SlideShare uma empresa Scribd logo
1 de 14
Baixar para ler offline
5
1Microscopia óptica
Ao final desta aula, você deverá ser capaz de:
• Conhecer o breve histórico da microscopia.
• Definir o que é um microscópio.
• Conceituar poder de resolução.
• Saber os princípios de funcionamento de um microscópio simples.
• Conhecer os principais tipos de microscópios ópticos e suas
aplicações.
• Ter noções de preparo de amostras para microscopia óptica.
• Consultar links de interesse.
aula
OBJETIVOS
Aula_01.indd 7 17/6/2004,11:28:02
Biologia Celular I | Microscopia óptica
CEDERJ8
O primeiro problema a enfrentar no estudo das células é o seu tamanho:
as células são pequenas demais para serem observadas a olho nu. Por esse
motivo as primeiras células foram observadas e descritas apenas no século
XVII, quando foi inventado o microscópio óptico.
Você tem idéia de qual seja o tamanho de uma célula?
As maiores células medem cerca de 0,2mm; mas, em média, uma célula é
10 ou 20 vezes menor do que isso.
Por outro lado, nós lhe perguntamos: qual o tamanho dos menores objetos
que podemos distinguir a olho nu (sem ajuda de instrumentos especiais)?
Podemos distinguir uma formiga de uma pulga, mas somos capazes de ver
os olhos desses insetos?
Os menores objetos que podemos distinguir (= resolver) também medem
0,2mm, mas no caso das células isso não ajuda muito, já que as estruturas
internas das células são ainda menores.
INTRODUÇÃO
Você deve se lembrar ainda da equação abaixo:
V= λ.f
onde V é a velocidade da luz (300.000 km/seg)
λ é o comprimento de onda da radiação e
f é a frequência da onda (número de ondas produzidas por segundo).
Note que quanto maior o comprimento de onda, menor é a freqüência;
e vice-versa. Isso porque o produto (velocidade da luz) é uma constante.
A seguir estão representadas duas ondas de freqüência e comprimento de
onda distintos.
Esse limite de resolução depende do comprimento de onda da luz. Com o uso de lentes esse
limite pode ser ampliado; esse princípio se aplica tanto à observação do muito pequeno (como as
células) como do muito grande mas muito distante, como é o caso dos planetas e estrelas.
Aula_01.indd 8 17/6/2004,11:28:19
CEDERJ 9
AULA
1MÓDULO1
HISTÓRICO
No século XVII foram construídos os primeiros microscópios (Figura 1.1(( ). Com um deles,
RobertHookeobservoulâminasdecortiça,chamando célulasaospequenosespaçosregularesdasua
estrutura (Figura 1.2(( ). Mais tarde, tanto Hooke quanto outros pesquisadores da época observaram
que as células vivas não eram ocas como a cortiça, mas o nome original permanece até hoje.
Não seria injusto ou incorreto dizer que o estudo da Biologia Celular
começou nessa época.
Robert Hooke (1635-1703)
O inglês Robert Hooke foi, em pleno século XVII, o que hoje chamamos
“homem dos sete instrumentos”, atuando com contribuições relevantes
nos campos da Física, Astronomia, Química, Biologia, Geologia,
Arquitetura e Tecnologia Naval. Foi colaborador de cientistas como
Isaac Newton, seu grande rival na época, e Robert Boyle, a quem auxiliou
na determinação das leis dos gases. Correspondeu-se com Antony van
Leeuwenhoek confirmando suas observações ao microscópio. Entre
outros inventos, desenvolveu a junta universal, inventou ou melhorou
instrumentos como o barômetro e o anemômetro e um mecanismo
que tornou os relógios mais precisos. A “Lei de Hooke”, equação que
descreve a elasticidade, é empregada até hoje. Suas contribuições nos
campos da Biologia e Paleontologia não foram menos importantes.
Figura 1.1: Microscópio
semelhante ao usado
por Hooke. As partes
componentessãoanálogas
às dos microscópios usados
até hoje.
Figura 1.2: Reprodução das lâminas de
cortiça observadas por Hooke. Cada um dos
espaços foi por ele chamado célula.
Aula_01.indd 9 17/6/2004,11:28:26
Biologia Celular I | Microscopia óptica
CEDERJ10
A reputação de Hooke na história da Biologia se deve em grande parte a sua
obra Micrographia, publicada em 1665. Hooke desenvolveu o microscópio
compostoeosistemadeiluminaçãomostradosnaFigura 1.1,utilizando-opara
descrever detalhadamente uma grande variedade de organismos como insetos,
esponjas,penaseaquelaqueparecesersuamaiorcontribuição,finaslâminasde
cortiça (Figura 1.2(( ). Em desenhos detalhados, Hooke descreveu a estrutura
como pequenos poros, semelhantes a favos de mel, dando-lhes o nome de
células (= pequenas celas, alojamentos dos monges nos conventos). Embora ass
estruturasobservadascorrespondessemapenasàsparedescelularesdecélulas
vegetais já mortas, o nome prevaleceu e dele derivaram os termos Citologia e,
mais modernamente, a Biologia Celular. Sua obra permanece até hoje, embora
não exista nenhum registro de sua própria aparência.
Você pode saber mais em: //www.ucmp.berkeley.edu/history/hooke
Antony van Leeuwenhoek (1632-1723)
Embora tenha feito descobertas fundamentais em Biologia, como as bactérias e os
protozoários (parasitas e de vida livre), Antony van Leeuwenhoek não era um cientista
convencional para seu tempo. Ser filho de comerciantes, sem fortuna, sem educação
universitária e sem dominar outros idiomas senão o holandês já seria o bastante para
excluí-lo do ambiente acadêmico da época. Ainda assim, com habilidade extraordinária para
polir lentes, uma curiosidade infinda e uma mente aberta e livre dos dogmas científicos
de sua época (o século XVII), Leeuwenhoek foi o primeiro a descrever as hemácias, os
espermatozóides e muito mais. Acredita-se que, inspirado pelo livro de Hooke, Micrographia,
Leeuwenhoek começou a polir lentes e a fabricar seus microscópios, tendo montado mais
de 500 deles. Seus microscópios (vide Figura 1.3), embora dotados de uma única lente,
eram capazes de aumentar até em 200 vezes os objetos. Por outro lado, a iluminação
era deficiente e sua manipulação bastante desconfortável para o observador. Em 1673,
Leeuwenhoek começou a enviar cartas com suas observações à recém-criada Royal Society
of London. Em 1680 foi eleito Membro Titular da mesma, juntando-se a Robert Hooke, Isaac
Newton, Henry Boyle e outros cientistas de renome que são marcantes até nossos dias.
Saiba mais em: //www.ucmp.berkeley.edu/history/leeuwen
Figura 1.3: O microscópio
montado por
Leeuwenhoek.
Outro pioneiro da microscopia e da biologia foi Antony van
Leeuwenhoek, holandês que construía seus próprios microscópios
(Figura 1.3) com
apenas uma lente, mas
com resolução suficiente
para observar até mesmo
protozoários e bactérias.
lente
parafuso
de focalização
Aula_01.indd 10 17/6/2004,11:28:32
CEDERJ 11
AULA
1MÓDULO1
PRINCÍPIOS DO FUNCIONAMENTO DE UM MICROSCÓPIO
ÓPTICO
Os microscópios ópticos atuais (Figura 1.4(( ) guardam grande44
semelhança com os primeiros modelos usados por Hooke (Figura 1.1(( ).
Todos os microscópios ópticos se baseiam em uma fonte de
luz que é concentrada por um sistema de lentes condensadoras
sobre uma amostra montada sobre a lâmina. O feixe luminoso
atravessa a amostra e é captado por uma lente objetiva que produz
uma primeira imagem ampliada do objeto, que será em seguida
captada pela lente ocular que projetará a imagem final na retina do
observador (Figura 1.5).
Figura 1.4: Principais componentes de um microscópio óptico simples.
A
B
F C
M
Lente
Objetiva
F´ F1
o
A´
B´
C1
Lente
Ocular
u
F´1 A´´
B´´
Figura 1.5: Esquema da formação da imagem em um microscópio óptico simples.
AB - Objeto A'B' - Imagem de AB
F - Distância Focal A''B'' - Imagem de A'B' (Imagem final)
Lente ocular
Revólver com
lentes objetivas
Fonte de
Iluminação
Foco Macrométrico
Foco Micrométrico
Platina
Condensador (lente)
Aula_01.indd 11 17/6/2004,11:28:39
Biologia Celular I | Microscopia óptica
CEDERJ12
COMO SE OBTÉM O AUMENTO NUM MICROSCÓPIO ÓPTICO
O aumento final é o resultado da multiplicação do aumento dado pela lente objetiva pelo
aumento da lente ocular. Como existem várias lentes objetivas num mesmo microscópio, uma
grande variedade de aumentos pode ser facilmente atingida, bastando girar o revólver. Assim, se
utilizamos uma objetiva de 20X e uma ocular de 10X o aumento final será de 200X (10x20=200).
Hoje em dia a imagem final pode também ser capturada por uma câmara fotográfica, de vídeo ou
ainda por um sistema de computação. Uma ampliação suplementar pode ser obtida ampliando
uma fotografia da imagem observada.
As células e as estruturas que as compõem são muito pequenas para serem medidas em
centímetros ou milímetros, como os objetos do nosso cotidiano. Portanto, para elas usamos as
unidades de medida dos micrômetros (símbolo µm) e nanômetros (símbolo nm). O micrômetro
vale 1 milésimo do milímetro e o nanômetro vale 1 milésimo do micrômetro.
1m = 103 mm
ou = 106 µm
ou = 109 nm
Observação: 103 é a maneira simplificada com que os
matemáticos escrevem as potências de 10, isto é, igual a
1.000; da mesma forma 106 é 1.000.000, e assim por diante.
O LIMITE DE RESOLUÇÃO
NaFigura 1.6vocêtemumaidéiadasdimensõesrelativasdascélulasedeseuscomponentes,
assim como que tipo de instrumento é necessário para que possam ser vistas. Observe que há um
limite para o tamanho das estruturas que podemos observar a olho nu, ou mesmo ao microscópio
óptico. Esse é o limite de resolução do microscópio(ou do seu próprio olho). Várias estruturas
celulares só podem ser vistas com o microscópio eletrônico, tema de nossa próxima aula.
0,1nm
(1Å)
1nm
10nm
100nm
1µm
10µm
100µm
1mm
1cm
átomo
pequena
molécula
proteína
globular
vírus
ribossoma
bactéria
célula
animal
célula
vegetal
Microscópio eletrônico
Microscópio óptico
Olho nu
Figura 1.6: Escala comparada do limite de resolução da microscopia óptica e da eletrônica e os objetos que
cada uma pode discriminar.
Aula_01.indd 12 17/6/2004,11:28:56
CEDERJ 13
AULA
1MÓDULO1
O limite de resolução dos microscópios ópticos é da ordem de
0,2 µm, dependendo da qualidade das lentes e, principalmente, do
comprimento de onda da luz utilizada. Para saber como esse valor foi
calculado, veja a seguir.
O limite de resolução
Oponto-chavedamicroscopia,sejaelaópticaoueletrônica,éolimite
deresoluçãodeummicroscópio.Oconceitodelimitederesoluçãoébastante
simples: trata-se da menor distância entre dois pontos em que eles podem
ser vistos como objetos distintos.
Complicado? Nem tanto, olhe abaixo:
Os pontos A e B estão a uma distância que nos permite separá-los
como distintos, mas em
os pontos C e D não podem ser nitidamente separados, ou seja, o
limite, ou poder de resolução dos nossos olhos não é suficiente para
determinar os limites de cada ponto.
Esse conceito é universalmente expresso na fórmula abaixo:
d = 0,61λ
α
onde d = limite de resolução
λ = comprimento de onda da radiação utilizada; no caso do
feixe luminoso do microscópio óptico, 550 nm.
α = abertura da objetiva em radianos (0,5o
= 0,01rad)
assim,
d= 0,2 µm no microscópio óptico e, como você se lembra,
1 µm = 10-6
m
A B
C D
Aula_01.indd 13 17/6/2004,11:29:00
Biologia Celular I | Microscopia óptica
CEDERJ14
A prova disso é que
Antony van Leeuwenhoek já
observara bactérias no século
XVII, quando a tecnologia para
construção de lentes e mi-
croscópios era muito inferior à
de nossos dias, mas as proprie-
dades físicas da propagação da
luz eram as mesmas.
Estruturas e objetos me-
nores do que 0,2 µm só podem
ser visualizados com auxílio dos
microscópios eletrônicos. Caso
você esteja considerando am-
pliar indefinidamente uma ima-
gem observada ao microscópio
óptico até conseguir enxergar
a estrutura da membrana ce-
lular, por exemplo, podemos
adiantar que isso será tão eficaz
quanto ampliar uma foto 3x4
para contar quantos cílios há na
pálpebra superior esquerda da
pessoa. Concluindo: aumento
e resolução são coisas distintas e o aumento que não traz informação
é chamado aumento vazio, ou seja, não traz informações adicionais
sobre a amostra.
!
Figura 1.7: As ondas
de luz podem sofrer in-
terferência de objetos
de um determinado
tamanho mínimo (a).
Abaixo disso (b), os
objetos passarão des-
percebidos, a menos
que um comprimento
de onda menor seja
usado (c).
Por que será que isso acontece? Tudo é conseqüência da luz.
Observe a Figura 1.7: a luz se propaga na forma de ondas. Elas
colidem com as partículas que formam a amostra, interferindo com
elas. Assim se origina a sensação de contraste (claro/escuro). A onda
de cima representa a luz visível: apenas objetos até um determinado
tamanho são grandes o bastante para interferir com o trajeto do raio
luminoso. Objetos menores passam despercebidos, não causando
alteração na propagação da onda.
Dê uma paradinha::
Imagine-se andando
de bicicleta numa
ciclovia. Você segue
em linha reta à
velocidade da luz.
Você é um raio
de luz! Pedrinhas,
formigas e outros
pequenos objetos
não impedem que
você continue
deslizando
suavemente, sem
interferências. Já
uma chapinha de
refrigerante ou um
pedregulho podem
fazer sua bicicleta
se desviar do trajeto
e, no caso de
obstáculos maiores,
podem impedir sua
passagem. Assim
se comporta a luz
ao atravessar as
amostras observadas
ao microscópio
óptico. Agora, chega
de passear: de volta
ao estudo!
Aula_01.indd 14 17/6/2004,11:29:01
CEDERJ 15
AULA
1MÓDULO1
O preparo de amostras para o microscópio óptico de campo claro
Para que possam ser guardadas por muito tempo, as amostras de células e tecidos
precisam em geral de um tratamento químico que garanta sua preservação. Esse
tratamento inclui várias etapas:
1. Fixação: é o tratamento da amostra com substâncias químicas, como o formol,
que preservem sua forma original.
2. Desidratação: é a substituição da água presente dentro e fora das células por
um solvente orgânico, como o etanol ou metanol. Esse solvente tanto pode ser
removido, deixando a lâmina secar, quanto pode ser substituído por parafina ou
outra resina que torne o tecido rígido, permitindo que seja fatiado.
3. Microtomia: tecidos como fígado ou músculo são muito espessos e precisam
ser cortados em fatias mais finas, que permitam a passagem parcial da luz. Uma vez
embebidos em parafina, deixa-se solidificar e o tecido pode ser cortado (fatiado).
4. Coloração: como a maioria das células e seus componentes não são naturalmente
coloridos, uma série de corantes foi testada e, devido a sua afinidade química por
determinados componentes celulares, é usada, ajudando na identificação dos
diferentes compartimentos celulares. O azul de metileno é um desses corantes.
Maiores detalhes sobre as técnicas de preparo de amostras para microscopia
óptica, você terá na disciplina de Histologia.
OS DIFERENTES MICROSCÓPIOS ÓPTICOS
Além de pequenas, as células possuem outras características que
tornam difícil sua observação:
1. em geral, são transparentes;
2. são muito hidratadas e frágeis;
3. quando em órgãos ou tecidos, precisam ser cortadas em lâminas
finas que permitam a passagem do feixe luminoso.
Por conta disso, foram sendo desenvolvidas ao longo dos anos
tanto novas técnicas de preparo das células, que lhes conferissem maior
resistência e contraste, quanto novas tecnologias na construção de
microscópios que permitissem a observação de células vivas.
Aula_01.indd 15 17/6/2004,11:29:25
Biologia Celular I | Microscopia óptica
CEDERJ16
Figura 1.8: (A): Trajeto da luz num microscópio de campo claro como o representado em (B). A maior parte das
células é muito transparente para ser bem visualizada nesse tipo de microscópio. Observe como aparecem as
células epiteliais que revestem a mucosa bucal sem nenhum tipo de corante (C). Que estruturas você conhece?
(D) hemócitos (células sanguíneas) de caramujo corados. É muito mais fácil observar o núcleo e o contorno da
célula. (Imagens. C- Raul D. Machado, D- Marco Antonio V. Santos)
O resultado disso é que existe hoje uma grande família de microscópios ópticos,
cada um com suas vantagens e limitações sobre os demais. Dentre os de uso mais
corriqueiro, é essencial conhecermos:
1. Microscópio de campo claro, ou microscópio simples: é o microscópio “padrão” representado
na Figura 1.8. Emgeral,requerqueaamostrasejapreparadaantesdaobservação(videboxepágina15).
Duas ondas em fase Duas ondas fora de fase
Figura 1.9: A luz, ao interagir
com um sólido (= célula), tem
sua trajetória atrasada, criando
um contraste em relação à luz
que não encontrou nenhum
obstáculo (A). Esse é o princípio
do microscópio de contraste de
fase, e em (B) você vê as mesmas
células já observadas em campo
claro tal como aparece nesse
microscópio. Há um halo em
torno da célula e de algumas
de suas estruturas internas. Que
estruturas você reconhece?
(A)
(B)
Aumento de Brilho Escuro
Aula_01.indd 16 17/6/2004,11:29:26
CEDERJ 17
AULA
1MÓDULO1
2. Microscópio de contraste de fase: dispensa o uso de corantes,
permitindo a observação de células vivas. Um sistema de filtros (anéis de
fase) interfere no trajeto da luz, criando um contorno claro/escuro em torno
das estruturas celulares (Figura 1.9(( ). Esse contraste permite a observação
de células vivas, mas se elas estiverem muito aglomeradas, a imagem se
torna confusa, requerendo um sistema óptico mais elaborado.
3. Microscópio de contraste interferencial: também utiliza
filtros para criar contraste a partir de diferenças no trajeto da luz. A imagem
final é mais agradável para o observador, mas o sistema é menos comum,
pois é mais caro que o contraste de fase. Também permite observar células
vivas. Quando essas formam camadas, pode-se focalizar apenas um plano,
obtendo-se assim cortes ópticos sem que o tecido seja cortado.s
4. Microscópio de fluorescência: utiliza uma fonte de luz de
comprimento de onda variável (na faixa do ultravioleta) e requer o uso
de corantes fluorescentes (vide Aula 6) que, em última análise, se ligam
a componentes específicos das células. Esses corantes são capazes de
absorver luz de um determinado comprimento de onda (ultravioleta, por
exemplo) e emitir num outro, dentro do espectro visível. Em algumas
situações as células podem ser observadas vivas; em outras, não.
Figura 1.11: No exemplo da foto foi usado um corante fluorescente que se liga a filamentos do citoesqueleto
do protozoário Giardia lamblia . (Foto: Loraine Campanatti).
Figura 1.10: As mesmas
células epiteliais, observa-
das agora em contraste
interferencial. A imagem
sombreada dá noção
de relevo das estruturas
celulares.
Ocular
Espelho
refletor
do feixe
1º Filtro
Lente
objetiva
objeto
Fonte
de luz
2º Filtro
Aula_01.indd 17 17/6/2004,11:29:45
Biologia Celular I | Microscopia óptica
CEDERJ18
O mais comum é que um modelo possa ter seus jogos de lentes
e fontes de luz alternados (intercambiados) para que se possa observar
amostras pelos três métodos.
5. Microscópio confocal de varredura a laser: a conjugação
da ciência da computação aos microscópios de fluorescência trouxe
uma nova dimensão à microscopia óptica. Imagens tridimensionais da
distribuição de filamentos ou organelas celulares podem ser obtidas
a partir de cortes ópticos da amostra capturados e analisados em
computador.
Alguns links interessantes - Apesar de serem em inglês, vale a
pena visitar esses endereços na Internet.
• http://www.ucmp.berkeley.edu/history/leeuwenhoek.html
- Dados biográficos de Leeuwenhoek.
• http://www.ucmp.berkeley.edu/history/hooke.html - Dados
biográficos de Robert Hooke.
• http://micro.magnet.fsu.edu/primer/museum/index.html
- Museu da Microscopia. Tutoriais sobre princípios de óptica. Galeria
de imagens, vídeos on line. Vale a visita!
• http://www.ascb.org/- Página da Sociedade Americana de
Biologia Celular, muitos links interessantes, imagens, vídeos.
• http://www2.uerj.br/~micron/Atlas - imagens de microscopia
(óptica e eletrônica), organizado pelo departamento de Histologia da UERJ.
• http://www.molbio.princeton.edu/confocal/510image2/
Zeisslist2.html - Maravilhosas imagens de fluorescência obtidas em
microscópio de fluorescência confocal.
• http://megasun.bch.umontreal.ca/protists/gallery.html -
Imagens de protistas em microscopia óptica de contraste interferencial
e de fase. Links para imagens desses mesmos organismos em micros-
copia eletrônica, mostrando como vários métodos de observação devem
ser conjugados na análise de um organismo.
Aula_01.indd 18 17/6/2004,11:30:01
CEDERJ 19
AULA
1MÓDULO1
Faça sua própria busca na Internet a partir de palavras-chave como:
Microscopia
Microscope
Fluorescência
Fluorescence
Células
E outras que certamente lhe ocorrerão.
RESUMO
Os microscópios ópticos começaram a ser construídos no século XVII e com eles foram
observadas e batizadas as primeiras células. O aperfeiçoamento na construção de lentes,
filtros e sistemas de iluminação deu origem a uma grande variedade de microscópios
ópticos. Além dos de campo claro, que requerem que o material seja corado, existem
microscópios de contraste de fase e de contraste interferencial, onde as células podem ser
observadas vivas e sem coloração especial. Os microscópios de fluorescência permitem
ver estruturas normalmente muito finas para serem observadas com os comprimentos
de onda da luz visível. O microscópio confocal a laser inaugurou uma nova era na
microscopia óptica, mas a observação da maior parte das estruturas que compõem a
célula só é possível com um instrumento de maior poder de resolução: o microscópio
eletrônico, tema da próxima aula.
EXERCÍCIOS
1. Com base no que foi estudado, calcule o aumento final de um microscópio óptico que
utilize as seguintes combinações de lentes oculares e objetivas:
ocular objetiva aumento final
5x 40x
10x 20x
20x 10x
10x 100x
Aula_01.indd 19 17/6/2004,11:30:02
Biologia Celular I | Microscopia óptica
CEDERJ20
Observações:
As oculares mais comuns são as de 10x.
As objetivas de 100x requerem o uso de óleo de imersão.
A maioria dos microscópios ópticos vem com um jogo de objetivas intercambiáveis de 5, 10, 20,
40 e 100x.
2. Por que as células receberam esse nome?
3. Compare o microscópio de Hooke (Figura 1.1) ao modelo atual (Figura 1.4) identificando
as partes análogas.
4. Qual a importância de cada um dos componentes citados a seguir, para observação ao
microscópio óptico: fonte de luz, lente condensadora, espessura e contraste da amostra?
5. Em que tipo(s) de sistema óptico podemos observar células vivas e sem a adição de
corantes?
6. O que você entende por microscopia de fluorescência?
7. O que é limite de resolução? Qual o limite de resolução do microscópio óptico?
8. Uma hemácia mede 8 µm. Quando observada sob um aumento total de 1.000 vezes,
quanto medirá?
9. Por que, em geral, o núcleo é a única estrutura claramente visível dentro de uma célula
observada ao microscópio óptico?
10. Converta para as unidades correspondentes:
5 mm = nm
0,5 mm = µm
100 µm = nm
1.000 µm = mm
60 nm = µm
11. Uma célula foi fotografada com 2.000x de aumento no microscópio óptico. Uma estrutura que
tenha na realidade 2 µm aparecerá com que comprimento na foto?
12. Procure determinar em que tipo de microscópio óptico as imagens que estão no encarte foram
obtidas. Se conseguir identificar as amostras, melhor ainda, caso contrário consulte o gabarito no
final do livro.
Aula_01.indd 20 17/6/2004,11:30:02

Mais conteúdo relacionado

Mais procurados

Microscopia - Biologia
Microscopia - BiologiaMicroscopia - Biologia
Microscopia - BiologiaKarol Schmitz
 
Microscópio
MicroscópioMicroscópio
Microscópiotjlc
 
Atividade experimental: imagem ao MOC
Atividade experimental: imagem ao MOCAtividade experimental: imagem ao MOC
Atividade experimental: imagem ao MOCAndreiaSofiaVieiraRe
 
Constituicao do microscopio
Constituicao do microscopioConstituicao do microscopio
Constituicao do microscopioTimoteo2017
 
Microscopia
MicroscopiaMicroscopia
MicroscopiaCatir
 
5 microscópio
5   microscópio5   microscópio
5 microscópioPelo Siro
 
Instrumentos óticos
Instrumentos óticosInstrumentos óticos
Instrumentos óticosUERGS
 
Instrumentos ópticos
Instrumentos ópticosInstrumentos ópticos
Instrumentos ópticosLáyla Vieira
 
Poster telecópio
Poster telecópioPoster telecópio
Poster telecópioduartenunoj
 
Como utilizar o microscópio
Como utilizar o microscópioComo utilizar o microscópio
Como utilizar o microscópio00367p
 

Mais procurados (20)

Microscopia - Biologia
Microscopia - BiologiaMicroscopia - Biologia
Microscopia - Biologia
 
Microscópio
MicroscópioMicroscópio
Microscópio
 
Atividade experimental: imagem ao MOC
Atividade experimental: imagem ao MOCAtividade experimental: imagem ao MOC
Atividade experimental: imagem ao MOC
 
Constituicao do microscopio
Constituicao do microscopioConstituicao do microscopio
Constituicao do microscopio
 
Microscopia
MicroscopiaMicroscopia
Microscopia
 
Moc
MocMoc
Moc
 
Tecnicas de microscopia
Tecnicas de microscopiaTecnicas de microscopia
Tecnicas de microscopia
 
Microscopia
MicroscopiaMicroscopia
Microscopia
 
Física-(Óptica)
Física-(Óptica)Física-(Óptica)
Física-(Óptica)
 
2 microscópio
2   microscópio2   microscópio
2 microscópio
 
Microscopio
MicroscopioMicroscopio
Microscopio
 
5 microscópio
5   microscópio5   microscópio
5 microscópio
 
Microscópio
 Microscópio Microscópio
Microscópio
 
Microscopia
MicroscopiaMicroscopia
Microscopia
 
Instrumentos óticos
Instrumentos óticosInstrumentos óticos
Instrumentos óticos
 
Instrumentos ópticos
Instrumentos ópticosInstrumentos ópticos
Instrumentos ópticos
 
Microscópio Óptico
Microscópio Óptico Microscópio Óptico
Microscópio Óptico
 
Poster telecópio
Poster telecópioPoster telecópio
Poster telecópio
 
Instrumentos
InstrumentosInstrumentos
Instrumentos
 
Como utilizar o microscópio
Como utilizar o microscópioComo utilizar o microscópio
Como utilizar o microscópio
 

Destaque

Relatório da aula experimental cn células da cebola
Relatório da aula experimental cn células da cebolaRelatório da aula experimental cn células da cebola
Relatório da aula experimental cn células da cebolaAntónio Morais
 
Meios de Comunicação
Meios de ComunicaçãoMeios de Comunicação
Meios de ComunicaçãoNuno Trabulo
 
1 assep
1 assep1 assep
1 assepMyself
 
Relatorio 4 efeito do dioxido de carbono na abertura22222
Relatorio 4  efeito do dioxido de carbono na abertura22222Relatorio 4  efeito do dioxido de carbono na abertura22222
Relatorio 4 efeito do dioxido de carbono na abertura22222Credencio Maunze
 
Microscopia de ultravioleta e fluorescência
Microscopia de ultravioleta e  fluorescênciaMicroscopia de ultravioleta e  fluorescência
Microscopia de ultravioleta e fluorescênciaAline Arantes
 
Exercícios sobre membrana e transportes osmose animal e vegetal
Exercícios sobre membrana e transportes  osmose animal e vegetal Exercícios sobre membrana e transportes  osmose animal e vegetal
Exercícios sobre membrana e transportes osmose animal e vegetal Grupo UNIASSELVI
 
Atividade experimental
Atividade experimentalAtividade experimental
Atividade experimentalMina Covas
 
CORRECÇÃO DOS EXERCÍCIOS DO 10ºANO
CORRECÇÃO DOS EXERCÍCIOS DO 10ºANOCORRECÇÃO DOS EXERCÍCIOS DO 10ºANO
CORRECÇÃO DOS EXERCÍCIOS DO 10ºANOsandranascimento
 
Actividade experimental célula
Actividade experimental célulaActividade experimental célula
Actividade experimental célulaCarlos Moutinho
 
Aulas práticas de bio cel
Aulas práticas de bio celAulas práticas de bio cel
Aulas práticas de bio celDaniel Delani
 
Actividade Experimental nº2
Actividade Experimental nº2Actividade Experimental nº2
Actividade Experimental nº2Gabriela Bruno
 
Células: atividade prática
Células:  atividade práticaCélulas:  atividade prática
Células: atividade práticaAna Castro
 
03 ObservaçãO Da CéLula Da Cebola Ao Microscopio Tc0809
03 ObservaçãO Da CéLula Da Cebola Ao Microscopio Tc080903 ObservaçãO Da CéLula Da Cebola Ao Microscopio Tc0809
03 ObservaçãO Da CéLula Da Cebola Ao Microscopio Tc0809Teresa Monteiro
 
Relatório actividade experimental - batata & cebola
Relatório   actividade experimental - batata & cebolaRelatório   actividade experimental - batata & cebola
Relatório actividade experimental - batata & cebolaInês Fernandes
 
Aula 02 Microscopio de Luz e Técnicas de Observação e Coloração
Aula 02   Microscopio de Luz e Técnicas de Observação e ColoraçãoAula 02   Microscopio de Luz e Técnicas de Observação e Coloração
Aula 02 Microscopio de Luz e Técnicas de Observação e ColoraçãoHamilton Nobrega
 
Revisões - teste global de Geologia (10º ano)
Revisões  - teste global de Geologia (10º ano)Revisões  - teste global de Geologia (10º ano)
Revisões - teste global de Geologia (10º ano)Ana Castro
 

Destaque (20)

Relatório da aula experimental cn células da cebola
Relatório da aula experimental cn células da cebolaRelatório da aula experimental cn células da cebola
Relatório da aula experimental cn células da cebola
 
Meios de Comunicação
Meios de ComunicaçãoMeios de Comunicação
Meios de Comunicação
 
Apostila de-biologia
Apostila de-biologiaApostila de-biologia
Apostila de-biologia
 
1 assep
1 assep1 assep
1 assep
 
Relatorio 4 efeito do dioxido de carbono na abertura22222
Relatorio 4  efeito do dioxido de carbono na abertura22222Relatorio 4  efeito do dioxido de carbono na abertura22222
Relatorio 4 efeito do dioxido de carbono na abertura22222
 
Microscopia de ultravioleta e fluorescência
Microscopia de ultravioleta e  fluorescênciaMicroscopia de ultravioleta e  fluorescência
Microscopia de ultravioleta e fluorescência
 
Exercícios sobre membrana e transportes osmose animal e vegetal
Exercícios sobre membrana e transportes  osmose animal e vegetal Exercícios sobre membrana e transportes  osmose animal e vegetal
Exercícios sobre membrana e transportes osmose animal e vegetal
 
2 uma visão geral da biologia
2   uma visão geral da biologia2   uma visão geral da biologia
2 uma visão geral da biologia
 
Estudo dirigido
Estudo dirigidoEstudo dirigido
Estudo dirigido
 
Atividade experimental
Atividade experimentalAtividade experimental
Atividade experimental
 
CORRECÇÃO DOS EXERCÍCIOS DO 10ºANO
CORRECÇÃO DOS EXERCÍCIOS DO 10ºANOCORRECÇÃO DOS EXERCÍCIOS DO 10ºANO
CORRECÇÃO DOS EXERCÍCIOS DO 10ºANO
 
Actividade experimental célula
Actividade experimental célulaActividade experimental célula
Actividade experimental célula
 
Abertura e fecho dos estomas
Abertura e fecho dos estomasAbertura e fecho dos estomas
Abertura e fecho dos estomas
 
Aulas práticas de bio cel
Aulas práticas de bio celAulas práticas de bio cel
Aulas práticas de bio cel
 
Actividade Experimental nº2
Actividade Experimental nº2Actividade Experimental nº2
Actividade Experimental nº2
 
Células: atividade prática
Células:  atividade práticaCélulas:  atividade prática
Células: atividade prática
 
03 ObservaçãO Da CéLula Da Cebola Ao Microscopio Tc0809
03 ObservaçãO Da CéLula Da Cebola Ao Microscopio Tc080903 ObservaçãO Da CéLula Da Cebola Ao Microscopio Tc0809
03 ObservaçãO Da CéLula Da Cebola Ao Microscopio Tc0809
 
Relatório actividade experimental - batata & cebola
Relatório   actividade experimental - batata & cebolaRelatório   actividade experimental - batata & cebola
Relatório actividade experimental - batata & cebola
 
Aula 02 Microscopio de Luz e Técnicas de Observação e Coloração
Aula 02   Microscopio de Luz e Técnicas de Observação e ColoraçãoAula 02   Microscopio de Luz e Técnicas de Observação e Coloração
Aula 02 Microscopio de Luz e Técnicas de Observação e Coloração
 
Revisões - teste global de Geologia (10º ano)
Revisões  - teste global de Geologia (10º ano)Revisões  - teste global de Geologia (10º ano)
Revisões - teste global de Geologia (10º ano)
 

Semelhante a 17417 biologia celular_1_aula_01_volume_01

Fcte web microscopia_e_citologia
Fcte web microscopia_e_citologiaFcte web microscopia_e_citologia
Fcte web microscopia_e_citologiaPaula Mello
 
Aula de Microscopia e História do estudo celular.ppt
Aula de Microscopia e História do estudo celular.pptAula de Microscopia e História do estudo celular.ppt
Aula de Microscopia e História do estudo celular.pptBruno Oliveira
 
Citologia - Biologia Básica
Citologia - Biologia BásicaCitologia - Biologia Básica
Citologia - Biologia Básicavozativaasd
 
1Celula.pdf
1Celula.pdf1Celula.pdf
1Celula.pdfJAP73
 
ncsi5_ppt_19.pptx
ncsi5_ppt_19.pptxncsi5_ppt_19.pptx
ncsi5_ppt_19.pptxmariagrave
 
óptica(microscópio)
óptica(microscópio)óptica(microscópio)
óptica(microscópio)Larissa Silva
 
RESUMO SOBRE O MICROSCOPIO E SUAS CARACTERÍSTICAS
RESUMO SOBRE O MICROSCOPIO E SUAS CARACTERÍSTICASRESUMO SOBRE O MICROSCOPIO E SUAS CARACTERÍSTICAS
RESUMO SOBRE O MICROSCOPIO E SUAS CARACTERÍSTICASCaitano José
 
Microscopia E Teoria Celular
Microscopia E Teoria CelularMicroscopia E Teoria Celular
Microscopia E Teoria CelularTânia Reis
 
4 moc - constituição e história.
4   moc - constituição e história.4   moc - constituição e história.
4 moc - constituição e história.Mina Covas
 
Microscopia
MicroscopiaMicroscopia
MicroscopiaURCA
 
Ativ4.5 ebook produzindo o relato multimidia
Ativ4.5 ebook produzindo o relato multimidiaAtiv4.5 ebook produzindo o relato multimidia
Ativ4.5 ebook produzindo o relato multimidiaArcelino Barbosa
 

Semelhante a 17417 biologia celular_1_aula_01_volume_01 (20)

Fcte web microscopia_e_citologia
Fcte web microscopia_e_citologiaFcte web microscopia_e_citologia
Fcte web microscopia_e_citologia
 
Aula de Microscopia e História do estudo celular.ppt
Aula de Microscopia e História do estudo celular.pptAula de Microscopia e História do estudo celular.ppt
Aula de Microscopia e História do estudo celular.ppt
 
Citologia - Biologia Básica
Citologia - Biologia BásicaCitologia - Biologia Básica
Citologia - Biologia Básica
 
Uma Visão Geral da Célula
Uma Visão Geral da CélulaUma Visão Geral da Célula
Uma Visão Geral da Célula
 
1 celula
1 celula1 celula
1 celula
 
1 celula
1 celula1 celula
1 celula
 
1Celula.pdf
1Celula.pdf1Celula.pdf
1Celula.pdf
 
Celula.pdf
Celula.pdfCelula.pdf
Celula.pdf
 
Cito e membrana
Cito e membranaCito e membrana
Cito e membrana
 
ncsi5_ppt_19.pptx
ncsi5_ppt_19.pptxncsi5_ppt_19.pptx
ncsi5_ppt_19.pptx
 
Teoria microscopiocelula
Teoria microscopiocelulaTeoria microscopiocelula
Teoria microscopiocelula
 
óptica(microscópio)
óptica(microscópio)óptica(microscópio)
óptica(microscópio)
 
O microscópio
O microscópioO microscópio
O microscópio
 
Microscópio (2)
Microscópio (2)Microscópio (2)
Microscópio (2)
 
RESUMO SOBRE O MICROSCOPIO E SUAS CARACTERÍSTICAS
RESUMO SOBRE O MICROSCOPIO E SUAS CARACTERÍSTICASRESUMO SOBRE O MICROSCOPIO E SUAS CARACTERÍSTICAS
RESUMO SOBRE O MICROSCOPIO E SUAS CARACTERÍSTICAS
 
Microscopia E Teoria Celular
Microscopia E Teoria CelularMicroscopia E Teoria Celular
Microscopia E Teoria Celular
 
4 moc - constituição e história.
4   moc - constituição e história.4   moc - constituição e história.
4 moc - constituição e história.
 
Microscopia
MicroscopiaMicroscopia
Microscopia
 
2aula mev
2aula mev2aula mev
2aula mev
 
Ativ4.5 ebook produzindo o relato multimidia
Ativ4.5 ebook produzindo o relato multimidiaAtiv4.5 ebook produzindo o relato multimidia
Ativ4.5 ebook produzindo o relato multimidia
 

Último

Slides Lição 1, CPAD, O Início da Caminhada, 2Tr24, Pr Henrique.pptx
Slides Lição 1, CPAD, O Início da Caminhada, 2Tr24, Pr Henrique.pptxSlides Lição 1, CPAD, O Início da Caminhada, 2Tr24, Pr Henrique.pptx
Slides Lição 1, CPAD, O Início da Caminhada, 2Tr24, Pr Henrique.pptxLuizHenriquedeAlmeid6
 
Depende De Nós! José Ernesto Ferraresso.ppsx
Depende De Nós! José Ernesto Ferraresso.ppsxDepende De Nós! José Ernesto Ferraresso.ppsx
Depende De Nós! José Ernesto Ferraresso.ppsxLuzia Gabriele
 
autismo conhecer.pptx, Conhecer para entender
autismo conhecer.pptx, Conhecer para entenderautismo conhecer.pptx, Conhecer para entender
autismo conhecer.pptx, Conhecer para entenderLucliaResende1
 
Peixeiras da Coruña. O Muro da Coruña. IES Monelos
Peixeiras da Coruña. O Muro da Coruña. IES MonelosPeixeiras da Coruña. O Muro da Coruña. IES Monelos
Peixeiras da Coruña. O Muro da Coruña. IES MonelosAgrela Elvixeo
 
Atividade de matemática para simulado de 2024
Atividade de matemática para simulado de 2024Atividade de matemática para simulado de 2024
Atividade de matemática para simulado de 2024gilmaraoliveira0612
 
Termo de audiência de Mauro Cid na ìntegra
Termo de audiência de Mauro Cid na ìntegraTermo de audiência de Mauro Cid na ìntegra
Termo de audiência de Mauro Cid na ìntegrafernando846621
 
Aula 6 - O Imperialismo e seu discurso civilizatório.pptx
Aula 6 - O Imperialismo e seu discurso civilizatório.pptxAula 6 - O Imperialismo e seu discurso civilizatório.pptx
Aula 6 - O Imperialismo e seu discurso civilizatório.pptxMarceloDosSantosSoar3
 
Caça palavras - BULLYING
Caça palavras  -  BULLYING  Caça palavras  -  BULLYING
Caça palavras - BULLYING Mary Alvarenga
 
PROJETO DE EXTENSÃO - SEGURANÇA, INOVAÇÃO E SUSTENTABILIDADE PARA O BEM COMUM...
PROJETO DE EXTENSÃO - SEGURANÇA, INOVAÇÃO E SUSTENTABILIDADE PARA O BEM COMUM...PROJETO DE EXTENSÃO - SEGURANÇA, INOVAÇÃO E SUSTENTABILIDADE PARA O BEM COMUM...
PROJETO DE EXTENSÃO - SEGURANÇA, INOVAÇÃO E SUSTENTABILIDADE PARA O BEM COMUM...Colaborar Educacional
 
Trabalho DAC História 25 de Abril de 1974
Trabalho DAC História 25 de Abril de 1974Trabalho DAC História 25 de Abril de 1974
Trabalho DAC História 25 de Abril de 1974AnaRitaFreitas7
 
AS REBELIÕES NA AMERICA IBERICA (Prof. Francisco Leite)
AS REBELIÕES NA AMERICA IBERICA (Prof. Francisco Leite)AS REBELIÕES NA AMERICA IBERICA (Prof. Francisco Leite)
AS REBELIÕES NA AMERICA IBERICA (Prof. Francisco Leite)profesfrancleite
 
A CONCEPÇÃO FILO/SOCIOLÓGICA DE KARL MARX
A CONCEPÇÃO FILO/SOCIOLÓGICA DE KARL MARXA CONCEPÇÃO FILO/SOCIOLÓGICA DE KARL MARX
A CONCEPÇÃO FILO/SOCIOLÓGICA DE KARL MARXHisrelBlog
 
1. CIENCIAS-HUMANAS-GLOBALIZAÇÃO, TEMPO E ESPAÇO-V1.pdf
1. CIENCIAS-HUMANAS-GLOBALIZAÇÃO, TEMPO E ESPAÇO-V1.pdf1. CIENCIAS-HUMANAS-GLOBALIZAÇÃO, TEMPO E ESPAÇO-V1.pdf
1. CIENCIAS-HUMANAS-GLOBALIZAÇÃO, TEMPO E ESPAÇO-V1.pdfRitoneltonSouzaSanto
 
aula 1.pptx Ementa e Plano de ensino Filosofia
aula 1.pptx Ementa e  Plano de ensino Filosofiaaula 1.pptx Ementa e  Plano de ensino Filosofia
aula 1.pptx Ementa e Plano de ensino FilosofiaLucliaResende1
 
Verbos - transitivos e intransitivos.pdf
Verbos -  transitivos e intransitivos.pdfVerbos -  transitivos e intransitivos.pdf
Verbos - transitivos e intransitivos.pdfKarinaSouzaCorreiaAl
 
O-P-mais-importante.pptx de Maria Jesus Sousa
O-P-mais-importante.pptx de Maria Jesus SousaO-P-mais-importante.pptx de Maria Jesus Sousa
O-P-mais-importante.pptx de Maria Jesus SousaTeresaCosta92
 
Apresentação sobrea dengue educação.pptx
Apresentação sobrea dengue educação.pptxApresentação sobrea dengue educação.pptx
Apresentação sobrea dengue educação.pptxtaloAugusto8
 
Poema sobre o mosquito Aedes aegipyti -
Poema sobre o mosquito Aedes aegipyti  -Poema sobre o mosquito Aedes aegipyti  -
Poema sobre o mosquito Aedes aegipyti -Mary Alvarenga
 

Último (20)

Slides Lição 1, CPAD, O Início da Caminhada, 2Tr24, Pr Henrique.pptx
Slides Lição 1, CPAD, O Início da Caminhada, 2Tr24, Pr Henrique.pptxSlides Lição 1, CPAD, O Início da Caminhada, 2Tr24, Pr Henrique.pptx
Slides Lição 1, CPAD, O Início da Caminhada, 2Tr24, Pr Henrique.pptx
 
Depende De Nós! José Ernesto Ferraresso.ppsx
Depende De Nós! José Ernesto Ferraresso.ppsxDepende De Nós! José Ernesto Ferraresso.ppsx
Depende De Nós! José Ernesto Ferraresso.ppsx
 
autismo conhecer.pptx, Conhecer para entender
autismo conhecer.pptx, Conhecer para entenderautismo conhecer.pptx, Conhecer para entender
autismo conhecer.pptx, Conhecer para entender
 
Peixeiras da Coruña. O Muro da Coruña. IES Monelos
Peixeiras da Coruña. O Muro da Coruña. IES MonelosPeixeiras da Coruña. O Muro da Coruña. IES Monelos
Peixeiras da Coruña. O Muro da Coruña. IES Monelos
 
Atividade de matemática para simulado de 2024
Atividade de matemática para simulado de 2024Atividade de matemática para simulado de 2024
Atividade de matemática para simulado de 2024
 
Termo de audiência de Mauro Cid na ìntegra
Termo de audiência de Mauro Cid na ìntegraTermo de audiência de Mauro Cid na ìntegra
Termo de audiência de Mauro Cid na ìntegra
 
Aula 6 - O Imperialismo e seu discurso civilizatório.pptx
Aula 6 - O Imperialismo e seu discurso civilizatório.pptxAula 6 - O Imperialismo e seu discurso civilizatório.pptx
Aula 6 - O Imperialismo e seu discurso civilizatório.pptx
 
Caça palavras - BULLYING
Caça palavras  -  BULLYING  Caça palavras  -  BULLYING
Caça palavras - BULLYING
 
PROJETO DE EXTENSÃO - SEGURANÇA, INOVAÇÃO E SUSTENTABILIDADE PARA O BEM COMUM...
PROJETO DE EXTENSÃO - SEGURANÇA, INOVAÇÃO E SUSTENTABILIDADE PARA O BEM COMUM...PROJETO DE EXTENSÃO - SEGURANÇA, INOVAÇÃO E SUSTENTABILIDADE PARA O BEM COMUM...
PROJETO DE EXTENSÃO - SEGURANÇA, INOVAÇÃO E SUSTENTABILIDADE PARA O BEM COMUM...
 
Trabalho DAC História 25 de Abril de 1974
Trabalho DAC História 25 de Abril de 1974Trabalho DAC História 25 de Abril de 1974
Trabalho DAC História 25 de Abril de 1974
 
AS REBELIÕES NA AMERICA IBERICA (Prof. Francisco Leite)
AS REBELIÕES NA AMERICA IBERICA (Prof. Francisco Leite)AS REBELIÕES NA AMERICA IBERICA (Prof. Francisco Leite)
AS REBELIÕES NA AMERICA IBERICA (Prof. Francisco Leite)
 
A CONCEPÇÃO FILO/SOCIOLÓGICA DE KARL MARX
A CONCEPÇÃO FILO/SOCIOLÓGICA DE KARL MARXA CONCEPÇÃO FILO/SOCIOLÓGICA DE KARL MARX
A CONCEPÇÃO FILO/SOCIOLÓGICA DE KARL MARX
 
Abordagens 4 (Problematização) e 5 (Síntese pessoal) do texto de Severino (20...
Abordagens 4 (Problematização) e 5 (Síntese pessoal) do texto de Severino (20...Abordagens 4 (Problematização) e 5 (Síntese pessoal) do texto de Severino (20...
Abordagens 4 (Problematização) e 5 (Síntese pessoal) do texto de Severino (20...
 
1. CIENCIAS-HUMANAS-GLOBALIZAÇÃO, TEMPO E ESPAÇO-V1.pdf
1. CIENCIAS-HUMANAS-GLOBALIZAÇÃO, TEMPO E ESPAÇO-V1.pdf1. CIENCIAS-HUMANAS-GLOBALIZAÇÃO, TEMPO E ESPAÇO-V1.pdf
1. CIENCIAS-HUMANAS-GLOBALIZAÇÃO, TEMPO E ESPAÇO-V1.pdf
 
aula 1.pptx Ementa e Plano de ensino Filosofia
aula 1.pptx Ementa e  Plano de ensino Filosofiaaula 1.pptx Ementa e  Plano de ensino Filosofia
aula 1.pptx Ementa e Plano de ensino Filosofia
 
Verbos - transitivos e intransitivos.pdf
Verbos -  transitivos e intransitivos.pdfVerbos -  transitivos e intransitivos.pdf
Verbos - transitivos e intransitivos.pdf
 
O-P-mais-importante.pptx de Maria Jesus Sousa
O-P-mais-importante.pptx de Maria Jesus SousaO-P-mais-importante.pptx de Maria Jesus Sousa
O-P-mais-importante.pptx de Maria Jesus Sousa
 
Apresentação sobrea dengue educação.pptx
Apresentação sobrea dengue educação.pptxApresentação sobrea dengue educação.pptx
Apresentação sobrea dengue educação.pptx
 
Poema sobre o mosquito Aedes aegipyti -
Poema sobre o mosquito Aedes aegipyti  -Poema sobre o mosquito Aedes aegipyti  -
Poema sobre o mosquito Aedes aegipyti -
 
Abordagem 3. Análise interpretativa (Severino, 2013)_PdfToPowerPoint.pdf
Abordagem 3. Análise interpretativa (Severino, 2013)_PdfToPowerPoint.pdfAbordagem 3. Análise interpretativa (Severino, 2013)_PdfToPowerPoint.pdf
Abordagem 3. Análise interpretativa (Severino, 2013)_PdfToPowerPoint.pdf
 

17417 biologia celular_1_aula_01_volume_01

  • 1. 5 1Microscopia óptica Ao final desta aula, você deverá ser capaz de: • Conhecer o breve histórico da microscopia. • Definir o que é um microscópio. • Conceituar poder de resolução. • Saber os princípios de funcionamento de um microscópio simples. • Conhecer os principais tipos de microscópios ópticos e suas aplicações. • Ter noções de preparo de amostras para microscopia óptica. • Consultar links de interesse. aula OBJETIVOS Aula_01.indd 7 17/6/2004,11:28:02
  • 2. Biologia Celular I | Microscopia óptica CEDERJ8 O primeiro problema a enfrentar no estudo das células é o seu tamanho: as células são pequenas demais para serem observadas a olho nu. Por esse motivo as primeiras células foram observadas e descritas apenas no século XVII, quando foi inventado o microscópio óptico. Você tem idéia de qual seja o tamanho de uma célula? As maiores células medem cerca de 0,2mm; mas, em média, uma célula é 10 ou 20 vezes menor do que isso. Por outro lado, nós lhe perguntamos: qual o tamanho dos menores objetos que podemos distinguir a olho nu (sem ajuda de instrumentos especiais)? Podemos distinguir uma formiga de uma pulga, mas somos capazes de ver os olhos desses insetos? Os menores objetos que podemos distinguir (= resolver) também medem 0,2mm, mas no caso das células isso não ajuda muito, já que as estruturas internas das células são ainda menores. INTRODUÇÃO Você deve se lembrar ainda da equação abaixo: V= λ.f onde V é a velocidade da luz (300.000 km/seg) λ é o comprimento de onda da radiação e f é a frequência da onda (número de ondas produzidas por segundo). Note que quanto maior o comprimento de onda, menor é a freqüência; e vice-versa. Isso porque o produto (velocidade da luz) é uma constante. A seguir estão representadas duas ondas de freqüência e comprimento de onda distintos. Esse limite de resolução depende do comprimento de onda da luz. Com o uso de lentes esse limite pode ser ampliado; esse princípio se aplica tanto à observação do muito pequeno (como as células) como do muito grande mas muito distante, como é o caso dos planetas e estrelas. Aula_01.indd 8 17/6/2004,11:28:19
  • 3. CEDERJ 9 AULA 1MÓDULO1 HISTÓRICO No século XVII foram construídos os primeiros microscópios (Figura 1.1(( ). Com um deles, RobertHookeobservoulâminasdecortiça,chamando célulasaospequenosespaçosregularesdasua estrutura (Figura 1.2(( ). Mais tarde, tanto Hooke quanto outros pesquisadores da época observaram que as células vivas não eram ocas como a cortiça, mas o nome original permanece até hoje. Não seria injusto ou incorreto dizer que o estudo da Biologia Celular começou nessa época. Robert Hooke (1635-1703) O inglês Robert Hooke foi, em pleno século XVII, o que hoje chamamos “homem dos sete instrumentos”, atuando com contribuições relevantes nos campos da Física, Astronomia, Química, Biologia, Geologia, Arquitetura e Tecnologia Naval. Foi colaborador de cientistas como Isaac Newton, seu grande rival na época, e Robert Boyle, a quem auxiliou na determinação das leis dos gases. Correspondeu-se com Antony van Leeuwenhoek confirmando suas observações ao microscópio. Entre outros inventos, desenvolveu a junta universal, inventou ou melhorou instrumentos como o barômetro e o anemômetro e um mecanismo que tornou os relógios mais precisos. A “Lei de Hooke”, equação que descreve a elasticidade, é empregada até hoje. Suas contribuições nos campos da Biologia e Paleontologia não foram menos importantes. Figura 1.1: Microscópio semelhante ao usado por Hooke. As partes componentessãoanálogas às dos microscópios usados até hoje. Figura 1.2: Reprodução das lâminas de cortiça observadas por Hooke. Cada um dos espaços foi por ele chamado célula. Aula_01.indd 9 17/6/2004,11:28:26
  • 4. Biologia Celular I | Microscopia óptica CEDERJ10 A reputação de Hooke na história da Biologia se deve em grande parte a sua obra Micrographia, publicada em 1665. Hooke desenvolveu o microscópio compostoeosistemadeiluminaçãomostradosnaFigura 1.1,utilizando-opara descrever detalhadamente uma grande variedade de organismos como insetos, esponjas,penaseaquelaqueparecesersuamaiorcontribuição,finaslâminasde cortiça (Figura 1.2(( ). Em desenhos detalhados, Hooke descreveu a estrutura como pequenos poros, semelhantes a favos de mel, dando-lhes o nome de células (= pequenas celas, alojamentos dos monges nos conventos). Embora ass estruturasobservadascorrespondessemapenasàsparedescelularesdecélulas vegetais já mortas, o nome prevaleceu e dele derivaram os termos Citologia e, mais modernamente, a Biologia Celular. Sua obra permanece até hoje, embora não exista nenhum registro de sua própria aparência. Você pode saber mais em: //www.ucmp.berkeley.edu/history/hooke Antony van Leeuwenhoek (1632-1723) Embora tenha feito descobertas fundamentais em Biologia, como as bactérias e os protozoários (parasitas e de vida livre), Antony van Leeuwenhoek não era um cientista convencional para seu tempo. Ser filho de comerciantes, sem fortuna, sem educação universitária e sem dominar outros idiomas senão o holandês já seria o bastante para excluí-lo do ambiente acadêmico da época. Ainda assim, com habilidade extraordinária para polir lentes, uma curiosidade infinda e uma mente aberta e livre dos dogmas científicos de sua época (o século XVII), Leeuwenhoek foi o primeiro a descrever as hemácias, os espermatozóides e muito mais. Acredita-se que, inspirado pelo livro de Hooke, Micrographia, Leeuwenhoek começou a polir lentes e a fabricar seus microscópios, tendo montado mais de 500 deles. Seus microscópios (vide Figura 1.3), embora dotados de uma única lente, eram capazes de aumentar até em 200 vezes os objetos. Por outro lado, a iluminação era deficiente e sua manipulação bastante desconfortável para o observador. Em 1673, Leeuwenhoek começou a enviar cartas com suas observações à recém-criada Royal Society of London. Em 1680 foi eleito Membro Titular da mesma, juntando-se a Robert Hooke, Isaac Newton, Henry Boyle e outros cientistas de renome que são marcantes até nossos dias. Saiba mais em: //www.ucmp.berkeley.edu/history/leeuwen Figura 1.3: O microscópio montado por Leeuwenhoek. Outro pioneiro da microscopia e da biologia foi Antony van Leeuwenhoek, holandês que construía seus próprios microscópios (Figura 1.3) com apenas uma lente, mas com resolução suficiente para observar até mesmo protozoários e bactérias. lente parafuso de focalização Aula_01.indd 10 17/6/2004,11:28:32
  • 5. CEDERJ 11 AULA 1MÓDULO1 PRINCÍPIOS DO FUNCIONAMENTO DE UM MICROSCÓPIO ÓPTICO Os microscópios ópticos atuais (Figura 1.4(( ) guardam grande44 semelhança com os primeiros modelos usados por Hooke (Figura 1.1(( ). Todos os microscópios ópticos se baseiam em uma fonte de luz que é concentrada por um sistema de lentes condensadoras sobre uma amostra montada sobre a lâmina. O feixe luminoso atravessa a amostra e é captado por uma lente objetiva que produz uma primeira imagem ampliada do objeto, que será em seguida captada pela lente ocular que projetará a imagem final na retina do observador (Figura 1.5). Figura 1.4: Principais componentes de um microscópio óptico simples. A B F C M Lente Objetiva F´ F1 o A´ B´ C1 Lente Ocular u F´1 A´´ B´´ Figura 1.5: Esquema da formação da imagem em um microscópio óptico simples. AB - Objeto A'B' - Imagem de AB F - Distância Focal A''B'' - Imagem de A'B' (Imagem final) Lente ocular Revólver com lentes objetivas Fonte de Iluminação Foco Macrométrico Foco Micrométrico Platina Condensador (lente) Aula_01.indd 11 17/6/2004,11:28:39
  • 6. Biologia Celular I | Microscopia óptica CEDERJ12 COMO SE OBTÉM O AUMENTO NUM MICROSCÓPIO ÓPTICO O aumento final é o resultado da multiplicação do aumento dado pela lente objetiva pelo aumento da lente ocular. Como existem várias lentes objetivas num mesmo microscópio, uma grande variedade de aumentos pode ser facilmente atingida, bastando girar o revólver. Assim, se utilizamos uma objetiva de 20X e uma ocular de 10X o aumento final será de 200X (10x20=200). Hoje em dia a imagem final pode também ser capturada por uma câmara fotográfica, de vídeo ou ainda por um sistema de computação. Uma ampliação suplementar pode ser obtida ampliando uma fotografia da imagem observada. As células e as estruturas que as compõem são muito pequenas para serem medidas em centímetros ou milímetros, como os objetos do nosso cotidiano. Portanto, para elas usamos as unidades de medida dos micrômetros (símbolo µm) e nanômetros (símbolo nm). O micrômetro vale 1 milésimo do milímetro e o nanômetro vale 1 milésimo do micrômetro. 1m = 103 mm ou = 106 µm ou = 109 nm Observação: 103 é a maneira simplificada com que os matemáticos escrevem as potências de 10, isto é, igual a 1.000; da mesma forma 106 é 1.000.000, e assim por diante. O LIMITE DE RESOLUÇÃO NaFigura 1.6vocêtemumaidéiadasdimensõesrelativasdascélulasedeseuscomponentes, assim como que tipo de instrumento é necessário para que possam ser vistas. Observe que há um limite para o tamanho das estruturas que podemos observar a olho nu, ou mesmo ao microscópio óptico. Esse é o limite de resolução do microscópio(ou do seu próprio olho). Várias estruturas celulares só podem ser vistas com o microscópio eletrônico, tema de nossa próxima aula. 0,1nm (1Å) 1nm 10nm 100nm 1µm 10µm 100µm 1mm 1cm átomo pequena molécula proteína globular vírus ribossoma bactéria célula animal célula vegetal Microscópio eletrônico Microscópio óptico Olho nu Figura 1.6: Escala comparada do limite de resolução da microscopia óptica e da eletrônica e os objetos que cada uma pode discriminar. Aula_01.indd 12 17/6/2004,11:28:56
  • 7. CEDERJ 13 AULA 1MÓDULO1 O limite de resolução dos microscópios ópticos é da ordem de 0,2 µm, dependendo da qualidade das lentes e, principalmente, do comprimento de onda da luz utilizada. Para saber como esse valor foi calculado, veja a seguir. O limite de resolução Oponto-chavedamicroscopia,sejaelaópticaoueletrônica,éolimite deresoluçãodeummicroscópio.Oconceitodelimitederesoluçãoébastante simples: trata-se da menor distância entre dois pontos em que eles podem ser vistos como objetos distintos. Complicado? Nem tanto, olhe abaixo: Os pontos A e B estão a uma distância que nos permite separá-los como distintos, mas em os pontos C e D não podem ser nitidamente separados, ou seja, o limite, ou poder de resolução dos nossos olhos não é suficiente para determinar os limites de cada ponto. Esse conceito é universalmente expresso na fórmula abaixo: d = 0,61λ α onde d = limite de resolução λ = comprimento de onda da radiação utilizada; no caso do feixe luminoso do microscópio óptico, 550 nm. α = abertura da objetiva em radianos (0,5o = 0,01rad) assim, d= 0,2 µm no microscópio óptico e, como você se lembra, 1 µm = 10-6 m A B C D Aula_01.indd 13 17/6/2004,11:29:00
  • 8. Biologia Celular I | Microscopia óptica CEDERJ14 A prova disso é que Antony van Leeuwenhoek já observara bactérias no século XVII, quando a tecnologia para construção de lentes e mi- croscópios era muito inferior à de nossos dias, mas as proprie- dades físicas da propagação da luz eram as mesmas. Estruturas e objetos me- nores do que 0,2 µm só podem ser visualizados com auxílio dos microscópios eletrônicos. Caso você esteja considerando am- pliar indefinidamente uma ima- gem observada ao microscópio óptico até conseguir enxergar a estrutura da membrana ce- lular, por exemplo, podemos adiantar que isso será tão eficaz quanto ampliar uma foto 3x4 para contar quantos cílios há na pálpebra superior esquerda da pessoa. Concluindo: aumento e resolução são coisas distintas e o aumento que não traz informação é chamado aumento vazio, ou seja, não traz informações adicionais sobre a amostra. ! Figura 1.7: As ondas de luz podem sofrer in- terferência de objetos de um determinado tamanho mínimo (a). Abaixo disso (b), os objetos passarão des- percebidos, a menos que um comprimento de onda menor seja usado (c). Por que será que isso acontece? Tudo é conseqüência da luz. Observe a Figura 1.7: a luz se propaga na forma de ondas. Elas colidem com as partículas que formam a amostra, interferindo com elas. Assim se origina a sensação de contraste (claro/escuro). A onda de cima representa a luz visível: apenas objetos até um determinado tamanho são grandes o bastante para interferir com o trajeto do raio luminoso. Objetos menores passam despercebidos, não causando alteração na propagação da onda. Dê uma paradinha:: Imagine-se andando de bicicleta numa ciclovia. Você segue em linha reta à velocidade da luz. Você é um raio de luz! Pedrinhas, formigas e outros pequenos objetos não impedem que você continue deslizando suavemente, sem interferências. Já uma chapinha de refrigerante ou um pedregulho podem fazer sua bicicleta se desviar do trajeto e, no caso de obstáculos maiores, podem impedir sua passagem. Assim se comporta a luz ao atravessar as amostras observadas ao microscópio óptico. Agora, chega de passear: de volta ao estudo! Aula_01.indd 14 17/6/2004,11:29:01
  • 9. CEDERJ 15 AULA 1MÓDULO1 O preparo de amostras para o microscópio óptico de campo claro Para que possam ser guardadas por muito tempo, as amostras de células e tecidos precisam em geral de um tratamento químico que garanta sua preservação. Esse tratamento inclui várias etapas: 1. Fixação: é o tratamento da amostra com substâncias químicas, como o formol, que preservem sua forma original. 2. Desidratação: é a substituição da água presente dentro e fora das células por um solvente orgânico, como o etanol ou metanol. Esse solvente tanto pode ser removido, deixando a lâmina secar, quanto pode ser substituído por parafina ou outra resina que torne o tecido rígido, permitindo que seja fatiado. 3. Microtomia: tecidos como fígado ou músculo são muito espessos e precisam ser cortados em fatias mais finas, que permitam a passagem parcial da luz. Uma vez embebidos em parafina, deixa-se solidificar e o tecido pode ser cortado (fatiado). 4. Coloração: como a maioria das células e seus componentes não são naturalmente coloridos, uma série de corantes foi testada e, devido a sua afinidade química por determinados componentes celulares, é usada, ajudando na identificação dos diferentes compartimentos celulares. O azul de metileno é um desses corantes. Maiores detalhes sobre as técnicas de preparo de amostras para microscopia óptica, você terá na disciplina de Histologia. OS DIFERENTES MICROSCÓPIOS ÓPTICOS Além de pequenas, as células possuem outras características que tornam difícil sua observação: 1. em geral, são transparentes; 2. são muito hidratadas e frágeis; 3. quando em órgãos ou tecidos, precisam ser cortadas em lâminas finas que permitam a passagem do feixe luminoso. Por conta disso, foram sendo desenvolvidas ao longo dos anos tanto novas técnicas de preparo das células, que lhes conferissem maior resistência e contraste, quanto novas tecnologias na construção de microscópios que permitissem a observação de células vivas. Aula_01.indd 15 17/6/2004,11:29:25
  • 10. Biologia Celular I | Microscopia óptica CEDERJ16 Figura 1.8: (A): Trajeto da luz num microscópio de campo claro como o representado em (B). A maior parte das células é muito transparente para ser bem visualizada nesse tipo de microscópio. Observe como aparecem as células epiteliais que revestem a mucosa bucal sem nenhum tipo de corante (C). Que estruturas você conhece? (D) hemócitos (células sanguíneas) de caramujo corados. É muito mais fácil observar o núcleo e o contorno da célula. (Imagens. C- Raul D. Machado, D- Marco Antonio V. Santos) O resultado disso é que existe hoje uma grande família de microscópios ópticos, cada um com suas vantagens e limitações sobre os demais. Dentre os de uso mais corriqueiro, é essencial conhecermos: 1. Microscópio de campo claro, ou microscópio simples: é o microscópio “padrão” representado na Figura 1.8. Emgeral,requerqueaamostrasejapreparadaantesdaobservação(videboxepágina15). Duas ondas em fase Duas ondas fora de fase Figura 1.9: A luz, ao interagir com um sólido (= célula), tem sua trajetória atrasada, criando um contraste em relação à luz que não encontrou nenhum obstáculo (A). Esse é o princípio do microscópio de contraste de fase, e em (B) você vê as mesmas células já observadas em campo claro tal como aparece nesse microscópio. Há um halo em torno da célula e de algumas de suas estruturas internas. Que estruturas você reconhece? (A) (B) Aumento de Brilho Escuro Aula_01.indd 16 17/6/2004,11:29:26
  • 11. CEDERJ 17 AULA 1MÓDULO1 2. Microscópio de contraste de fase: dispensa o uso de corantes, permitindo a observação de células vivas. Um sistema de filtros (anéis de fase) interfere no trajeto da luz, criando um contorno claro/escuro em torno das estruturas celulares (Figura 1.9(( ). Esse contraste permite a observação de células vivas, mas se elas estiverem muito aglomeradas, a imagem se torna confusa, requerendo um sistema óptico mais elaborado. 3. Microscópio de contraste interferencial: também utiliza filtros para criar contraste a partir de diferenças no trajeto da luz. A imagem final é mais agradável para o observador, mas o sistema é menos comum, pois é mais caro que o contraste de fase. Também permite observar células vivas. Quando essas formam camadas, pode-se focalizar apenas um plano, obtendo-se assim cortes ópticos sem que o tecido seja cortado.s 4. Microscópio de fluorescência: utiliza uma fonte de luz de comprimento de onda variável (na faixa do ultravioleta) e requer o uso de corantes fluorescentes (vide Aula 6) que, em última análise, se ligam a componentes específicos das células. Esses corantes são capazes de absorver luz de um determinado comprimento de onda (ultravioleta, por exemplo) e emitir num outro, dentro do espectro visível. Em algumas situações as células podem ser observadas vivas; em outras, não. Figura 1.11: No exemplo da foto foi usado um corante fluorescente que se liga a filamentos do citoesqueleto do protozoário Giardia lamblia . (Foto: Loraine Campanatti). Figura 1.10: As mesmas células epiteliais, observa- das agora em contraste interferencial. A imagem sombreada dá noção de relevo das estruturas celulares. Ocular Espelho refletor do feixe 1º Filtro Lente objetiva objeto Fonte de luz 2º Filtro Aula_01.indd 17 17/6/2004,11:29:45
  • 12. Biologia Celular I | Microscopia óptica CEDERJ18 O mais comum é que um modelo possa ter seus jogos de lentes e fontes de luz alternados (intercambiados) para que se possa observar amostras pelos três métodos. 5. Microscópio confocal de varredura a laser: a conjugação da ciência da computação aos microscópios de fluorescência trouxe uma nova dimensão à microscopia óptica. Imagens tridimensionais da distribuição de filamentos ou organelas celulares podem ser obtidas a partir de cortes ópticos da amostra capturados e analisados em computador. Alguns links interessantes - Apesar de serem em inglês, vale a pena visitar esses endereços na Internet. • http://www.ucmp.berkeley.edu/history/leeuwenhoek.html - Dados biográficos de Leeuwenhoek. • http://www.ucmp.berkeley.edu/history/hooke.html - Dados biográficos de Robert Hooke. • http://micro.magnet.fsu.edu/primer/museum/index.html - Museu da Microscopia. Tutoriais sobre princípios de óptica. Galeria de imagens, vídeos on line. Vale a visita! • http://www.ascb.org/- Página da Sociedade Americana de Biologia Celular, muitos links interessantes, imagens, vídeos. • http://www2.uerj.br/~micron/Atlas - imagens de microscopia (óptica e eletrônica), organizado pelo departamento de Histologia da UERJ. • http://www.molbio.princeton.edu/confocal/510image2/ Zeisslist2.html - Maravilhosas imagens de fluorescência obtidas em microscópio de fluorescência confocal. • http://megasun.bch.umontreal.ca/protists/gallery.html - Imagens de protistas em microscopia óptica de contraste interferencial e de fase. Links para imagens desses mesmos organismos em micros- copia eletrônica, mostrando como vários métodos de observação devem ser conjugados na análise de um organismo. Aula_01.indd 18 17/6/2004,11:30:01
  • 13. CEDERJ 19 AULA 1MÓDULO1 Faça sua própria busca na Internet a partir de palavras-chave como: Microscopia Microscope Fluorescência Fluorescence Células E outras que certamente lhe ocorrerão. RESUMO Os microscópios ópticos começaram a ser construídos no século XVII e com eles foram observadas e batizadas as primeiras células. O aperfeiçoamento na construção de lentes, filtros e sistemas de iluminação deu origem a uma grande variedade de microscópios ópticos. Além dos de campo claro, que requerem que o material seja corado, existem microscópios de contraste de fase e de contraste interferencial, onde as células podem ser observadas vivas e sem coloração especial. Os microscópios de fluorescência permitem ver estruturas normalmente muito finas para serem observadas com os comprimentos de onda da luz visível. O microscópio confocal a laser inaugurou uma nova era na microscopia óptica, mas a observação da maior parte das estruturas que compõem a célula só é possível com um instrumento de maior poder de resolução: o microscópio eletrônico, tema da próxima aula. EXERCÍCIOS 1. Com base no que foi estudado, calcule o aumento final de um microscópio óptico que utilize as seguintes combinações de lentes oculares e objetivas: ocular objetiva aumento final 5x 40x 10x 20x 20x 10x 10x 100x Aula_01.indd 19 17/6/2004,11:30:02
  • 14. Biologia Celular I | Microscopia óptica CEDERJ20 Observações: As oculares mais comuns são as de 10x. As objetivas de 100x requerem o uso de óleo de imersão. A maioria dos microscópios ópticos vem com um jogo de objetivas intercambiáveis de 5, 10, 20, 40 e 100x. 2. Por que as células receberam esse nome? 3. Compare o microscópio de Hooke (Figura 1.1) ao modelo atual (Figura 1.4) identificando as partes análogas. 4. Qual a importância de cada um dos componentes citados a seguir, para observação ao microscópio óptico: fonte de luz, lente condensadora, espessura e contraste da amostra? 5. Em que tipo(s) de sistema óptico podemos observar células vivas e sem a adição de corantes? 6. O que você entende por microscopia de fluorescência? 7. O que é limite de resolução? Qual o limite de resolução do microscópio óptico? 8. Uma hemácia mede 8 µm. Quando observada sob um aumento total de 1.000 vezes, quanto medirá? 9. Por que, em geral, o núcleo é a única estrutura claramente visível dentro de uma célula observada ao microscópio óptico? 10. Converta para as unidades correspondentes: 5 mm = nm 0,5 mm = µm 100 µm = nm 1.000 µm = mm 60 nm = µm 11. Uma célula foi fotografada com 2.000x de aumento no microscópio óptico. Uma estrutura que tenha na realidade 2 µm aparecerá com que comprimento na foto? 12. Procure determinar em que tipo de microscópio óptico as imagens que estão no encarte foram obtidas. Se conseguir identificar as amostras, melhor ainda, caso contrário consulte o gabarito no final do livro. Aula_01.indd 20 17/6/2004,11:30:02