SlideShare a Scribd company logo
1 of 7
Download to read offline
International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 –
6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME
36
BIBLIOGRAPHICAL SURVEY FOR A NOVEL APPROACH TOWARDS
DEVELOPMENT OF A HYBRID APPROACH OF IMAGE CODING USING
NEURAL NETWORK AND WAVELET TRANSFORM
Geetha H S1
, Rehna V J2
1
4th
Semester, M.Tech(Electronics)
2
Associate Professor, Department of Electronics and Communication Engineering,
HKBK College of Engineering, Bangalore, India
ABSTRACT
This paper deals with survey of a number of reference papers in order to develop a hybrid
approach of image coding using neural network and wavelet transform, various methodologies for
effectual image compression and different coding techniques.
Index terms: DWT (Discrete Wavelet Transform), Neural Network, DPCM (Differential Pulse
Code Modulation).
1. INTRODUCTION
Image compression plays an important role in the field of communication and multimedia
[14]. The image files can be very large and can occupy a large space in memory. A gray scale image
that is 256 x 256 pixels have to store 65, 536 elements, and a typical 640 x 480 colour image has
nearly a million elements to store. Image data comprise of a significant portion of the multimedia
data and they occupy the major portion of the communication bandwidth for multimedia
communication. Therefore development of efficient techniques for image compression has become
quite necessary. The basic objective of image compression is to find an image representation in
which pixels are less correlated. The two fundamental principles used in image compression are
redundancy and irrelevancy. Redundancy removes redundancy from the signal source and
irrelevancy omits pixel values which are not noticeable by human eye.
INTERNATIONAL JOURNAL OF ELECTRONICS AND
COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)
ISSN 0976 – 6464(Print)
ISSN 0976 – 6472(Online)
Volume 5, Issue 5, May (2014), pp. 36-42
© IAEME: www.iaeme.com/ijecet.asp
Journal Impact Factor (2014): 7.2836 (Calculated by GISI)
www.jifactor.com
IJECET
© I A E M E
International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 –
6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME
37
Image compression standards bring about many benefits, such as: (1) easier exchange of
image files between different devices and applications; (2) reuse of existing hardware and software
for a wider array of products; (3) existence of benchmarks and reference data sets for new and
alternative developments. The need for image compression becomes apparent when number of bits
per image is computed resulting from typical sampling rates and quantization methods.
There are three types of redundancies:
(i)spatial redundancy, which is due to the correlation or dependence between neighbouring pixel
values; (ii) spectral redundancy, which is due to the correlation between different color planes or
spectral bands; (iii) temporal redundancy, which is present because of correlation between different
frames in images. Image compression research aims to reduce the number of bits required to
represent an image by removing the spatial and spectral redundancies as much as possible.
The image compression techniques are broadly classified into two categories depending
whether or not an exact replica of the original image could be reconstructed using the compressed
image. [9] They are:
1. Lossless technique
2. Lossy technique
Following techniques are included in lossless compression:
1. Run length encoding
2. Huffman encoding
3. LZW coding
4. Area coding
Lossy compression techniques includes following schemes:
1. Transformation coding
2. Vector quantization
3. Fractal coding
4. Block Truncation Coding
5. Sub-band coding
1.1 DESIGN METRICES
Mean square error
MSE for monochrome images
1
ܰଶ
෍ ෍ሾܺሺ݅, ݆ሻ െ ܻሺ݅, ݆ሻሿଶ
ே
௝
ே
௜
MSE for colour image
ଵ
ேమ
∑ ∑ ሼሾ‫ݎ‬ሺ݅, ݆ሻ െ ‫ݎ‬‫כ‬
ሺ݅, ݆ሻሿଶே
௝
ே
௜ +ሾ݃ሺ݅, ݆ሻ െ ݃‫כ‬ሺ݅, ݆ሻሿଶ
൅ ሾܾሺ݅, ݆ሻ െ ܾ‫כ‬ሺ݅, ݆ሻሿଶ
ሽ
International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 –
6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME
38
Peak Signal to Noise Ratio (PSNR)
Peak signal to Noise Ratio[8] is the ratio between signal variance and reconstruction error
variance. PSNR is usually expressed in Decibel scale. The PSNR is a most common measure of the
quality of reconstructed image in case of image compression.
ܴܲܵܰ ൌ 10 logଵ଴
255ଶ
‫ܧܵܯ‬
Here 255 represent the maximum pixel value of the image, when the pixels are represented
using 8 bits per sample. PSNR values range between infinity for identical images, to 0 for images
that have no commonality. PSNR is inversely proportional to MSE and compression ratio i.e PSNR
decreases as the compression ratio increases.
Compression Ratio (CR)
Compression ratio[8] is defined as the ratio between the original image size and compressed
image size.
ܿ‫݊݋݅ݏݏ݁ݎ݌݉݋‬ ‫݋݅ݐܽݎ‬ ൌ
݊1
݊2
Where n1 is original image size and n2 is compressed image size.
2. LOSSY COMPRESSION TECHNIQUE
2.1 TYPES OF TRANSFORMATION
2.1.1 Discrete Cosine Transform (DCT) Based Coding:
DCT gives an approximate representation of DFT considering only the real part of the series.
For a data of N values, DCT's time complexity (amount of computational time) is of the order of
Nlog2N similar to DFT. But DCT gives better convergence, as compared to DFT. A given image is
divided into 8 x 8 blocks and forward discrete cosine transform (FDCT) is carried out over each
block. Since the adjacent pixels are highly correlated, the FDCT processing step lays the foundation
for achieving data compression. This transformation concentrates most of the signal in the lower
spatial frequencies, whose values are zero (or near zero). These coefficients are then quantized and
encoded (which we will discuss later) to get a compressed image. The decompression is obtained by
applying the above operations in reverse order and replacing 'FDCT by inverse discrete cosine
transform (IDCT).[6]
2.1.2 Discrete Wavelet Transform (DWT) Based Coding
Wavelets provide a basis set which allows one to represent a data set in the form of
differences and averages, called the high-pass and low-pass coefficients, respectively. The number of
data points to be averaged and the weights to be attached to each data point, depends on the wavelet
one chooses to use. Usually, one takes N = 2n (where n is a positive integer), number of data points
for analysis. In case of Haar wavelet, the level-l high-pass and low-pass coefficients are the nearest
neighbour differences and nearest neighbour averages respectively, of the given set of data with the
alternate points removed. Subsequently, the level-l low pass coefficients can again be written in the
form of level-2 high-pass and low-pass coefficients, having one-fourth number of points of the
original set. In this way, with 2n number of points, at the nth
level of decomposition, the low-pass
will have only one point. For the case of Haar, modulo a normalization factor, the nth
level low-pass
coefficient is the average of all the data points. In principle, an infinite choice of wavelets exists. The
International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 –
6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME
39
choice of a given wavelet depends upon the problem at hand. Wavelets are the probing functions,
which give optimal time-frequency localization of a given signal. Merits of DCT and DWT, [6].
1. Time Complexity
Time complexity (broadly speaking, amount of computational time) of DCT is of
O (Nlog2N) while many wavelet transforms can be calculated with O(N) operations. More general
wavelets require O (Nlog2N) calculations, same as that of DCT.
2. Blocking Artifacts
In DCT, the given image is sub-divided into 8 x 8 blocks. Due to this, the correlation between
adjacent blocks is lost. This result is noticeable and annoying, particularly at low bit rates. In DWT,
no such blocking is done and the transformation is carried over the entire image.
3. Compression Performance
The DCT based JPEG-93 compressor performs well for a compression ratio of about 25:1.
But the quality of image rapidly deteriorates above 30:1; while wavelet based coders degrade
gracefully, well beyond ratios of 100: 1.
Figure 2.1.1[7] The different transforms provided different resolutions of time and frequency
2.2 Vector Quantization
The basic idea in this technique is to develop a dictionary of fixed-size vectors, called code
vectors. A given image is partitioned into non-overlapping blocks (vectors) called image vectors.
International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 –
6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME
40
Each in the dictionary is determined and its index in the dictionary is used as the encoding of the
original image vector. Thus, each image is represented by a sequence of indices that can be further
entropy coded. [2].
2.3 Fractal Coding
The essential idea here is to decompose the image into segments by using standard image
processing techniques such as color separation, edge detection, and spectrum and texture analysis.
Then each segment is looked up in a library of fractals. The library actually contains codes called
iterated function system codes, which are compact sets of numbers. Using a systematic procedure, a
set of codes for a given image are determined, such that when the IFS codes are applied to a suitable
set of image blocks yield an image that is a very close approximation of the original.
2.4 Block Truncation Coding
The image is divided into non-overlapping blocks of pixels. For each block, threshold and
reconstruction values are determined. The threshold is usually the mean of the pixel values in the
block. Then a bitmap of the block is derived by replacing all pixels whose values are greater than or
equal (less than) to the threshold by a 1 (0). Then for each segment (group of 1s and 0s) in the
bitmap, the reconstruction value is determined.
2.5 Subband Coding
The image is analyzed to produce the components containing frequencies in well-defined
bands, the sub bands. Subsequently, quantization and coding is applied to each of the bands.
3. LOSSLESS COMPRESSION TECHNIQUE
3.1 Run Length Encoding
This technique replaces sequencesof identicalpixels,called runs by shorter symbols. The run
length code for a gray scale image is represented by a sequence {Vi, Ri} where Vi is the intensity of
pixel and Ri refers to the number of consecutive pixels with the intensity Vi.
3.2HUFFMAN CODING
This technique for coding symbols based on their statistical occurrence frequencies. The
pixels in the image are treated as symbols. The symbols that occur more frequently are assigned a
smaller number of bits, while the symbols that occur less frequent are assigned a relatively larger
number of bits. Huffman code is a prefix code. The binary code of any symbol is not the prefix of the
code of any other symbol. Most image coding standards use lossy techniques in earlier stages of
compression and use Huffman coding as the final step.
3.3 LZW CODING
LZW (Lempel-Ziv–Welch) is a dictionary based coding. Dictionary based coding can be
static or dynamic. In static dictionary coding, dictionary is fixed duringthe encoding and decoding
processes. In dynamic dictionary coding, the dictionary is updated on fly. LZW is widely used in
computer industry and is implemented as compress command on UNIX.
3.4 AREA CODING
This technique is an enhanced form of run length coding, reflecting the two dimensional
character of images. This is a significant advance over the other lossless methods. For coding an
image it does not make too much sense to interpret it as a sequential stream, as it is in fact an array of
sequences, building up a twodimensional object. The algorithms for area coding try to find
International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 –
6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME
41
rectangular regions with the same characteristics. These regions are coded in a descriptive form as an
element with two points and a certain structure. This type of coding can be highly effective but it
bears the problem of a nonlinearmethod,which cannot beimplemented in hardware.
4. NEURAL NETWORK
ANNs that are used to model real neural networks, and study behaviour and control in
animals and machines, but also there are ANNs which are used for engineering purposes, such as
pattern recognition, forecasting, and data compression.[5]
1. Back Propagation Neural Network[10]
The neural network is designed with three layers, one input layer, one output layer and one
hidden layer. The input layer and output layer are fully connected to the hidden layer. Compression
is achieved by designing the number of neurons at the hidden layer, less than that of neurons at both
input and the output layers. Image compression is achieved by training the network in such a way
that the coupling weights scale the input vector of N-dimension into a narrow channel of K-
dimension with K less than N, at the hidden layer and produce the optimum output value which
makes the quadratic error between input and output minimum. The basic back-propagation network
is further extended to construct a hierarchical neural network by adding two more hidden layers into
the existing network.
2. Hierarchical and adaptive back-propagation neural network [10]
The basic back-propagation network is further extended to construct a hierarchical neural
network by adding two more hidden layers into the existing network. All three hidden layers are
fully connected. Nested training algorithm is proposed to reduce the overall neural network training
time. The neuron weights are maintained the same throughout the image compression process.
Adaptive schemes are based on the principle that different neural networks are used to compress
image blocks with different extent of complexity. The basic idea is to classify the input image blocks
into a few subsets with different features according to their complexity measurement. A fine-tuned
neural network then compresses each subset. Prior to training, all image blocks are classified into
four classes according to their activity values which are identified as very low, low, high and very
high activities. The network results in high complexity.
3. Multi-layer Feed Forward Artificial neural Network[10]
The network is designed in a way such that N will be greater than Y, where N is input
layer/output layer neurons and Y is hidden layer neurons. Divide the training image into blocks.
Scale each block and apply it to input layer and get the output of output layer. Adjust the weight to
minimize the difference between the output and the desired output. Repeat until the error is small
enough. The output of hidden layer is quantized and entropy coded to represent the compressed
image.
4. Multilayer Perception[10]
Basic multilayer perception (MLP) building unit is a model of artificial neuron. This unit
computes the weighted sum of the inputs plus the threshold weight and passes this sum through the
activation function usually sigmoid. In a multilayer perception, the outputs of the units in one layer
form the inputs to the next layer. The weights of the network are usually computed by training the
network using the back propagation.
International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 –
6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME
42
CONCLUSION
For image compression, loss of some information is acceptable. The purpose of wavelet
transform is to change the data from time-space domain to time-frequency domain which makes
better compression results. Among all of the above lossy compression methods, vector quantization
requires many computational resources for large vectors; fractal compression is time consuming for
coding; predictive coding has inferior compression ratio and worse reconstructed image quality than
those of transform based coding. So, transform based compression methods are generally best for
image compression. For transform based compression, JPEG compression schemes based on DCT
(Discrete Cosine Transform) have some advantages such as simplicity, satisfactory performance, and
availability of special purpose hardware for implementation.[4] However, because the input image is
blocked, correlation across the block boundaries cannot be eliminated. In many applications,
wavelet-based schemes achieve better performance than other coding schemes like the one based on
DCT. Since there is no need to block the input image and its basis functions have variable length,
wavelet based coding schemes can avoid blocking artifacts. Wavelet based coding also facilitates
progressive transmission of images. Huffman coding is the better lossless technique compared to
other technique for image compression. This scheme used to remove the redundant bits.[2]
REFERENCES
1. “A study of various image compression techniques”, Sonal, Dinesh Kumar.
2. “Image compression by wavelet transform” Panrong XiaoEast Tennessee State University.
3. R. Gonzalez and R. Woods, "Digital Image Processing", 3rd Edition, Prentice-Hall, 2007.
4. “Advanced Digital Signal Processing” Tutorial Recent Development of Image Compression
Techniques Chia-Jung Chang National Taiwan University.
5. “Artificial Neural Networks for Beginners”, Carlos GershensonC.Gershenson sussex.ac.uk”.
6. “Wavelets: Applications to Image Compression-I”, Sachin P Nanavati has joined the
Scientific and Engineering Computing Group of CDAC, Pune. He enjoys trekking and bird
watching. Prasanta KPanigrahi is currently with the Quantum Information and Quantum
Optics Division at PRL.
7. “Image Compression Using Wavelets”, Karen Lees May 2002 Supervisor: Dr.Joab Winkler.
8. “Picture quality measure in image compression system”, Marta mark Ssonja Grigc, Mislav
Grgic, 2003.
9. Performance Analysis of Daubechies Wavelet and Differential Pulse Code Modulation Based
Multiple Neural Networks Approach for Accurate Compression of Images, S.Sridhar,
P.RajeshKumar & K.V.Ramanaiah, International Journal of Image Processing (IJIP),
Volume (7) : Issue (4) : 2013 372.
10. “Image Compression: An Artificial Neural Network Approach” Anjana B, Mrs. Shreeja R.
Dec 2012.
11. Ramdas Bagawade and Pradeep Patil, “Image Resolution Enhancement by using Wavelet
Transform”, International Journal of Computer Engineering & Technology (IJCET),
Volume 4, Issue 4, 2013, pp. 390 - 399, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.
12. S. S. Tamboli and Dr. V. R. Udupi, “Compression Methods using Wavelet Transform”,
International Journal of Computer Engineering & Technology (IJCET), Volume 3, Issue 1,
2012, pp. 314 - 321, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.
13. P. Prasanth Babu, L.Rangaiah and D.Maruthi Kumar, “Comparison and Improvement of
Image Compression using DCT, DWT & HUFFMAN Encoding Techniques”, International
Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 1, 2013,
pp. 54 - 60, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.

More Related Content

What's hot

IRJET - Study on the Effects of Increase in the Depth of the Feature Extracto...
IRJET - Study on the Effects of Increase in the Depth of the Feature Extracto...IRJET - Study on the Effects of Increase in the Depth of the Feature Extracto...
IRJET - Study on the Effects of Increase in the Depth of the Feature Extracto...IRJET Journal
 
FUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDING
FUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDINGFUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDING
FUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDINGIJCSEA Journal
 
A novel steganographic technique based on lsb dct approach by Mohit Goel
A novel steganographic technique based on lsb dct approach  by Mohit GoelA novel steganographic technique based on lsb dct approach  by Mohit Goel
A novel steganographic technique based on lsb dct approach by Mohit GoelMohit Goel
 
PERCEPTUAL COPYRIGHT PROTECTION USING MULTIRESOLUTION WAVELET-BASED WATERMARK...
PERCEPTUAL COPYRIGHT PROTECTION USING MULTIRESOLUTION WAVELET-BASED WATERMARK...PERCEPTUAL COPYRIGHT PROTECTION USING MULTIRESOLUTION WAVELET-BASED WATERMARK...
PERCEPTUAL COPYRIGHT PROTECTION USING MULTIRESOLUTION WAVELET-BASED WATERMARK...gerogepatton
 
Maximizing Strength of Digital Watermarks Using Fuzzy Logic
Maximizing Strength of Digital Watermarks Using Fuzzy LogicMaximizing Strength of Digital Watermarks Using Fuzzy Logic
Maximizing Strength of Digital Watermarks Using Fuzzy Logicsipij
 
Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &IAEME Publication
 
IRJET- An Improved Technique for Hiding Secret Image on Colour Images usi...
IRJET-  	  An Improved Technique for Hiding Secret Image on Colour Images usi...IRJET-  	  An Improved Technique for Hiding Secret Image on Colour Images usi...
IRJET- An Improved Technique for Hiding Secret Image on Colour Images usi...IRJET Journal
 
Architectural implementation of video compression
Architectural implementation of video compressionArchitectural implementation of video compression
Architectural implementation of video compressioniaemedu
 
ANALYSING JPEG CODING WITH MASKING
ANALYSING JPEG CODING WITH MASKINGANALYSING JPEG CODING WITH MASKING
ANALYSING JPEG CODING WITH MASKINGijma
 

What's hot (16)

IRJET - Study on the Effects of Increase in the Depth of the Feature Extracto...
IRJET - Study on the Effects of Increase in the Depth of the Feature Extracto...IRJET - Study on the Effects of Increase in the Depth of the Feature Extracto...
IRJET - Study on the Effects of Increase in the Depth of the Feature Extracto...
 
FUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDING
FUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDINGFUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDING
FUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDING
 
A novel steganographic technique based on lsb dct approach by Mohit Goel
A novel steganographic technique based on lsb dct approach  by Mohit GoelA novel steganographic technique based on lsb dct approach  by Mohit Goel
A novel steganographic technique based on lsb dct approach by Mohit Goel
 
J017426467
J017426467J017426467
J017426467
 
PERCEPTUAL COPYRIGHT PROTECTION USING MULTIRESOLUTION WAVELET-BASED WATERMARK...
PERCEPTUAL COPYRIGHT PROTECTION USING MULTIRESOLUTION WAVELET-BASED WATERMARK...PERCEPTUAL COPYRIGHT PROTECTION USING MULTIRESOLUTION WAVELET-BASED WATERMARK...
PERCEPTUAL COPYRIGHT PROTECTION USING MULTIRESOLUTION WAVELET-BASED WATERMARK...
 
Ceis 4
Ceis 4Ceis 4
Ceis 4
 
O017429398
O017429398O017429398
O017429398
 
Hf2513081311
Hf2513081311Hf2513081311
Hf2513081311
 
Maximizing Strength of Digital Watermarks Using Fuzzy Logic
Maximizing Strength of Digital Watermarks Using Fuzzy LogicMaximizing Strength of Digital Watermarks Using Fuzzy Logic
Maximizing Strength of Digital Watermarks Using Fuzzy Logic
 
Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &
 
IRJET- An Improved Technique for Hiding Secret Image on Colour Images usi...
IRJET-  	  An Improved Technique for Hiding Secret Image on Colour Images usi...IRJET-  	  An Improved Technique for Hiding Secret Image on Colour Images usi...
IRJET- An Improved Technique for Hiding Secret Image on Colour Images usi...
 
M017427985
M017427985M017427985
M017427985
 
Ijetcas14 527
Ijetcas14 527Ijetcas14 527
Ijetcas14 527
 
Architectural implementation of video compression
Architectural implementation of video compressionArchitectural implementation of video compression
Architectural implementation of video compression
 
ANALYSING JPEG CODING WITH MASKING
ANALYSING JPEG CODING WITH MASKINGANALYSING JPEG CODING WITH MASKING
ANALYSING JPEG CODING WITH MASKING
 
A280108
A280108A280108
A280108
 

Viewers also liked

Rencontre mensuelle SharePoint Quebec Montreal septembre 2012
Rencontre mensuelle SharePoint Quebec Montreal septembre 2012Rencontre mensuelle SharePoint Quebec Montreal septembre 2012
Rencontre mensuelle SharePoint Quebec Montreal septembre 2012Nicolas Georgeault
 
Amazing Circles
Amazing CirclesAmazing Circles
Amazing CirclesThilini
 
DDD 2011 - Dove Desideriamo Dirigerci
DDD 2011 - Dove Desideriamo DirigerciDDD 2011 - Dove Desideriamo Dirigerci
DDD 2011 - Dove Desideriamo DirigerciAlberto Brandolini
 
Manual practico auto cad 2006
Manual practico auto cad 2006Manual practico auto cad 2006
Manual practico auto cad 2006Roberth Ruiz
 
Orchid Queens - Part 5...
Orchid Queens - Part 5...Orchid Queens - Part 5...
Orchid Queens - Part 5...Thilini
 

Viewers also liked (8)

Rencontre mensuelle SharePoint Quebec Montreal septembre 2012
Rencontre mensuelle SharePoint Quebec Montreal septembre 2012Rencontre mensuelle SharePoint Quebec Montreal septembre 2012
Rencontre mensuelle SharePoint Quebec Montreal septembre 2012
 
Amazing Circles
Amazing CirclesAmazing Circles
Amazing Circles
 
Artistadelpapel
ArtistadelpapelArtistadelpapel
Artistadelpapel
 
16 Death Note
16 Death Note16 Death Note
16 Death Note
 
DDD 2011 - Dove Desideriamo Dirigerci
DDD 2011 - Dove Desideriamo DirigerciDDD 2011 - Dove Desideriamo Dirigerci
DDD 2011 - Dove Desideriamo Dirigerci
 
Manual practico auto cad 2006
Manual practico auto cad 2006Manual practico auto cad 2006
Manual practico auto cad 2006
 
Grammar iii slide 2
Grammar iii   slide 2Grammar iii   slide 2
Grammar iii slide 2
 
Orchid Queens - Part 5...
Orchid Queens - Part 5...Orchid Queens - Part 5...
Orchid Queens - Part 5...
 

Similar to 40120140505005 2

International Journal on Soft Computing ( IJSC )
International Journal on Soft Computing ( IJSC )International Journal on Soft Computing ( IJSC )
International Journal on Soft Computing ( IJSC )ijsc
 
Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey  Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey ijsc
 
An approach for color image compression of bmp and tiff images using dct and dwt
An approach for color image compression of bmp and tiff images using dct and dwtAn approach for color image compression of bmp and tiff images using dct and dwt
An approach for color image compression of bmp and tiff images using dct and dwtIAEME Publication
 
Design and implementation of image compression using set partitioning in hier...
Design and implementation of image compression using set partitioning in hier...Design and implementation of image compression using set partitioning in hier...
Design and implementation of image compression using set partitioning in hier...eSAT Journals
 
Image compression techniques by using wavelet transform
Image compression techniques by using wavelet transformImage compression techniques by using wavelet transform
Image compression techniques by using wavelet transformAlexander Decker
 
Image compression by ezw combining huffman and arithmetic encoder
Image compression by ezw combining huffman and arithmetic encoderImage compression by ezw combining huffman and arithmetic encoder
Image compression by ezw combining huffman and arithmetic encoderIAEME Publication
 
Medical image fusion using curvelet transform 2-3-4-5
Medical image fusion using curvelet transform 2-3-4-5Medical image fusion using curvelet transform 2-3-4-5
Medical image fusion using curvelet transform 2-3-4-5IAEME Publication
 
Medical image fusion using curvelet transform 2-3-4-5
Medical image fusion using curvelet transform 2-3-4-5Medical image fusion using curvelet transform 2-3-4-5
Medical image fusion using curvelet transform 2-3-4-5IAEME Publication
 
A High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionA High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionCSCJournals
 
Non standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletsNon standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletseSAT Publishing House
 
Non standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletsNon standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletseSAT Journals
 
Hybrid video watermarking technique by using dwt & pca
Hybrid video watermarking technique by using dwt & pcaHybrid video watermarking technique by using dwt & pca
Hybrid video watermarking technique by using dwt & pcaIAEME Publication
 
High Speed and Area Efficient 2D DWT Processor Based Image Compression
High Speed and Area Efficient 2D DWT Processor Based Image CompressionHigh Speed and Area Efficient 2D DWT Processor Based Image Compression
High Speed and Area Efficient 2D DWT Processor Based Image Compressionsipij
 
Post-Segmentation Approach for Lossless Region of Interest Coding
Post-Segmentation Approach for Lossless Region of Interest CodingPost-Segmentation Approach for Lossless Region of Interest Coding
Post-Segmentation Approach for Lossless Region of Interest Codingsipij
 
Medical image analysis and processing using a dual transform
Medical image analysis and processing using a dual transformMedical image analysis and processing using a dual transform
Medical image analysis and processing using a dual transformeSAT Journals
 
Medical image analysis and processing using a dual transform
Medical image analysis and processing using a dual transformMedical image analysis and processing using a dual transform
Medical image analysis and processing using a dual transformeSAT Publishing House
 

Similar to 40120140505005 2 (20)

International Journal on Soft Computing ( IJSC )
International Journal on Soft Computing ( IJSC )International Journal on Soft Computing ( IJSC )
International Journal on Soft Computing ( IJSC )
 
Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey  Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey
 
An approach for color image compression of bmp and tiff images using dct and dwt
An approach for color image compression of bmp and tiff images using dct and dwtAn approach for color image compression of bmp and tiff images using dct and dwt
An approach for color image compression of bmp and tiff images using dct and dwt
 
Design and implementation of image compression using set partitioning in hier...
Design and implementation of image compression using set partitioning in hier...Design and implementation of image compression using set partitioning in hier...
Design and implementation of image compression using set partitioning in hier...
 
Image compression techniques by using wavelet transform
Image compression techniques by using wavelet transformImage compression techniques by using wavelet transform
Image compression techniques by using wavelet transform
 
Image compression by ezw combining huffman and arithmetic encoder
Image compression by ezw combining huffman and arithmetic encoderImage compression by ezw combining huffman and arithmetic encoder
Image compression by ezw combining huffman and arithmetic encoder
 
145 153
145 153145 153
145 153
 
Medical image fusion using curvelet transform 2-3-4-5
Medical image fusion using curvelet transform 2-3-4-5Medical image fusion using curvelet transform 2-3-4-5
Medical image fusion using curvelet transform 2-3-4-5
 
Medical image fusion using curvelet transform 2-3-4-5
Medical image fusion using curvelet transform 2-3-4-5Medical image fusion using curvelet transform 2-3-4-5
Medical image fusion using curvelet transform 2-3-4-5
 
40120140503001 2-3
40120140503001 2-340120140503001 2-3
40120140503001 2-3
 
By4301435440
By4301435440By4301435440
By4301435440
 
A High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionA High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image Compression
 
Non standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletsNon standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded wavelets
 
Non standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletsNon standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded wavelets
 
Hybrid video watermarking technique by using dwt & pca
Hybrid video watermarking technique by using dwt & pcaHybrid video watermarking technique by using dwt & pca
Hybrid video watermarking technique by using dwt & pca
 
High Speed and Area Efficient 2D DWT Processor Based Image Compression
High Speed and Area Efficient 2D DWT Processor Based Image CompressionHigh Speed and Area Efficient 2D DWT Processor Based Image Compression
High Speed and Area Efficient 2D DWT Processor Based Image Compression
 
B046050711
B046050711B046050711
B046050711
 
Post-Segmentation Approach for Lossless Region of Interest Coding
Post-Segmentation Approach for Lossless Region of Interest CodingPost-Segmentation Approach for Lossless Region of Interest Coding
Post-Segmentation Approach for Lossless Region of Interest Coding
 
Medical image analysis and processing using a dual transform
Medical image analysis and processing using a dual transformMedical image analysis and processing using a dual transform
Medical image analysis and processing using a dual transform
 
Medical image analysis and processing using a dual transform
Medical image analysis and processing using a dual transformMedical image analysis and processing using a dual transform
Medical image analysis and processing using a dual transform
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 

Recently uploaded (20)

"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 

40120140505005 2

  • 1. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME 36 BIBLIOGRAPHICAL SURVEY FOR A NOVEL APPROACH TOWARDS DEVELOPMENT OF A HYBRID APPROACH OF IMAGE CODING USING NEURAL NETWORK AND WAVELET TRANSFORM Geetha H S1 , Rehna V J2 1 4th Semester, M.Tech(Electronics) 2 Associate Professor, Department of Electronics and Communication Engineering, HKBK College of Engineering, Bangalore, India ABSTRACT This paper deals with survey of a number of reference papers in order to develop a hybrid approach of image coding using neural network and wavelet transform, various methodologies for effectual image compression and different coding techniques. Index terms: DWT (Discrete Wavelet Transform), Neural Network, DPCM (Differential Pulse Code Modulation). 1. INTRODUCTION Image compression plays an important role in the field of communication and multimedia [14]. The image files can be very large and can occupy a large space in memory. A gray scale image that is 256 x 256 pixels have to store 65, 536 elements, and a typical 640 x 480 colour image has nearly a million elements to store. Image data comprise of a significant portion of the multimedia data and they occupy the major portion of the communication bandwidth for multimedia communication. Therefore development of efficient techniques for image compression has become quite necessary. The basic objective of image compression is to find an image representation in which pixels are less correlated. The two fundamental principles used in image compression are redundancy and irrelevancy. Redundancy removes redundancy from the signal source and irrelevancy omits pixel values which are not noticeable by human eye. INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 – 6464(Print) ISSN 0976 – 6472(Online) Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME: www.iaeme.com/ijecet.asp Journal Impact Factor (2014): 7.2836 (Calculated by GISI) www.jifactor.com IJECET © I A E M E
  • 2. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME 37 Image compression standards bring about many benefits, such as: (1) easier exchange of image files between different devices and applications; (2) reuse of existing hardware and software for a wider array of products; (3) existence of benchmarks and reference data sets for new and alternative developments. The need for image compression becomes apparent when number of bits per image is computed resulting from typical sampling rates and quantization methods. There are three types of redundancies: (i)spatial redundancy, which is due to the correlation or dependence between neighbouring pixel values; (ii) spectral redundancy, which is due to the correlation between different color planes or spectral bands; (iii) temporal redundancy, which is present because of correlation between different frames in images. Image compression research aims to reduce the number of bits required to represent an image by removing the spatial and spectral redundancies as much as possible. The image compression techniques are broadly classified into two categories depending whether or not an exact replica of the original image could be reconstructed using the compressed image. [9] They are: 1. Lossless technique 2. Lossy technique Following techniques are included in lossless compression: 1. Run length encoding 2. Huffman encoding 3. LZW coding 4. Area coding Lossy compression techniques includes following schemes: 1. Transformation coding 2. Vector quantization 3. Fractal coding 4. Block Truncation Coding 5. Sub-band coding 1.1 DESIGN METRICES Mean square error MSE for monochrome images 1 ܰଶ ෍ ෍ሾܺሺ݅, ݆ሻ െ ܻሺ݅, ݆ሻሿଶ ே ௝ ே ௜ MSE for colour image ଵ ேమ ∑ ∑ ሼሾ‫ݎ‬ሺ݅, ݆ሻ െ ‫ݎ‬‫כ‬ ሺ݅, ݆ሻሿଶே ௝ ே ௜ +ሾ݃ሺ݅, ݆ሻ െ ݃‫כ‬ሺ݅, ݆ሻሿଶ ൅ ሾܾሺ݅, ݆ሻ െ ܾ‫כ‬ሺ݅, ݆ሻሿଶ ሽ
  • 3. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME 38 Peak Signal to Noise Ratio (PSNR) Peak signal to Noise Ratio[8] is the ratio between signal variance and reconstruction error variance. PSNR is usually expressed in Decibel scale. The PSNR is a most common measure of the quality of reconstructed image in case of image compression. ܴܲܵܰ ൌ 10 logଵ଴ 255ଶ ‫ܧܵܯ‬ Here 255 represent the maximum pixel value of the image, when the pixels are represented using 8 bits per sample. PSNR values range between infinity for identical images, to 0 for images that have no commonality. PSNR is inversely proportional to MSE and compression ratio i.e PSNR decreases as the compression ratio increases. Compression Ratio (CR) Compression ratio[8] is defined as the ratio between the original image size and compressed image size. ܿ‫݊݋݅ݏݏ݁ݎ݌݉݋‬ ‫݋݅ݐܽݎ‬ ൌ ݊1 ݊2 Where n1 is original image size and n2 is compressed image size. 2. LOSSY COMPRESSION TECHNIQUE 2.1 TYPES OF TRANSFORMATION 2.1.1 Discrete Cosine Transform (DCT) Based Coding: DCT gives an approximate representation of DFT considering only the real part of the series. For a data of N values, DCT's time complexity (amount of computational time) is of the order of Nlog2N similar to DFT. But DCT gives better convergence, as compared to DFT. A given image is divided into 8 x 8 blocks and forward discrete cosine transform (FDCT) is carried out over each block. Since the adjacent pixels are highly correlated, the FDCT processing step lays the foundation for achieving data compression. This transformation concentrates most of the signal in the lower spatial frequencies, whose values are zero (or near zero). These coefficients are then quantized and encoded (which we will discuss later) to get a compressed image. The decompression is obtained by applying the above operations in reverse order and replacing 'FDCT by inverse discrete cosine transform (IDCT).[6] 2.1.2 Discrete Wavelet Transform (DWT) Based Coding Wavelets provide a basis set which allows one to represent a data set in the form of differences and averages, called the high-pass and low-pass coefficients, respectively. The number of data points to be averaged and the weights to be attached to each data point, depends on the wavelet one chooses to use. Usually, one takes N = 2n (where n is a positive integer), number of data points for analysis. In case of Haar wavelet, the level-l high-pass and low-pass coefficients are the nearest neighbour differences and nearest neighbour averages respectively, of the given set of data with the alternate points removed. Subsequently, the level-l low pass coefficients can again be written in the form of level-2 high-pass and low-pass coefficients, having one-fourth number of points of the original set. In this way, with 2n number of points, at the nth level of decomposition, the low-pass will have only one point. For the case of Haar, modulo a normalization factor, the nth level low-pass coefficient is the average of all the data points. In principle, an infinite choice of wavelets exists. The
  • 4. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME 39 choice of a given wavelet depends upon the problem at hand. Wavelets are the probing functions, which give optimal time-frequency localization of a given signal. Merits of DCT and DWT, [6]. 1. Time Complexity Time complexity (broadly speaking, amount of computational time) of DCT is of O (Nlog2N) while many wavelet transforms can be calculated with O(N) operations. More general wavelets require O (Nlog2N) calculations, same as that of DCT. 2. Blocking Artifacts In DCT, the given image is sub-divided into 8 x 8 blocks. Due to this, the correlation between adjacent blocks is lost. This result is noticeable and annoying, particularly at low bit rates. In DWT, no such blocking is done and the transformation is carried over the entire image. 3. Compression Performance The DCT based JPEG-93 compressor performs well for a compression ratio of about 25:1. But the quality of image rapidly deteriorates above 30:1; while wavelet based coders degrade gracefully, well beyond ratios of 100: 1. Figure 2.1.1[7] The different transforms provided different resolutions of time and frequency 2.2 Vector Quantization The basic idea in this technique is to develop a dictionary of fixed-size vectors, called code vectors. A given image is partitioned into non-overlapping blocks (vectors) called image vectors.
  • 5. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME 40 Each in the dictionary is determined and its index in the dictionary is used as the encoding of the original image vector. Thus, each image is represented by a sequence of indices that can be further entropy coded. [2]. 2.3 Fractal Coding The essential idea here is to decompose the image into segments by using standard image processing techniques such as color separation, edge detection, and spectrum and texture analysis. Then each segment is looked up in a library of fractals. The library actually contains codes called iterated function system codes, which are compact sets of numbers. Using a systematic procedure, a set of codes for a given image are determined, such that when the IFS codes are applied to a suitable set of image blocks yield an image that is a very close approximation of the original. 2.4 Block Truncation Coding The image is divided into non-overlapping blocks of pixels. For each block, threshold and reconstruction values are determined. The threshold is usually the mean of the pixel values in the block. Then a bitmap of the block is derived by replacing all pixels whose values are greater than or equal (less than) to the threshold by a 1 (0). Then for each segment (group of 1s and 0s) in the bitmap, the reconstruction value is determined. 2.5 Subband Coding The image is analyzed to produce the components containing frequencies in well-defined bands, the sub bands. Subsequently, quantization and coding is applied to each of the bands. 3. LOSSLESS COMPRESSION TECHNIQUE 3.1 Run Length Encoding This technique replaces sequencesof identicalpixels,called runs by shorter symbols. The run length code for a gray scale image is represented by a sequence {Vi, Ri} where Vi is the intensity of pixel and Ri refers to the number of consecutive pixels with the intensity Vi. 3.2HUFFMAN CODING This technique for coding symbols based on their statistical occurrence frequencies. The pixels in the image are treated as symbols. The symbols that occur more frequently are assigned a smaller number of bits, while the symbols that occur less frequent are assigned a relatively larger number of bits. Huffman code is a prefix code. The binary code of any symbol is not the prefix of the code of any other symbol. Most image coding standards use lossy techniques in earlier stages of compression and use Huffman coding as the final step. 3.3 LZW CODING LZW (Lempel-Ziv–Welch) is a dictionary based coding. Dictionary based coding can be static or dynamic. In static dictionary coding, dictionary is fixed duringthe encoding and decoding processes. In dynamic dictionary coding, the dictionary is updated on fly. LZW is widely used in computer industry and is implemented as compress command on UNIX. 3.4 AREA CODING This technique is an enhanced form of run length coding, reflecting the two dimensional character of images. This is a significant advance over the other lossless methods. For coding an image it does not make too much sense to interpret it as a sequential stream, as it is in fact an array of sequences, building up a twodimensional object. The algorithms for area coding try to find
  • 6. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME 41 rectangular regions with the same characteristics. These regions are coded in a descriptive form as an element with two points and a certain structure. This type of coding can be highly effective but it bears the problem of a nonlinearmethod,which cannot beimplemented in hardware. 4. NEURAL NETWORK ANNs that are used to model real neural networks, and study behaviour and control in animals and machines, but also there are ANNs which are used for engineering purposes, such as pattern recognition, forecasting, and data compression.[5] 1. Back Propagation Neural Network[10] The neural network is designed with three layers, one input layer, one output layer and one hidden layer. The input layer and output layer are fully connected to the hidden layer. Compression is achieved by designing the number of neurons at the hidden layer, less than that of neurons at both input and the output layers. Image compression is achieved by training the network in such a way that the coupling weights scale the input vector of N-dimension into a narrow channel of K- dimension with K less than N, at the hidden layer and produce the optimum output value which makes the quadratic error between input and output minimum. The basic back-propagation network is further extended to construct a hierarchical neural network by adding two more hidden layers into the existing network. 2. Hierarchical and adaptive back-propagation neural network [10] The basic back-propagation network is further extended to construct a hierarchical neural network by adding two more hidden layers into the existing network. All three hidden layers are fully connected. Nested training algorithm is proposed to reduce the overall neural network training time. The neuron weights are maintained the same throughout the image compression process. Adaptive schemes are based on the principle that different neural networks are used to compress image blocks with different extent of complexity. The basic idea is to classify the input image blocks into a few subsets with different features according to their complexity measurement. A fine-tuned neural network then compresses each subset. Prior to training, all image blocks are classified into four classes according to their activity values which are identified as very low, low, high and very high activities. The network results in high complexity. 3. Multi-layer Feed Forward Artificial neural Network[10] The network is designed in a way such that N will be greater than Y, where N is input layer/output layer neurons and Y is hidden layer neurons. Divide the training image into blocks. Scale each block and apply it to input layer and get the output of output layer. Adjust the weight to minimize the difference between the output and the desired output. Repeat until the error is small enough. The output of hidden layer is quantized and entropy coded to represent the compressed image. 4. Multilayer Perception[10] Basic multilayer perception (MLP) building unit is a model of artificial neuron. This unit computes the weighted sum of the inputs plus the threshold weight and passes this sum through the activation function usually sigmoid. In a multilayer perception, the outputs of the units in one layer form the inputs to the next layer. The weights of the network are usually computed by training the network using the back propagation.
  • 7. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 5, Issue 5, May (2014), pp. 36-42 © IAEME 42 CONCLUSION For image compression, loss of some information is acceptable. The purpose of wavelet transform is to change the data from time-space domain to time-frequency domain which makes better compression results. Among all of the above lossy compression methods, vector quantization requires many computational resources for large vectors; fractal compression is time consuming for coding; predictive coding has inferior compression ratio and worse reconstructed image quality than those of transform based coding. So, transform based compression methods are generally best for image compression. For transform based compression, JPEG compression schemes based on DCT (Discrete Cosine Transform) have some advantages such as simplicity, satisfactory performance, and availability of special purpose hardware for implementation.[4] However, because the input image is blocked, correlation across the block boundaries cannot be eliminated. In many applications, wavelet-based schemes achieve better performance than other coding schemes like the one based on DCT. Since there is no need to block the input image and its basis functions have variable length, wavelet based coding schemes can avoid blocking artifacts. Wavelet based coding also facilitates progressive transmission of images. Huffman coding is the better lossless technique compared to other technique for image compression. This scheme used to remove the redundant bits.[2] REFERENCES 1. “A study of various image compression techniques”, Sonal, Dinesh Kumar. 2. “Image compression by wavelet transform” Panrong XiaoEast Tennessee State University. 3. R. Gonzalez and R. Woods, "Digital Image Processing", 3rd Edition, Prentice-Hall, 2007. 4. “Advanced Digital Signal Processing” Tutorial Recent Development of Image Compression Techniques Chia-Jung Chang National Taiwan University. 5. “Artificial Neural Networks for Beginners”, Carlos GershensonC.Gershenson sussex.ac.uk”. 6. “Wavelets: Applications to Image Compression-I”, Sachin P Nanavati has joined the Scientific and Engineering Computing Group of CDAC, Pune. He enjoys trekking and bird watching. Prasanta KPanigrahi is currently with the Quantum Information and Quantum Optics Division at PRL. 7. “Image Compression Using Wavelets”, Karen Lees May 2002 Supervisor: Dr.Joab Winkler. 8. “Picture quality measure in image compression system”, Marta mark Ssonja Grigc, Mislav Grgic, 2003. 9. Performance Analysis of Daubechies Wavelet and Differential Pulse Code Modulation Based Multiple Neural Networks Approach for Accurate Compression of Images, S.Sridhar, P.RajeshKumar & K.V.Ramanaiah, International Journal of Image Processing (IJIP), Volume (7) : Issue (4) : 2013 372. 10. “Image Compression: An Artificial Neural Network Approach” Anjana B, Mrs. Shreeja R. Dec 2012. 11. Ramdas Bagawade and Pradeep Patil, “Image Resolution Enhancement by using Wavelet Transform”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 4, 2013, pp. 390 - 399, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. 12. S. S. Tamboli and Dr. V. R. Udupi, “Compression Methods using Wavelet Transform”, International Journal of Computer Engineering & Technology (IJCET), Volume 3, Issue 1, 2012, pp. 314 - 321, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. 13. P. Prasanth Babu, L.Rangaiah and D.Maruthi Kumar, “Comparison and Improvement of Image Compression using DCT, DWT & HUFFMAN Encoding Techniques”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 1, 2013, pp. 54 - 60, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.