect these organs. (The ovaries and testes are discussed further in Chapter 19.) The endocrine system provides long-term regulation and adjustments of homeostatic mechanisms that affect many body functions. For example, the endocrine system regulates fluid and electrolyte balance, cell and tissue metabolism, growth and development, and reproductive functions. It also works with the nervous system in responding to stressful stimuli through the general adaptation syndrome. The ENDOCRINE System Integumentary (Page138) Skeletal (Page188) Muscular (Page241) Nervous (Page302) IntegumentarySkeletalMuscularNervous Cardiovascular (Page467) Lymphatic (Page500) Respiratory (Page532) Digestive (Page572) Urinary (Page637) Reproductive (Page671)
  • 98. © 2013 Pearson Education, Inc. Checkpoint (10-11) 28. Discuss the general role of the endocrine system in the functioning of other body systems. 29. Discuss the functional relationship between the endocrine system and the muscular system.