SlideShare une entreprise Scribd logo
1  sur  11
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
97
LEAD ACID BATTERY MANAGEMENT SYSTEM FOR ELECTRICAL
VEHICLES
V. P. Labade 1
, N. M. Kulkarni 2
and A. D. Shaligram 3
1
Department of Electronic Science, Fergusson College, Pune-4, Maharashtra, India
2
Department of Electronic Science, Fergusson College, Pune-4, Maharashtra, India
3
Department of Electronic Science, University of Pune, Pune-7, Maharashtra, India
ABSTRACT
The high level of energy and power density of Lithium-ion and Zinc batteries amongst
electrochemical batteries such Lead acid battery etc. makes them suitable as the energy
storage in electric, hybrid electric vehicle, and plug-in vehicles (EV/HEV/PHEV). The battery
management system is an electronic system that manages battery. One of the requirements in
electrical system is rechargeable battery and its precise management. The Battery
management system (BMS) monitors very important battery parameters i.e. state of charge,
state of health, coolant flow for air or fluid, ampere hour counting, terminal voltage and
flowing current (in and out).Open circuit voltage and integral of discharging current of the
battery be used for estimation of SOC and are the function of SOC. The on line measurement
and comparison of the predicted and measured terminal voltage and integral of current
provides a tool for estimating the SOC and SOH. The BMS is also used for calculating
secondary reports and reporting the generated data. The BMS also helps in controlling or
balancing battery environment. In this research paper attempt is made to design the battery
management system for electrical system or plug-in vehicles.
KEYWORDS: Battery management system (BMS), plug-in-vehicles-state of charge (SOC),
state of health(SOH)
I. INTRODUCTION
Automobile industry is focused on fuel saving automobile vehicles and/or electric,
hybrid electric vehicle, and plug-in vehicles (EV/HEV/PHEV). The rechargeable battery
plays major role for deciding many electrical specifications of battery operated vehicle.
INTERNATIONAL JOURNAL OF ELECTRONICS AND
COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)
ISSN 0976 – 6464(Print)
ISSN 0976 – 6472(Online)
Volume 4, Issue 3, May – June, 2013, pp. 97-107
© IAEME: www.iaeme.com/ijecet.asp
Journal Impact Factor (2013): 5.8896 (Calculated by GISI)
www.jifactor.com
IJECET
© I A E M E
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
98
Rechargeable batteries like Lithium-ion and Zinc batteries have high levels of energy and
power density amongst other electrochemical batteries such Lead acid battery [1], [2]. The
high level of energy and power density of batteries makes them suitable as the energy storage
in electric, hybrid electric vehicle, and plug-in vehicles. Multi-battery parameter reading or
recording is an important way for studying the functions the rechargeable battery. Monitoring
of the battery performance parameters gives more information about the battery status and
health of the battery. Recently, many commercial data acquisition systems are available and
are also powerful. The battery management system (BMS) is an electronic system that
manages battery and battery parameters precisely. The BMS system monitors important
battery parameters like state of charge, state of health, coolant flow for air or fluid, ampere
hour counting, terminal voltage and flowing current (in and out).The BMS is also used for
calculating secondary reports and reporting the generated data. The BMS helps in controlling
or balancing battery environment. Therefore the battery management systems are generally
used in electric, hybrid electric vehicle, and plug-in vehicles (EV/HEV/PHEV). As far as
electrical vehicles concern the fuel gauge of the battery makes direct use for decision making
for driving a car. The readings of fuel gauge monitored in terms of percentage with accuracy
of 1% will be highly needed. Instead of displaying battery parameters like voltage, current
and AH values, the mileage and SOC in terms of fuel gauge is displayed on the computer
screen. After complete development of the system it would be directly displayed on car
dashboard. Owing to the improvement of computing power, computer-aided multi-unit
acquisition and separation rapidly proliferated during the last two decades. To utilize this
technology is, however, not easy since task-specific designs are usually mandatory. To
overcome this obstacle, a commercially available National Instrument (NI) USB 6009, data
acquisition system is used to evaluate, this research paper describes a design and
development of a real time monitoring system for the measurement of battery performance
parameters. The battery performance parameters are computed continuously with designed
hardware and software setup. The designed system monitors battery related parameters and
provides information regarding health of the rechargeable battery. This experimental data
could be used to know certain parameters of battery like rate of charging, rate of discharging
and power drawn by electrical loads. Real time monitoring system provides key information
to the user in an electrical car or battery operated systems or electrical power system in
deciding mileage, range, specifications and other related parameters.
II.BATTERY MANAGEMENT SYSTEM (BMS)
The battery management system is an electronic system that manages battery .The
BMS system monitors very important battery parameters like state of charge, state of health,
coolant flow for air or fluid, ampere hour counting, terminal voltage and flowing current (in
and out). The BMS is also used for calculating secondary reports and reporting the generated
data. The BMS also helps in controlling or balancing battery environment. The BMS may
include Monitoring, Electrical vehicle system: Energy recovery, Computation,
Communication, Protection, Optimization and Topologies.
2.1 Monitoring
The main role of the BMS is to monitor the battery parameters. The state of the battery
and it may be as represented by various electrical parameters of the battery i.e. total voltage,
temperature, state of charge (SOC) or depth of discharge (DOD),state of health (SOH),
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
99
coolant flow for air or fluid cooled batteries and current in or out of the battery. In this work
the terminal voltage, temperature, state of charge (SOC) or depth of discharge (DOD) are
displayed on the screen of computer as shown in fig.1. In this monitoring system range of
vehicle in km and amount of state of charge in percentage is displayed and which is needed
for driver of the electrical vehicle.
Figure 1.0: BMS for Electrical Car
2.2 Electrical Vehicle System: Energy Recovery
The battery monitoring system will also control the recharging of the battery by
redirecting the recovered energy. It is nothing but energy recovered from regenerative
braking back into the battery packs. The pack is typically composed of few batteries. The
batteries are charged through this regenerative braking and mileage would be increased. The
efficiency of regenerative braking system decides status of charge present in the battery.
2.3 Computation
In addition with this existing system battery monitoring system may calculate different
values based on the above items i.e. Maximum charge current as a charge current
limit (CCL), Maximum discharge current as a discharge current limit (DCL), Energy
delivered since last charge or charge cycle, Total energy delivered since first use and Total
operating time since first use. The LabVIEW is used to store all the parameters in the excel
sheet for ready reference.
2.4 Communication
A Battery monitoring system is designed to report all data to an external device, using
communication links i.e. Serial communications, CAN bus is one particular implementation
of a serial link most commonly used in automotive environments, Direct wiring, DC-BUS -
Serial communication over power-line and Wireless communications. This existing system
does not speak with any of the communication.
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
100
2.5 Protection
A battery management system may protect battery by preventing it from operating
outside its safe operating area i.e. Over-current, Over-voltage (during charging),Under-
voltage (during discharging), especially important for lead–acid and Li-ion cells, Over-
temperature, Under-temperature and Over-pressure for NiMH batteries. The BMS may
prevent operation outside the battery's safe operating area by:
• Including an internal switch which is opened if the battery is operated outside its safe
operating area
• Requesting the devices to which the battery is connected to reduce or even terminate
using the battery.
• Actively controlling the environment, such as through heaters, fans, air conditioning or
liquid cooling
2.6 Optimization
The optimization of the system may leads in improving efficiency of the developed
system. The rechargeable battery with proper optimization gives improved life cycle and
stable electrical parameters within experimental limitations.
2.7 Topologies
Topographic study of a rechargeable battery and where it is used place, especially the
history of a region as indicated by its topography. This term could be used in the estimation
of some of the parameters of the battery.
III. EXPERIMENTAL
Data acquisition is the process of sampling signals that measure real world’s physical
conditions and converting the resulting samples into digital numbers that can be manipulated
by a computer. Data acquisition systems (acronym DAS or DAQ) typically convert analog
waveforms into digital values for processing. In this research work DAS is used to read
parameters of the rechargeable battery continuously with number of samples per second is
decided in the LabVIEW software. The charging or discharging rate of the rechargeable
battery or electrical car battery is low or not constant as compare to other physical systems.
The 20,000 samples per second, maximum sampling rate is possible for reading data with this
card. In case of battery parameter reading process needs lower sampling rate and can be
adjusted through DAQ assistant setting of the card through the software. The type of reading
data (differential or single ended) can be decided through software Data acquisition
applications are controlled by software programs developed using specialized software
LabVIEW .This software tools used for building large scale data acquisition systems for
rechargeable battery and its graphical programming environments for visualization.
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
101
Figure 2.0: Battery management system for electrical vehicle
DAQ hardware is what usually interfaces between the signal and a PC. It could be in
the form of modules that can be connected to the computer's ports (parallel, serial, USB, etc.)
or cards connected to slots in the board. Not all DAQ hardware has to run permanently
connected to a PC, for example intelligent stand-alone loggers and oscilloscopes, which can
be operated from a Personal Computer (PC), yet they can operate completely independent of
the PC.
The block diagram of the system consists of current, temperature and voltage sensing
sections followed by its signal conditioning blocks as shown in Fig2.0. The necessary settings
are made according to the requirement of the system temperature measurement parameters is
very much important because temperature term decides internal resistance of the battery and
rate of charging and discharging, and some required electrical quantities or parameters of the
battery. The temperature of the battery is read through the sensor LM35 and corresponding
output voltage is directly given to the DAS with signal conditioning output of the sensor.
Similarly the current and voltage part is also connected to the DAS system in order to make
system ready for reading data continuously. Battery indications are also included in the
software code like temperature of battery, lower/higher voltages, Total power of the battery,
Remaining power of the battery and Charge holding time, Nominal Voltage and High
temperature indications of the battery through emergency indicators. The different loads
connected to the battery can be manipulated through software and corresponding load
switching unit can be activated in order to use battery for optimum utilization.
The state of charge and depth of discharge are the most significant parameters of the
battery. These parameters are used for the improvement of battery operation, performance,
reliability and life span. Knowing the state of charge it is possible to avoid an overcharging
that would lead to a decrease in working life or even to a battery malfunctions. The
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976
malfunctioning of the lead acid battery may cause large economical losses or in the case of
more sensitive equipment, even the loss of human lives. The measurement of electrolyte
density provides accurate value of battery SOC but for this measurement hydrometer is
required and manual intervention is needed for its operation. For this reason onlin
monitoring plays important role for avoiding many problems.
3.1. Battery State of Charge (SOC)
A key parameter of a battery use in an EV system is the battery state of charge (SOC).
The SOC is defined as the fraction of the total energy or battery capac
over the total available from the battery. Battery state of charge (SOC) gives the ratio of the
amount of energy presently stored in the battery to the nominal rated capacity.
Figure 3:
For example, for a battery at 80% SOC and with a 500 Ah capacity, the energy stored
in the battery is 400 Ah. A common way to know SOC is to measure the terminal voltage of
the battery and compare this voltage of a fully charged battery. However, as the battery
voltage depends on temperature as well the state of charge of the battery; this measurement
provides only a rough idea of battery state of charge.
3.2. Depth of discharge (DOD)
In any type of batteries, the full energy stored in the battery cannot be withdrawn or
cannot be fully discharged without causing serious and often irreparable damage to the
battery. Depth of Discharge is the
battery pack). It is expressed in a percentage of the total capacity of the battery. For example,
50% depth of discharge means that half of the energy in the battery has been used. 80% DOD
means that eighty percent of the energy has been dischar
20% of its full charge.
International Journal of Electronics and Communication Engineering & Technology (IJECET),
76 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
102
malfunctioning of the lead acid battery may cause large economical losses or in the case of
more sensitive equipment, even the loss of human lives. The measurement of electrolyte
density provides accurate value of battery SOC but for this measurement hydrometer is
required and manual intervention is needed for its operation. For this reason onlin
monitoring plays important role for avoiding many problems.
SOC)
A key parameter of a battery use in an EV system is the battery state of charge (SOC).
The SOC is defined as the fraction of the total energy or battery capacity that has been used
over the total available from the battery. Battery state of charge (SOC) gives the ratio of the
amount of energy presently stored in the battery to the nominal rated capacity.
Figure 3: SOC and DOD relation strip
for a battery at 80% SOC and with a 500 Ah capacity, the energy stored
in the battery is 400 Ah. A common way to know SOC is to measure the terminal voltage of
the battery and compare this voltage of a fully charged battery. However, as the battery
depends on temperature as well the state of charge of the battery; this measurement
provides only a rough idea of battery state of charge.
In any type of batteries, the full energy stored in the battery cannot be withdrawn or
cannot be fully discharged without causing serious and often irreparable damage to the
battery. Depth of Discharge is the amount of energy that has been removed from a b
battery pack). It is expressed in a percentage of the total capacity of the battery. For example,
50% depth of discharge means that half of the energy in the battery has been used. 80% DOD
means that eighty percent of the energy has been discharged, so the battery now holds only
International Journal of Electronics and Communication Engineering & Technology (IJECET),
June (2013), © IAEME
malfunctioning of the lead acid battery may cause large economical losses or in the case of
more sensitive equipment, even the loss of human lives. The measurement of electrolyte
density provides accurate value of battery SOC but for this measurement hydrometer is
required and manual intervention is needed for its operation. For this reason online
A key parameter of a battery use in an EV system is the battery state of charge (SOC).
ity that has been used
over the total available from the battery. Battery state of charge (SOC) gives the ratio of the
for a battery at 80% SOC and with a 500 Ah capacity, the energy stored
in the battery is 400 Ah. A common way to know SOC is to measure the terminal voltage of
the battery and compare this voltage of a fully charged battery. However, as the battery
depends on temperature as well the state of charge of the battery; this measurement
In any type of batteries, the full energy stored in the battery cannot be withdrawn or
cannot be fully discharged without causing serious and often irreparable damage to the
amount of energy that has been removed from a battery (or
battery pack). It is expressed in a percentage of the total capacity of the battery. For example,
50% depth of discharge means that half of the energy in the battery has been used. 80% DOD
ged, so the battery now holds only
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
103
Figure 4: Monitoring SOC, drawn current using gauge diagram
3.3. State of Health (SOH)
It is a figure of merit of condition of the battery compared to the ideal conditions of the
battery. The unit of SOH is percent points (100% Battery condition match the battery
specification). Typically SOH is 100% at the time of manufacture and will decrease over time
and battery use. SOH does not correspond to a particular physical quantity; there is no
consensus in the industry on how SOH should be determined. The designer of battery
management system may use any of the following parameter to derive an arbitrary value of
SOH i.e. internal resistance or impedance or capacitance, capacity, voltage, discharge, ability
to accept charge and number of charge discharge cycles.
3.4 Ampere-Hour measurement
The battery capacity determines the backup duration of the rechargeable battery. It is
primarily defined in ampere hours (Ah) and selected on the basis of backup requirements of
an individual. Higher the ampere hour capacity of the battery, larger will be the backup time
for the system. The measurement of ampere hour is time consuming and not simple for
variety of loads and for automation is also tedious. In this designed system ampere hour
measurement is done effectively for variety of loads. A standard battery provides three hours
backup time at full load and six hours at half load. One can increase backup duration by
installing higher capacity batteries or adding extra batteries in parallel. The designed system
measures current along with time so that ampere hour can be displayed on the monitor of the
system. This helps to know how much load is connected to the system and corresponding
time and how far battery will deliver charge to the load connected to it.
IV. IMPLEMENTATION
The real time battery monitoring system for measurement of different battery
parameters are implemented with the help of software LabVIEW 2011 and DAS USB 6009
with some extra electronics for high side current sensing section and temperature sensor
circuitry. The extra hardware is required for current sensing section of the setup because the
high current of battery cannot be connected directly to the DAS card because of current
measurement limitations. This card measures current up to 50mA and electrical car consumes
current in terms of ampere. Hence the high side current circuit is designed with suitable gain
of the differential amplifier with high CMRR operational amplifier.
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
104
Figure 5: Front Panel of Battery Monitoring System using LabVIEW
The electrical load current is converted in to corresponding voltage and then given to
the DAS card. The DAS driver software is needed to work DAS hardware on PC or Laptop.
The device driver performs low-level register writes and reads on the hardware, while
exposing a standard API for developing user applications. The experimental results are stored
in particular file as a reference and comparison of previous and current data. The front panel
of the designed Battery Monitoring System is shown in fig.5 and readings for different
parameters are monitored as real time setup. This front panel also shows state of charge,
depth of discharge, load current, terminal voltage, ampere-hour and backup time of the
battery.
V. RESULT AND CONCLUSION
Figure 6: Graphical display of SOC, A-H, Load Current and Terminal Voltage
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
105
It is possible to keep continuous track on battery performance. The user of battery
operated system will get exact value of charge holding time of the battery and required
indications through indicators like displays and emergency alarms. The fig.6 gives graphical
representation of important parameters of the battery. This graphical data can be used to
know certain parameters of battery like rate of charging, rate of discharging and power drawn
by electrical loads. Real time monitoring system provides key information to the user of an
electrical car or battery operated systems or electrical power system in deciding mileage,
range, specifications and other related parameters. In the graphical representation, the graphs
are given for ampere hour, state of charge, load current and terminal voltage of the battery.
Figure 7: Experimental Setup for battery monitoring system
By knowing these parameters driver information system gives information related to
mileage and fuel gauge related information to the driver. The designed system monitors
battery related all parameters and provides useful information to the user about health of the
battery.
Through this battery performance parameters and necessary preventive action are
suggested through the developed prototype. The setup prototype is shown in the photograph
of fig7.
ACKNOWLEDGMENTS
Mr.V.P. Labade would like to thank Joint Secretary UGC(WRO), Principal, Head of
research center of Fergusson College for sanctioning funds for research scheme and awarding
teacher fellowship under faculty improvement program for the research work under UGC XI
th plan.
Load
Hardware for coulomb counting
DAS
Battery
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
106
REFERENCES
[1] James Larminie (Oxford Brookes university oxford UK), John Lowry (Acenti Designs
Ltd., UK), “Electric Vehicle Technology Explained”, By Publication John Wiley and
sons, Ltd, 2003
[2] Robyn A. Jackey,” A simple, effective lead-acid battery modeling process for electrical
system component selection”, 2007
[3] Wang yan, Yin Tian-ming, Liu Bao-jie “Lead-acid Power Battery Management System
Basing on Kalman Filtering” 978-1-4244-1849-7/08 C 2008 IEEE ,IEEE Vehicle Power and
Propulsion Conference (VPPC, Harbin, Chi), September 3-5, 2008
[4] V.P.Labade , N. M. Kulkarni and A. D. Shaligram “Online Monitoring of Battery
Performance Parameters for Electric and Hybrid Electric Vehicle” Presented at National
conference of NCRIGE-2013 at Amravati, Maharashtra (India),8-9 Feb 2013
[5] V.P.Labade , N. M. Kulkarni and A. D. Shaligram “Hardware in the Loop (H-I-L) of
Rechargeable Lead Acid Battery for Electrical Vehicles using Virtual Instrumentation”
Presented to National conference of NSI 37 at Chandigarh (Oct 2012). Published in Journal
of the Instrument Society of India ISSN 0970-9983 Vol.43 No.2 pp82-85 (2013)
[6] V.P.Labade, N. M. Kulkarni and A. D. Shaligram “Intelligent Battery Health Monitoring
System for Uninterrupted Power Supply” NSI-36 (20-22, October 2011, Bareilly, UP)
Journal of the Instrument Society of India ISSN 0970-9983 Vol.41 No.4 pp213-216(2011)
[7] IEEE proceedings “Computer Modeling of the automotive energy requirements for
internal combustion engine and battery electric –power vehicles”, vol132, pt A, No-5, PP
265-279, Sept 1985.
[8] M. Daniel Pradeep and S.Jebarani Evangeline, “A Review of PFC Boost Converters for
Hybrid Electric Vehicle Battery Chargers”, International Journal of Electronics and
Communication Engineering &Technology (IJECET), Volume 4, Issue 1, 2013,
pp. 85 - 91, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472.
[9] P.Vishnu, R.Ajaykrishna and Dr.S.Thirumalini, “Recent Advancements and Challenges in
Plug-In Diesel Hybrid Electric Vehicle Technology”, International Journal of Electrical
Engineering & Technology (IJEET), Volume 3, Issue 1, 2012, pp. 316 - 325, ISSN Print :
0976-6545, ISSN Online: 0976-6553
AUTHORS BIOGRAPHY
• Mr. V. P. Labade is an Assistant Professor at the department
of Electronic Science, Fergusson College, Pune (India). He has
completed his education from University of Pune i.e. B.Sc. (1996), M.Sc
(1998) and M.Phil. (2009). He has been awarded teacher fellowship
(Faculty Improvement Program) from U.G.C, Delhi for the research work
in 2010. He has completed minor research project of BCUD, University
of Pune and published 18 research papers at the conferences and
published in the proceedings and research journals. His area of interest in research is Analog
and Digital Electronics, Embedded systems, car batteries and Software development in
MATLAB and LabVIEW.
(http://scholar.google.co.in/citations?hl=en&authuser=1&user=g4yfOxEAAAAJ)
International Journal of Electronics and Communication Engineering & Technology (IJECET),
ISSN 0976 – 6464(Print), ISSN 0976
• Dr. N. M. Kulkarni
of Pune i.e. B.Sc. (1984), M.Sc (1986) a
known professor of Electronics Science since from 1986. He is working as
Associate Professor and Vice Principal, Fergusson College, Pune. His area
of interest in research is VLSI Design
processing, WSN and Software developments. He has
research projects since from 1988 with prestigious organizations of India
i.e. DST, UGC, DAE, Director of BCUD,
and ISRO.
(http://scholar.google.co.in/citations?user=kzwcls0AAAAJ&hl=en&
• Dr. A. D. Shaligram
University of Pune
is renowned professor in the field of Electronics Science since from
1986. He is working as Professor and Head of the depa
University of Pune. From his
various highest positions at the National and International level. His area
of interest in research is Fiber optic sensors
systems –WSN and Software develo
from 1988 with prestigious organizations of India i.e. DST, DOE, UGC
DIT and DRDO.
(http://scholar.google.co.in/citations?user=fFD
International Journal of Electronics and Communication Engineering & Technology (IJECET),
76 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME
107
Dr. N. M. Kulkarni completed his education from University
B.Sc. (1984), M.Sc (1986) and Ph.D. (1994). He is
professor of Electronics Science since from 1986. He is working as
Associate Professor and Vice Principal, Fergusson College, Pune. His area
of interest in research is VLSI Design - Embedded systems, Image
processing, WSN and Software developments. He has completed various
research projects since from 1988 with prestigious organizations of India
Director of BCUD, University of Pune, Ganeshkhind, Pune
http://scholar.google.co.in/citations?user=kzwcls0AAAAJ&hl=en&authuser=1)
Dr. A. D. Shaligram completed his education from
University of Pune i.e. B.Sc. (1979), M.Sc (1981) and Ph.D. (1986). He
is renowned professor in the field of Electronics Science since from
1986. He is working as Professor and Head of the depa
University of Pune. From his academic working tenure he worked on
various highest positions at the National and International level. His area
of interest in research is Fiber optic sensors - VLSI Design
WSN and Software development. He has completed various research projects since
from 1988 with prestigious organizations of India i.e. DST, DOE, UGC, DAE, CSIR, ISRO,
(http://scholar.google.co.in/citations?user=fFD-cmEAAAAJ&hl=en&authuser=1)
International Journal of Electronics and Communication Engineering & Technology (IJECET),
June (2013), © IAEME
completed his education from University
nd Ph.D. (1994). He is well-
professor of Electronics Science since from 1986. He is working as
Associate Professor and Vice Principal, Fergusson College, Pune. His area
Embedded systems, Image
completed various
research projects since from 1988 with prestigious organizations of India
niversity of Pune, Ganeshkhind, Pune-411007
authuser=1)
completed his education from
B.Sc. (1979), M.Sc (1981) and Ph.D. (1986). He
is renowned professor in the field of Electronics Science since from
1986. He is working as Professor and Head of the department at
working tenure he worked on
various highest positions at the National and International level. His area
VLSI Design - Embedded
pment. He has completed various research projects since
, DAE, CSIR, ISRO,
cmEAAAAJ&hl=en&authuser=1)

Contenu connexe

Tendances

IRJET - Design Modularity in Electric Vehicles
IRJET - Design Modularity in Electric VehiclesIRJET - Design Modularity in Electric Vehicles
IRJET - Design Modularity in Electric VehiclesIRJET Journal
 
IRJET- Role of Solar Powered Automatic Traffic Light Controller for Energy Co...
IRJET- Role of Solar Powered Automatic Traffic Light Controller for Energy Co...IRJET- Role of Solar Powered Automatic Traffic Light Controller for Energy Co...
IRJET- Role of Solar Powered Automatic Traffic Light Controller for Energy Co...IRJET Journal
 
IRJET- Studies on Portable Power Banks for Recharging Electronic Gadgets
IRJET-  	  Studies on Portable Power Banks for Recharging Electronic Gadgets IRJET-  	  Studies on Portable Power Banks for Recharging Electronic Gadgets
IRJET- Studies on Portable Power Banks for Recharging Electronic Gadgets IRJET Journal
 
Maintenance and Troubleshooting of Uninterruptible Power Supply (UPS) Systems...
Maintenance and Troubleshooting of Uninterruptible Power Supply (UPS) Systems...Maintenance and Troubleshooting of Uninterruptible Power Supply (UPS) Systems...
Maintenance and Troubleshooting of Uninterruptible Power Supply (UPS) Systems...Living Online
 
Kada003 ac drives_diagnostics_report
Kada003 ac drives_diagnostics_reportKada003 ac drives_diagnostics_report
Kada003 ac drives_diagnostics_reportbrumaller
 
Speed Torque Characteristics of BLDC Motor with Load Variations
Speed Torque Characteristics of BLDC Motor with Load VariationsSpeed Torque Characteristics of BLDC Motor with Load Variations
Speed Torque Characteristics of BLDC Motor with Load Variationsijtsrd
 
A LabVIEW Model For the Operation and Control Strategy of a Hybrid System
A LabVIEW Model For the Operation and Control Strategy of a Hybrid SystemA LabVIEW Model For the Operation and Control Strategy of a Hybrid System
A LabVIEW Model For the Operation and Control Strategy of a Hybrid SystemCSCJournals
 
Smfir technology based transportation system and applicability of mppt
Smfir technology based transportation system and applicability of mpptSmfir technology based transportation system and applicability of mppt
Smfir technology based transportation system and applicability of mppteSAT Publishing House
 
Brushless DC motor Drive during Speed regulation with Current Controller
Brushless DC motor Drive during Speed regulation with Current ControllerBrushless DC motor Drive during Speed regulation with Current Controller
Brushless DC motor Drive during Speed regulation with Current ControllerIJERA Editor
 
Efficient speed governor for blower motor
Efficient speed governor for blower motorEfficient speed governor for blower motor
Efficient speed governor for blower motoreSAT Publishing House
 
Hardware prototype of smart home energy management system
Hardware prototype of smart home energy management systemHardware prototype of smart home energy management system
Hardware prototype of smart home energy management systemeSAT Journals
 
Optimization of controlling of performance characteristics of induction mo
Optimization of controlling of performance characteristics of induction moOptimization of controlling of performance characteristics of induction mo
Optimization of controlling of performance characteristics of induction moIAEME Publication
 
Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallahslmnsvn
 
DC Fast Charger and Battery Management System for Electric Vehicles
DC Fast Charger and Battery Management System for Electric VehiclesDC Fast Charger and Battery Management System for Electric Vehicles
DC Fast Charger and Battery Management System for Electric VehiclesIJSRED
 
The working principle of ups
The working principle of upsThe working principle of ups
The working principle of upsjayonline_4u
 

Tendances (19)

IRJET - Design Modularity in Electric Vehicles
IRJET - Design Modularity in Electric VehiclesIRJET - Design Modularity in Electric Vehicles
IRJET - Design Modularity in Electric Vehicles
 
IRJET- Role of Solar Powered Automatic Traffic Light Controller for Energy Co...
IRJET- Role of Solar Powered Automatic Traffic Light Controller for Energy Co...IRJET- Role of Solar Powered Automatic Traffic Light Controller for Energy Co...
IRJET- Role of Solar Powered Automatic Traffic Light Controller for Energy Co...
 
IRJET- Studies on Portable Power Banks for Recharging Electronic Gadgets
IRJET-  	  Studies on Portable Power Banks for Recharging Electronic Gadgets IRJET-  	  Studies on Portable Power Banks for Recharging Electronic Gadgets
IRJET- Studies on Portable Power Banks for Recharging Electronic Gadgets
 
Electric vehicle technology impacts on energy
Electric vehicle technology impacts on energyElectric vehicle technology impacts on energy
Electric vehicle technology impacts on energy
 
Maintenance and Troubleshooting of Uninterruptible Power Supply (UPS) Systems...
Maintenance and Troubleshooting of Uninterruptible Power Supply (UPS) Systems...Maintenance and Troubleshooting of Uninterruptible Power Supply (UPS) Systems...
Maintenance and Troubleshooting of Uninterruptible Power Supply (UPS) Systems...
 
Kada003 ac drives_diagnostics_report
Kada003 ac drives_diagnostics_reportKada003 ac drives_diagnostics_report
Kada003 ac drives_diagnostics_report
 
Speed Torque Characteristics of BLDC Motor with Load Variations
Speed Torque Characteristics of BLDC Motor with Load VariationsSpeed Torque Characteristics of BLDC Motor with Load Variations
Speed Torque Characteristics of BLDC Motor with Load Variations
 
A LabVIEW Model For the Operation and Control Strategy of a Hybrid System
A LabVIEW Model For the Operation and Control Strategy of a Hybrid SystemA LabVIEW Model For the Operation and Control Strategy of a Hybrid System
A LabVIEW Model For the Operation and Control Strategy of a Hybrid System
 
Design and analysis of double stator HE-FSM for aircraft applications
Design and analysis of double stator HE-FSM for aircraft applicationsDesign and analysis of double stator HE-FSM for aircraft applications
Design and analysis of double stator HE-FSM for aircraft applications
 
Smfir technology based transportation system and applicability of mppt
Smfir technology based transportation system and applicability of mpptSmfir technology based transportation system and applicability of mppt
Smfir technology based transportation system and applicability of mppt
 
IEEE Final only
IEEE Final onlyIEEE Final only
IEEE Final only
 
Brushless DC motor Drive during Speed regulation with Current Controller
Brushless DC motor Drive during Speed regulation with Current ControllerBrushless DC motor Drive during Speed regulation with Current Controller
Brushless DC motor Drive during Speed regulation with Current Controller
 
Efficient speed governor for blower motor
Efficient speed governor for blower motorEfficient speed governor for blower motor
Efficient speed governor for blower motor
 
Sheldons
SheldonsSheldons
Sheldons
 
Hardware prototype of smart home energy management system
Hardware prototype of smart home energy management systemHardware prototype of smart home energy management system
Hardware prototype of smart home energy management system
 
Optimization of controlling of performance characteristics of induction mo
Optimization of controlling of performance characteristics of induction moOptimization of controlling of performance characteristics of induction mo
Optimization of controlling of performance characteristics of induction mo
 
Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
 
DC Fast Charger and Battery Management System for Electric Vehicles
DC Fast Charger and Battery Management System for Electric VehiclesDC Fast Charger and Battery Management System for Electric Vehicles
DC Fast Charger and Battery Management System for Electric Vehicles
 
The working principle of ups
The working principle of upsThe working principle of ups
The working principle of ups
 

En vedette

Artificial neural network based nitrogen oxides emission prediction and
Artificial neural network based nitrogen oxides emission prediction andArtificial neural network based nitrogen oxides emission prediction and
Artificial neural network based nitrogen oxides emission prediction andIAEME Publication
 
Location predictionin cellular network using neural network
Location predictionin cellular network using neural networkLocation predictionin cellular network using neural network
Location predictionin cellular network using neural networkIAEME Publication
 
Performance of dsdv protocol based on different propagation model with vari
Performance of dsdv protocol based on different propagation model with variPerformance of dsdv protocol based on different propagation model with vari
Performance of dsdv protocol based on different propagation model with variIAEME Publication
 
Data transmission with gbits speed using cmos based integrated circu
Data transmission with gbits speed using cmos based integrated circuData transmission with gbits speed using cmos based integrated circu
Data transmission with gbits speed using cmos based integrated circuIAEME Publication
 
Assessing the effect of information and communication technology on enhancing
Assessing the effect of information and communication technology on enhancingAssessing the effect of information and communication technology on enhancing
Assessing the effect of information and communication technology on enhancingIAEME Publication
 
Compression behaviour of natural soils
Compression behaviour of natural soilsCompression behaviour of natural soils
Compression behaviour of natural soilsIAEME Publication
 
Benefit analysis of subgrade and surface improvements in flexible pavements 2
Benefit analysis of subgrade and surface improvements in flexible pavements 2Benefit analysis of subgrade and surface improvements in flexible pavements 2
Benefit analysis of subgrade and surface improvements in flexible pavements 2IAEME Publication
 
Micro fluidic valve for satellite propulsion system
Micro fluidic valve for satellite propulsion systemMicro fluidic valve for satellite propulsion system
Micro fluidic valve for satellite propulsion systemIAEME Publication
 

En vedette (8)

Artificial neural network based nitrogen oxides emission prediction and
Artificial neural network based nitrogen oxides emission prediction andArtificial neural network based nitrogen oxides emission prediction and
Artificial neural network based nitrogen oxides emission prediction and
 
Location predictionin cellular network using neural network
Location predictionin cellular network using neural networkLocation predictionin cellular network using neural network
Location predictionin cellular network using neural network
 
Performance of dsdv protocol based on different propagation model with vari
Performance of dsdv protocol based on different propagation model with variPerformance of dsdv protocol based on different propagation model with vari
Performance of dsdv protocol based on different propagation model with vari
 
Data transmission with gbits speed using cmos based integrated circu
Data transmission with gbits speed using cmos based integrated circuData transmission with gbits speed using cmos based integrated circu
Data transmission with gbits speed using cmos based integrated circu
 
Assessing the effect of information and communication technology on enhancing
Assessing the effect of information and communication technology on enhancingAssessing the effect of information and communication technology on enhancing
Assessing the effect of information and communication technology on enhancing
 
Compression behaviour of natural soils
Compression behaviour of natural soilsCompression behaviour of natural soils
Compression behaviour of natural soils
 
Benefit analysis of subgrade and surface improvements in flexible pavements 2
Benefit analysis of subgrade and surface improvements in flexible pavements 2Benefit analysis of subgrade and surface improvements in flexible pavements 2
Benefit analysis of subgrade and surface improvements in flexible pavements 2
 
Micro fluidic valve for satellite propulsion system
Micro fluidic valve for satellite propulsion systemMicro fluidic valve for satellite propulsion system
Micro fluidic valve for satellite propulsion system
 

Similaire à Lead acid battery management system for electrical vehicles

Development of Power train in Electric Vehicles.
Development of Power train in Electric Vehicles.Development of Power train in Electric Vehicles.
Development of Power train in Electric Vehicles.IRJET Journal
 
Analysis of Battery Management Systems
Analysis of Battery Management SystemsAnalysis of Battery Management Systems
Analysis of Battery Management SystemsIRJET Journal
 
DESIGN OF A RELIABLE AND PERFORMANCE FOCUSED ELECTRIC MOTORCYCLE
DESIGN OF A RELIABLE AND PERFORMANCE FOCUSED ELECTRIC MOTORCYCLEDESIGN OF A RELIABLE AND PERFORMANCE FOCUSED ELECTRIC MOTORCYCLE
DESIGN OF A RELIABLE AND PERFORMANCE FOCUSED ELECTRIC MOTORCYCLEIRJET Journal
 
AUTOMATIC BATTERY HEALTH MONITORINGUSING MACHINE LEARNING FOR E-VEHICLES
AUTOMATIC BATTERY HEALTH MONITORINGUSING MACHINE LEARNING FOR E-VEHICLESAUTOMATIC BATTERY HEALTH MONITORINGUSING MACHINE LEARNING FOR E-VEHICLES
AUTOMATIC BATTERY HEALTH MONITORINGUSING MACHINE LEARNING FOR E-VEHICLESIRJET Journal
 
Battery Management Solution
Battery Management SolutionBattery Management Solution
Battery Management SolutionAvinash Sista
 
InComplianceJune2015_Hoerman
InComplianceJune2015_HoermanInComplianceJune2015_Hoerman
InComplianceJune2015_HoermanBrent Hoerman
 
Battery Management System– Hardware Design
Battery Management System– Hardware DesignBattery Management System– Hardware Design
Battery Management System– Hardware DesignIRJET Journal
 
Review of Battery Management Systems (BMS)
Review of Battery Management Systems (BMS)Review of Battery Management Systems (BMS)
Review of Battery Management Systems (BMS)IRJET Journal
 
Review of Battery Management Systems (BMS)
Review of Battery Management Systems (BMS)Review of Battery Management Systems (BMS)
Review of Battery Management Systems (BMS)IRJET Journal
 
BMS_PPT_09_NOV[1][1].pptx
BMS_PPT_09_NOV[1][1].pptxBMS_PPT_09_NOV[1][1].pptx
BMS_PPT_09_NOV[1][1].pptxboltgaming3
 
EV Battery Monitoring System using GSM
EV Battery Monitoring System using GSMEV Battery Monitoring System using GSM
EV Battery Monitoring System using GSMIRJET Journal
 
A Comprehensive Review of Electric Vehicle Charging Station Topologies
A Comprehensive Review of Electric Vehicle Charging Station TopologiesA Comprehensive Review of Electric Vehicle Charging Station Topologies
A Comprehensive Review of Electric Vehicle Charging Station TopologiesIRJET Journal
 
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBhagavathyP
 
Smart Battery Management System for Lithium Ion Battery
Smart Battery Management System for Lithium Ion BatterySmart Battery Management System for Lithium Ion Battery
Smart Battery Management System for Lithium Ion BatteryIRJET Journal
 
A Review of Hybrid Battery Management System (H-BMS) for EV
A Review of Hybrid Battery Management System (H-BMS) for EVA Review of Hybrid Battery Management System (H-BMS) for EV
A Review of Hybrid Battery Management System (H-BMS) for EVTELKOMNIKA JOURNAL
 
Design and Fabrication of Regenerative Braking in EV
Design and Fabrication of Regenerative Braking in EVDesign and Fabrication of Regenerative Braking in EV
Design and Fabrication of Regenerative Braking in EVvivatechijri
 
IJSRED-V2I1P32
IJSRED-V2I1P32IJSRED-V2I1P32
IJSRED-V2I1P32IJSRED
 
Evaluation of lightweight battery management system with field test of elect...
Evaluation of lightweight battery management system with  field test of elect...Evaluation of lightweight battery management system with  field test of elect...
Evaluation of lightweight battery management system with field test of elect...IJECEIAES
 
Automatic EV Battery Management and control Systems using IOT
Automatic EV Battery Management and control Systems using IOTAutomatic EV Battery Management and control Systems using IOT
Automatic EV Battery Management and control Systems using IOTIRJET Journal
 

Similaire à Lead acid battery management system for electrical vehicles (20)

Development of Power train in Electric Vehicles.
Development of Power train in Electric Vehicles.Development of Power train in Electric Vehicles.
Development of Power train in Electric Vehicles.
 
Analysis of Battery Management Systems
Analysis of Battery Management SystemsAnalysis of Battery Management Systems
Analysis of Battery Management Systems
 
DESIGN OF A RELIABLE AND PERFORMANCE FOCUSED ELECTRIC MOTORCYCLE
DESIGN OF A RELIABLE AND PERFORMANCE FOCUSED ELECTRIC MOTORCYCLEDESIGN OF A RELIABLE AND PERFORMANCE FOCUSED ELECTRIC MOTORCYCLE
DESIGN OF A RELIABLE AND PERFORMANCE FOCUSED ELECTRIC MOTORCYCLE
 
AUTOMATIC BATTERY HEALTH MONITORINGUSING MACHINE LEARNING FOR E-VEHICLES
AUTOMATIC BATTERY HEALTH MONITORINGUSING MACHINE LEARNING FOR E-VEHICLESAUTOMATIC BATTERY HEALTH MONITORINGUSING MACHINE LEARNING FOR E-VEHICLES
AUTOMATIC BATTERY HEALTH MONITORINGUSING MACHINE LEARNING FOR E-VEHICLES
 
Battery Management Solution
Battery Management SolutionBattery Management Solution
Battery Management Solution
 
InComplianceJune2015_Hoerman
InComplianceJune2015_HoermanInComplianceJune2015_Hoerman
InComplianceJune2015_Hoerman
 
Battery Management System– Hardware Design
Battery Management System– Hardware DesignBattery Management System– Hardware Design
Battery Management System– Hardware Design
 
Review of Battery Management Systems (BMS)
Review of Battery Management Systems (BMS)Review of Battery Management Systems (BMS)
Review of Battery Management Systems (BMS)
 
Review of Battery Management Systems (BMS)
Review of Battery Management Systems (BMS)Review of Battery Management Systems (BMS)
Review of Battery Management Systems (BMS)
 
BMS_PPT_09_NOV[1][1].pptx
BMS_PPT_09_NOV[1][1].pptxBMS_PPT_09_NOV[1][1].pptx
BMS_PPT_09_NOV[1][1].pptx
 
EV Battery Monitoring System using GSM
EV Battery Monitoring System using GSMEV Battery Monitoring System using GSM
EV Battery Monitoring System using GSM
 
A Comprehensive Review of Electric Vehicle Charging Station Topologies
A Comprehensive Review of Electric Vehicle Charging Station TopologiesA Comprehensive Review of Electric Vehicle Charging Station Topologies
A Comprehensive Review of Electric Vehicle Charging Station Topologies
 
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
 
Development of multiple plug-in electric vehicle mobile charging station usin...
Development of multiple plug-in electric vehicle mobile charging station usin...Development of multiple plug-in electric vehicle mobile charging station usin...
Development of multiple plug-in electric vehicle mobile charging station usin...
 
Smart Battery Management System for Lithium Ion Battery
Smart Battery Management System for Lithium Ion BatterySmart Battery Management System for Lithium Ion Battery
Smart Battery Management System for Lithium Ion Battery
 
A Review of Hybrid Battery Management System (H-BMS) for EV
A Review of Hybrid Battery Management System (H-BMS) for EVA Review of Hybrid Battery Management System (H-BMS) for EV
A Review of Hybrid Battery Management System (H-BMS) for EV
 
Design and Fabrication of Regenerative Braking in EV
Design and Fabrication of Regenerative Braking in EVDesign and Fabrication of Regenerative Braking in EV
Design and Fabrication of Regenerative Braking in EV
 
IJSRED-V2I1P32
IJSRED-V2I1P32IJSRED-V2I1P32
IJSRED-V2I1P32
 
Evaluation of lightweight battery management system with field test of elect...
Evaluation of lightweight battery management system with  field test of elect...Evaluation of lightweight battery management system with  field test of elect...
Evaluation of lightweight battery management system with field test of elect...
 
Automatic EV Battery Management and control Systems using IOT
Automatic EV Battery Management and control Systems using IOTAutomatic EV Battery Management and control Systems using IOT
Automatic EV Battery Management and control Systems using IOT
 

Plus de IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

Plus de IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Dernier

The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...Operational Excellence Consulting
 
Environmental Impact Of Rotary Screw Compressors
Environmental Impact Of Rotary Screw CompressorsEnvironmental Impact Of Rotary Screw Compressors
Environmental Impact Of Rotary Screw Compressorselgieurope
 
Data Analytics Strategy Toolkit and Templates
Data Analytics Strategy Toolkit and TemplatesData Analytics Strategy Toolkit and Templates
Data Analytics Strategy Toolkit and TemplatesAurelien Domont, MBA
 
Planetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifePlanetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifeBhavana Pujan Kendra
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationAnamaria Contreras
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMVoces Mineras
 
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdfGUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdfDanny Diep To
 
Welding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsWelding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsIndiaMART InterMESH Limited
 
WSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfWSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfJamesConcepcion7
 
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Aggregage
 
Cyber Security Training in Office Environment
Cyber Security Training in Office EnvironmentCyber Security Training in Office Environment
Cyber Security Training in Office Environmentelijahj01012
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024Adnet Communications
 
Pitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckPitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckHajeJanKamps
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxRakhi Bazaar
 
Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Americas Got Grants
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...ssuserf63bd7
 
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOnemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOne Monitar
 
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh JiPsychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh Jiastral oracle
 

Dernier (20)

The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
 
Environmental Impact Of Rotary Screw Compressors
Environmental Impact Of Rotary Screw CompressorsEnvironmental Impact Of Rotary Screw Compressors
Environmental Impact Of Rotary Screw Compressors
 
Data Analytics Strategy Toolkit and Templates
Data Analytics Strategy Toolkit and TemplatesData Analytics Strategy Toolkit and Templates
Data Analytics Strategy Toolkit and Templates
 
Planetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifePlanetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in Life
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors Data
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement Presentation
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQM
 
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdfGUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
 
Welding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsWelding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan Dynamics
 
WSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfWSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdf
 
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
 
Cyber Security Training in Office Environment
Cyber Security Training in Office EnvironmentCyber Security Training in Office Environment
Cyber Security Training in Office Environment
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024
 
Pitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deckPitch Deck Teardown: Xpanceo's $40M Seed deck
Pitch Deck Teardown: Xpanceo's $40M Seed deck
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
 
Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
 
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOnemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
 
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh JiPsychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
 

Lead acid battery management system for electrical vehicles

  • 1. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 97 LEAD ACID BATTERY MANAGEMENT SYSTEM FOR ELECTRICAL VEHICLES V. P. Labade 1 , N. M. Kulkarni 2 and A. D. Shaligram 3 1 Department of Electronic Science, Fergusson College, Pune-4, Maharashtra, India 2 Department of Electronic Science, Fergusson College, Pune-4, Maharashtra, India 3 Department of Electronic Science, University of Pune, Pune-7, Maharashtra, India ABSTRACT The high level of energy and power density of Lithium-ion and Zinc batteries amongst electrochemical batteries such Lead acid battery etc. makes them suitable as the energy storage in electric, hybrid electric vehicle, and plug-in vehicles (EV/HEV/PHEV). The battery management system is an electronic system that manages battery. One of the requirements in electrical system is rechargeable battery and its precise management. The Battery management system (BMS) monitors very important battery parameters i.e. state of charge, state of health, coolant flow for air or fluid, ampere hour counting, terminal voltage and flowing current (in and out).Open circuit voltage and integral of discharging current of the battery be used for estimation of SOC and are the function of SOC. The on line measurement and comparison of the predicted and measured terminal voltage and integral of current provides a tool for estimating the SOC and SOH. The BMS is also used for calculating secondary reports and reporting the generated data. The BMS also helps in controlling or balancing battery environment. In this research paper attempt is made to design the battery management system for electrical system or plug-in vehicles. KEYWORDS: Battery management system (BMS), plug-in-vehicles-state of charge (SOC), state of health(SOH) I. INTRODUCTION Automobile industry is focused on fuel saving automobile vehicles and/or electric, hybrid electric vehicle, and plug-in vehicles (EV/HEV/PHEV). The rechargeable battery plays major role for deciding many electrical specifications of battery operated vehicle. INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 – 6464(Print) ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June, 2013, pp. 97-107 © IAEME: www.iaeme.com/ijecet.asp Journal Impact Factor (2013): 5.8896 (Calculated by GISI) www.jifactor.com IJECET © I A E M E
  • 2. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 98 Rechargeable batteries like Lithium-ion and Zinc batteries have high levels of energy and power density amongst other electrochemical batteries such Lead acid battery [1], [2]. The high level of energy and power density of batteries makes them suitable as the energy storage in electric, hybrid electric vehicle, and plug-in vehicles. Multi-battery parameter reading or recording is an important way for studying the functions the rechargeable battery. Monitoring of the battery performance parameters gives more information about the battery status and health of the battery. Recently, many commercial data acquisition systems are available and are also powerful. The battery management system (BMS) is an electronic system that manages battery and battery parameters precisely. The BMS system monitors important battery parameters like state of charge, state of health, coolant flow for air or fluid, ampere hour counting, terminal voltage and flowing current (in and out).The BMS is also used for calculating secondary reports and reporting the generated data. The BMS helps in controlling or balancing battery environment. Therefore the battery management systems are generally used in electric, hybrid electric vehicle, and plug-in vehicles (EV/HEV/PHEV). As far as electrical vehicles concern the fuel gauge of the battery makes direct use for decision making for driving a car. The readings of fuel gauge monitored in terms of percentage with accuracy of 1% will be highly needed. Instead of displaying battery parameters like voltage, current and AH values, the mileage and SOC in terms of fuel gauge is displayed on the computer screen. After complete development of the system it would be directly displayed on car dashboard. Owing to the improvement of computing power, computer-aided multi-unit acquisition and separation rapidly proliferated during the last two decades. To utilize this technology is, however, not easy since task-specific designs are usually mandatory. To overcome this obstacle, a commercially available National Instrument (NI) USB 6009, data acquisition system is used to evaluate, this research paper describes a design and development of a real time monitoring system for the measurement of battery performance parameters. The battery performance parameters are computed continuously with designed hardware and software setup. The designed system monitors battery related parameters and provides information regarding health of the rechargeable battery. This experimental data could be used to know certain parameters of battery like rate of charging, rate of discharging and power drawn by electrical loads. Real time monitoring system provides key information to the user in an electrical car or battery operated systems or electrical power system in deciding mileage, range, specifications and other related parameters. II.BATTERY MANAGEMENT SYSTEM (BMS) The battery management system is an electronic system that manages battery .The BMS system monitors very important battery parameters like state of charge, state of health, coolant flow for air or fluid, ampere hour counting, terminal voltage and flowing current (in and out). The BMS is also used for calculating secondary reports and reporting the generated data. The BMS also helps in controlling or balancing battery environment. The BMS may include Monitoring, Electrical vehicle system: Energy recovery, Computation, Communication, Protection, Optimization and Topologies. 2.1 Monitoring The main role of the BMS is to monitor the battery parameters. The state of the battery and it may be as represented by various electrical parameters of the battery i.e. total voltage, temperature, state of charge (SOC) or depth of discharge (DOD),state of health (SOH),
  • 3. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 99 coolant flow for air or fluid cooled batteries and current in or out of the battery. In this work the terminal voltage, temperature, state of charge (SOC) or depth of discharge (DOD) are displayed on the screen of computer as shown in fig.1. In this monitoring system range of vehicle in km and amount of state of charge in percentage is displayed and which is needed for driver of the electrical vehicle. Figure 1.0: BMS for Electrical Car 2.2 Electrical Vehicle System: Energy Recovery The battery monitoring system will also control the recharging of the battery by redirecting the recovered energy. It is nothing but energy recovered from regenerative braking back into the battery packs. The pack is typically composed of few batteries. The batteries are charged through this regenerative braking and mileage would be increased. The efficiency of regenerative braking system decides status of charge present in the battery. 2.3 Computation In addition with this existing system battery monitoring system may calculate different values based on the above items i.e. Maximum charge current as a charge current limit (CCL), Maximum discharge current as a discharge current limit (DCL), Energy delivered since last charge or charge cycle, Total energy delivered since first use and Total operating time since first use. The LabVIEW is used to store all the parameters in the excel sheet for ready reference. 2.4 Communication A Battery monitoring system is designed to report all data to an external device, using communication links i.e. Serial communications, CAN bus is one particular implementation of a serial link most commonly used in automotive environments, Direct wiring, DC-BUS - Serial communication over power-line and Wireless communications. This existing system does not speak with any of the communication.
  • 4. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 100 2.5 Protection A battery management system may protect battery by preventing it from operating outside its safe operating area i.e. Over-current, Over-voltage (during charging),Under- voltage (during discharging), especially important for lead–acid and Li-ion cells, Over- temperature, Under-temperature and Over-pressure for NiMH batteries. The BMS may prevent operation outside the battery's safe operating area by: • Including an internal switch which is opened if the battery is operated outside its safe operating area • Requesting the devices to which the battery is connected to reduce or even terminate using the battery. • Actively controlling the environment, such as through heaters, fans, air conditioning or liquid cooling 2.6 Optimization The optimization of the system may leads in improving efficiency of the developed system. The rechargeable battery with proper optimization gives improved life cycle and stable electrical parameters within experimental limitations. 2.7 Topologies Topographic study of a rechargeable battery and where it is used place, especially the history of a region as indicated by its topography. This term could be used in the estimation of some of the parameters of the battery. III. EXPERIMENTAL Data acquisition is the process of sampling signals that measure real world’s physical conditions and converting the resulting samples into digital numbers that can be manipulated by a computer. Data acquisition systems (acronym DAS or DAQ) typically convert analog waveforms into digital values for processing. In this research work DAS is used to read parameters of the rechargeable battery continuously with number of samples per second is decided in the LabVIEW software. The charging or discharging rate of the rechargeable battery or electrical car battery is low or not constant as compare to other physical systems. The 20,000 samples per second, maximum sampling rate is possible for reading data with this card. In case of battery parameter reading process needs lower sampling rate and can be adjusted through DAQ assistant setting of the card through the software. The type of reading data (differential or single ended) can be decided through software Data acquisition applications are controlled by software programs developed using specialized software LabVIEW .This software tools used for building large scale data acquisition systems for rechargeable battery and its graphical programming environments for visualization.
  • 5. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 101 Figure 2.0: Battery management system for electrical vehicle DAQ hardware is what usually interfaces between the signal and a PC. It could be in the form of modules that can be connected to the computer's ports (parallel, serial, USB, etc.) or cards connected to slots in the board. Not all DAQ hardware has to run permanently connected to a PC, for example intelligent stand-alone loggers and oscilloscopes, which can be operated from a Personal Computer (PC), yet they can operate completely independent of the PC. The block diagram of the system consists of current, temperature and voltage sensing sections followed by its signal conditioning blocks as shown in Fig2.0. The necessary settings are made according to the requirement of the system temperature measurement parameters is very much important because temperature term decides internal resistance of the battery and rate of charging and discharging, and some required electrical quantities or parameters of the battery. The temperature of the battery is read through the sensor LM35 and corresponding output voltage is directly given to the DAS with signal conditioning output of the sensor. Similarly the current and voltage part is also connected to the DAS system in order to make system ready for reading data continuously. Battery indications are also included in the software code like temperature of battery, lower/higher voltages, Total power of the battery, Remaining power of the battery and Charge holding time, Nominal Voltage and High temperature indications of the battery through emergency indicators. The different loads connected to the battery can be manipulated through software and corresponding load switching unit can be activated in order to use battery for optimum utilization. The state of charge and depth of discharge are the most significant parameters of the battery. These parameters are used for the improvement of battery operation, performance, reliability and life span. Knowing the state of charge it is possible to avoid an overcharging that would lead to a decrease in working life or even to a battery malfunctions. The
  • 6. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 malfunctioning of the lead acid battery may cause large economical losses or in the case of more sensitive equipment, even the loss of human lives. The measurement of electrolyte density provides accurate value of battery SOC but for this measurement hydrometer is required and manual intervention is needed for its operation. For this reason onlin monitoring plays important role for avoiding many problems. 3.1. Battery State of Charge (SOC) A key parameter of a battery use in an EV system is the battery state of charge (SOC). The SOC is defined as the fraction of the total energy or battery capac over the total available from the battery. Battery state of charge (SOC) gives the ratio of the amount of energy presently stored in the battery to the nominal rated capacity. Figure 3: For example, for a battery at 80% SOC and with a 500 Ah capacity, the energy stored in the battery is 400 Ah. A common way to know SOC is to measure the terminal voltage of the battery and compare this voltage of a fully charged battery. However, as the battery voltage depends on temperature as well the state of charge of the battery; this measurement provides only a rough idea of battery state of charge. 3.2. Depth of discharge (DOD) In any type of batteries, the full energy stored in the battery cannot be withdrawn or cannot be fully discharged without causing serious and often irreparable damage to the battery. Depth of Discharge is the battery pack). It is expressed in a percentage of the total capacity of the battery. For example, 50% depth of discharge means that half of the energy in the battery has been used. 80% DOD means that eighty percent of the energy has been dischar 20% of its full charge. International Journal of Electronics and Communication Engineering & Technology (IJECET), 76 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 102 malfunctioning of the lead acid battery may cause large economical losses or in the case of more sensitive equipment, even the loss of human lives. The measurement of electrolyte density provides accurate value of battery SOC but for this measurement hydrometer is required and manual intervention is needed for its operation. For this reason onlin monitoring plays important role for avoiding many problems. SOC) A key parameter of a battery use in an EV system is the battery state of charge (SOC). The SOC is defined as the fraction of the total energy or battery capacity that has been used over the total available from the battery. Battery state of charge (SOC) gives the ratio of the amount of energy presently stored in the battery to the nominal rated capacity. Figure 3: SOC and DOD relation strip for a battery at 80% SOC and with a 500 Ah capacity, the energy stored in the battery is 400 Ah. A common way to know SOC is to measure the terminal voltage of the battery and compare this voltage of a fully charged battery. However, as the battery depends on temperature as well the state of charge of the battery; this measurement provides only a rough idea of battery state of charge. In any type of batteries, the full energy stored in the battery cannot be withdrawn or cannot be fully discharged without causing serious and often irreparable damage to the battery. Depth of Discharge is the amount of energy that has been removed from a b battery pack). It is expressed in a percentage of the total capacity of the battery. For example, 50% depth of discharge means that half of the energy in the battery has been used. 80% DOD means that eighty percent of the energy has been discharged, so the battery now holds only International Journal of Electronics and Communication Engineering & Technology (IJECET), June (2013), © IAEME malfunctioning of the lead acid battery may cause large economical losses or in the case of more sensitive equipment, even the loss of human lives. The measurement of electrolyte density provides accurate value of battery SOC but for this measurement hydrometer is required and manual intervention is needed for its operation. For this reason online A key parameter of a battery use in an EV system is the battery state of charge (SOC). ity that has been used over the total available from the battery. Battery state of charge (SOC) gives the ratio of the for a battery at 80% SOC and with a 500 Ah capacity, the energy stored in the battery is 400 Ah. A common way to know SOC is to measure the terminal voltage of the battery and compare this voltage of a fully charged battery. However, as the battery depends on temperature as well the state of charge of the battery; this measurement In any type of batteries, the full energy stored in the battery cannot be withdrawn or cannot be fully discharged without causing serious and often irreparable damage to the amount of energy that has been removed from a battery (or battery pack). It is expressed in a percentage of the total capacity of the battery. For example, 50% depth of discharge means that half of the energy in the battery has been used. 80% DOD ged, so the battery now holds only
  • 7. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 103 Figure 4: Monitoring SOC, drawn current using gauge diagram 3.3. State of Health (SOH) It is a figure of merit of condition of the battery compared to the ideal conditions of the battery. The unit of SOH is percent points (100% Battery condition match the battery specification). Typically SOH is 100% at the time of manufacture and will decrease over time and battery use. SOH does not correspond to a particular physical quantity; there is no consensus in the industry on how SOH should be determined. The designer of battery management system may use any of the following parameter to derive an arbitrary value of SOH i.e. internal resistance or impedance or capacitance, capacity, voltage, discharge, ability to accept charge and number of charge discharge cycles. 3.4 Ampere-Hour measurement The battery capacity determines the backup duration of the rechargeable battery. It is primarily defined in ampere hours (Ah) and selected on the basis of backup requirements of an individual. Higher the ampere hour capacity of the battery, larger will be the backup time for the system. The measurement of ampere hour is time consuming and not simple for variety of loads and for automation is also tedious. In this designed system ampere hour measurement is done effectively for variety of loads. A standard battery provides three hours backup time at full load and six hours at half load. One can increase backup duration by installing higher capacity batteries or adding extra batteries in parallel. The designed system measures current along with time so that ampere hour can be displayed on the monitor of the system. This helps to know how much load is connected to the system and corresponding time and how far battery will deliver charge to the load connected to it. IV. IMPLEMENTATION The real time battery monitoring system for measurement of different battery parameters are implemented with the help of software LabVIEW 2011 and DAS USB 6009 with some extra electronics for high side current sensing section and temperature sensor circuitry. The extra hardware is required for current sensing section of the setup because the high current of battery cannot be connected directly to the DAS card because of current measurement limitations. This card measures current up to 50mA and electrical car consumes current in terms of ampere. Hence the high side current circuit is designed with suitable gain of the differential amplifier with high CMRR operational amplifier.
  • 8. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 104 Figure 5: Front Panel of Battery Monitoring System using LabVIEW The electrical load current is converted in to corresponding voltage and then given to the DAS card. The DAS driver software is needed to work DAS hardware on PC or Laptop. The device driver performs low-level register writes and reads on the hardware, while exposing a standard API for developing user applications. The experimental results are stored in particular file as a reference and comparison of previous and current data. The front panel of the designed Battery Monitoring System is shown in fig.5 and readings for different parameters are monitored as real time setup. This front panel also shows state of charge, depth of discharge, load current, terminal voltage, ampere-hour and backup time of the battery. V. RESULT AND CONCLUSION Figure 6: Graphical display of SOC, A-H, Load Current and Terminal Voltage
  • 9. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 105 It is possible to keep continuous track on battery performance. The user of battery operated system will get exact value of charge holding time of the battery and required indications through indicators like displays and emergency alarms. The fig.6 gives graphical representation of important parameters of the battery. This graphical data can be used to know certain parameters of battery like rate of charging, rate of discharging and power drawn by electrical loads. Real time monitoring system provides key information to the user of an electrical car or battery operated systems or electrical power system in deciding mileage, range, specifications and other related parameters. In the graphical representation, the graphs are given for ampere hour, state of charge, load current and terminal voltage of the battery. Figure 7: Experimental Setup for battery monitoring system By knowing these parameters driver information system gives information related to mileage and fuel gauge related information to the driver. The designed system monitors battery related all parameters and provides useful information to the user about health of the battery. Through this battery performance parameters and necessary preventive action are suggested through the developed prototype. The setup prototype is shown in the photograph of fig7. ACKNOWLEDGMENTS Mr.V.P. Labade would like to thank Joint Secretary UGC(WRO), Principal, Head of research center of Fergusson College for sanctioning funds for research scheme and awarding teacher fellowship under faculty improvement program for the research work under UGC XI th plan. Load Hardware for coulomb counting DAS Battery
  • 10. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 106 REFERENCES [1] James Larminie (Oxford Brookes university oxford UK), John Lowry (Acenti Designs Ltd., UK), “Electric Vehicle Technology Explained”, By Publication John Wiley and sons, Ltd, 2003 [2] Robyn A. Jackey,” A simple, effective lead-acid battery modeling process for electrical system component selection”, 2007 [3] Wang yan, Yin Tian-ming, Liu Bao-jie “Lead-acid Power Battery Management System Basing on Kalman Filtering” 978-1-4244-1849-7/08 C 2008 IEEE ,IEEE Vehicle Power and Propulsion Conference (VPPC, Harbin, Chi), September 3-5, 2008 [4] V.P.Labade , N. M. Kulkarni and A. D. Shaligram “Online Monitoring of Battery Performance Parameters for Electric and Hybrid Electric Vehicle” Presented at National conference of NCRIGE-2013 at Amravati, Maharashtra (India),8-9 Feb 2013 [5] V.P.Labade , N. M. Kulkarni and A. D. Shaligram “Hardware in the Loop (H-I-L) of Rechargeable Lead Acid Battery for Electrical Vehicles using Virtual Instrumentation” Presented to National conference of NSI 37 at Chandigarh (Oct 2012). Published in Journal of the Instrument Society of India ISSN 0970-9983 Vol.43 No.2 pp82-85 (2013) [6] V.P.Labade, N. M. Kulkarni and A. D. Shaligram “Intelligent Battery Health Monitoring System for Uninterrupted Power Supply” NSI-36 (20-22, October 2011, Bareilly, UP) Journal of the Instrument Society of India ISSN 0970-9983 Vol.41 No.4 pp213-216(2011) [7] IEEE proceedings “Computer Modeling of the automotive energy requirements for internal combustion engine and battery electric –power vehicles”, vol132, pt A, No-5, PP 265-279, Sept 1985. [8] M. Daniel Pradeep and S.Jebarani Evangeline, “A Review of PFC Boost Converters for Hybrid Electric Vehicle Battery Chargers”, International Journal of Electronics and Communication Engineering &Technology (IJECET), Volume 4, Issue 1, 2013, pp. 85 - 91, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472. [9] P.Vishnu, R.Ajaykrishna and Dr.S.Thirumalini, “Recent Advancements and Challenges in Plug-In Diesel Hybrid Electric Vehicle Technology”, International Journal of Electrical Engineering & Technology (IJEET), Volume 3, Issue 1, 2012, pp. 316 - 325, ISSN Print : 0976-6545, ISSN Online: 0976-6553 AUTHORS BIOGRAPHY • Mr. V. P. Labade is an Assistant Professor at the department of Electronic Science, Fergusson College, Pune (India). He has completed his education from University of Pune i.e. B.Sc. (1996), M.Sc (1998) and M.Phil. (2009). He has been awarded teacher fellowship (Faculty Improvement Program) from U.G.C, Delhi for the research work in 2010. He has completed minor research project of BCUD, University of Pune and published 18 research papers at the conferences and published in the proceedings and research journals. His area of interest in research is Analog and Digital Electronics, Embedded systems, car batteries and Software development in MATLAB and LabVIEW. (http://scholar.google.co.in/citations?hl=en&authuser=1&user=g4yfOxEAAAAJ)
  • 11. International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 – 6464(Print), ISSN 0976 • Dr. N. M. Kulkarni of Pune i.e. B.Sc. (1984), M.Sc (1986) a known professor of Electronics Science since from 1986. He is working as Associate Professor and Vice Principal, Fergusson College, Pune. His area of interest in research is VLSI Design processing, WSN and Software developments. He has research projects since from 1988 with prestigious organizations of India i.e. DST, UGC, DAE, Director of BCUD, and ISRO. (http://scholar.google.co.in/citations?user=kzwcls0AAAAJ&hl=en& • Dr. A. D. Shaligram University of Pune is renowned professor in the field of Electronics Science since from 1986. He is working as Professor and Head of the depa University of Pune. From his various highest positions at the National and International level. His area of interest in research is Fiber optic sensors systems –WSN and Software develo from 1988 with prestigious organizations of India i.e. DST, DOE, UGC DIT and DRDO. (http://scholar.google.co.in/citations?user=fFD International Journal of Electronics and Communication Engineering & Technology (IJECET), 76 – 6472(Online) Volume 4, Issue 3, May – June (2013), © IAEME 107 Dr. N. M. Kulkarni completed his education from University B.Sc. (1984), M.Sc (1986) and Ph.D. (1994). He is professor of Electronics Science since from 1986. He is working as Associate Professor and Vice Principal, Fergusson College, Pune. His area of interest in research is VLSI Design - Embedded systems, Image processing, WSN and Software developments. He has completed various research projects since from 1988 with prestigious organizations of India Director of BCUD, University of Pune, Ganeshkhind, Pune http://scholar.google.co.in/citations?user=kzwcls0AAAAJ&hl=en&authuser=1) Dr. A. D. Shaligram completed his education from University of Pune i.e. B.Sc. (1979), M.Sc (1981) and Ph.D. (1986). He is renowned professor in the field of Electronics Science since from 1986. He is working as Professor and Head of the depa University of Pune. From his academic working tenure he worked on various highest positions at the National and International level. His area of interest in research is Fiber optic sensors - VLSI Design WSN and Software development. He has completed various research projects since from 1988 with prestigious organizations of India i.e. DST, DOE, UGC, DAE, CSIR, ISRO, (http://scholar.google.co.in/citations?user=fFD-cmEAAAAJ&hl=en&authuser=1) International Journal of Electronics and Communication Engineering & Technology (IJECET), June (2013), © IAEME completed his education from University nd Ph.D. (1994). He is well- professor of Electronics Science since from 1986. He is working as Associate Professor and Vice Principal, Fergusson College, Pune. His area Embedded systems, Image completed various research projects since from 1988 with prestigious organizations of India niversity of Pune, Ganeshkhind, Pune-411007 authuser=1) completed his education from B.Sc. (1979), M.Sc (1981) and Ph.D. (1986). He is renowned professor in the field of Electronics Science since from 1986. He is working as Professor and Head of the department at working tenure he worked on various highest positions at the National and International level. His area VLSI Design - Embedded pment. He has completed various research projects since , DAE, CSIR, ISRO, cmEAAAAJ&hl=en&authuser=1)