SlideShare a Scribd company logo
1 of 13
Download to read offline
International Journal of Engineering Research and Development
e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com
Volume 8, Issue 12 (October 2013), PP. 06-18

Numerical modelling of heat transfer in a channel
with transverse baffles
M.A. Louhibi 1, N. Salhi1, H. Bouali 1 , S. Louhibi 2
1

Laboratoire de Mécanique et Energétique, Faculté des Sciences, BP. 717 Boulevard Mohamed VI - 60000
Oujda, Maroc.
2
Ecole National des sciences Appliquées, Boulevard Mohamed VI - 60000 Oujda, Maroc.

Abstract:- In t hi s wo r k, fo r ced co n ve ct io n h ea t tra ns fer i n s id e a c h a n ne l o f rec ta n g u lar
sec tio n , co n ta i ni n g so me r e cta n g u lar b a ffle p lat es , i s n u mer ica ll y an al yz ed . W e ha v e
d ev elo p ed a n u me r i cal mo d e l b a sed o n a fi n ite - vo l u me me t ho d , a nd we ha v e so l ved t h e
co up li n g p r e s s ur e - v elo c it y b y t he SI MP LE al go rit h m [6 ]. W e s ho w t he effec ts o f vario u s
p ara me ter s o f t he b a f fl e s, s u c h as, b a ffle ’s hei g ht , lo ca tio n a nd n u mb er o n t he i so t h er ms ,
str ea ml i ne s, t e mp er at ur es d i str ib ut io n s a nd lo c al N u ss el t n u mb er v al u es. It i s co nc l ud ed
th at : I ) t he b a f fl es lo c atio n a nd he i g ht h as a m ea ni n g fu l e ffect o n i so t her ms , s tre a ml i ne s
and to ta l he at tr a n s f e r t hr o u g h t he c ha n n el . ( I I ) T he h eat tr a n s fer e n ha n ce s wi t h
in cre as i n g b o t h b a f f le ’ s he i g ht a nd n u mb e r.
K ey w o rd s: - Fo r c ed co n ve ct io n, B a f f le s, Fi n it e vo l u me me t ho d , S i mp l e, Q ui c k, k -

I.

INTRODUCTION

In r ec e nt ye ar s, a lar ge n u mb er o f e xp eri m en ta l a nd n u mer ica l wo rk s wer e
p er fo r med o n t ur b u le nt fo r c ed co n vec ti o n i n hea t e xc ha n g er s wi t h d iffere n t t yp e o f
b affle s [1 -4 ] . T h is i n ter es t is d ue to t h e v ario u s i nd u str ial ap p li cat io n s o f t h i s t yp e o f
co n fi g ura tio n s u c h a s co o li n g o f n u cl ear p o wer p la nt s a nd a ircra ft e n g i ne ... e tc.
S.V P a ta n kar a nd E M S p ar r o w [ 1 ] ha ve ap p li ed a n u mer ica l so l ut io n p r o ced ure i n o rd e r to
trea t t he p r o b le m o f f l uid flo w a nd he at tr a n s fer i n ful l y d e v elo p ed h ea t e x c ha n ger s.
T hes e o ne wa s eq u ip p ed b y i so t her ma l p la te p la ced tra n s ver se l y to t h e d irec tio n o f flo w.
T he y fo u nd t hat t he flo w f i eld i s c har ac ter ized b y s tro n g re cir c ula tio n zo ne s ca u s ed b y
so l id p la te s. T h e y co nc lud ed t ha t t he N u ss el t n u mb e r d ep e nd s stro n g l y o n t h e Re yn o ld s
n u mb e r, a nd it is hi g he r in t he ca se o f ful l y d e v e lo p ed t h e n t h at o f l a mi n ar flo w re g i me.
De mar ti n i et a l [ 2 ] co nd uc ted n u mer ica l a nd e xp eri me n ta l st ud ie s o f t ur b ul e nt flo w
in s id e a r ec ta n g ul ar c h an n el co n ta i ni n g t wo r ecta n g u lar b a ffl es . T he n u me ric al r es u lt s
we re i n go o d a gr ee me n t wi t h t ho se o b t ai ned b y e xp er i me n t. T h e y no te d th at t h e b a ffl es
p la y a n i mp o r ta n t r o le i n t h e d yn a mic e xc h an g er s st ud ied . I nd eed , re gio n s o f hi g h
p res s ure 're cir c ula tio n r eg io n s ' a r e fo r me d nea rl y to c h ica n es .
Rec e nt l y, Na sir ud d i n a nd Sid d iq ui [3 ] st ud ied n u me ri cal l y e ffec t s o f b a ffl es o n fo rc ed
co n v ect io n flo w i n a he at e xc h a n ger. T h e e ffe ct s o f s ize a nd i n cl in at io n a n gl e o f
b affle s wer e d eta il ed . T he y co ns id er ed t hre e d iffere n t arra n g e me n t s o f b a ffl e s. T he y
fo u nd t h at i n cr ea s i n g t he si ze o f t he ve rt ica l b affle s ub sta n ti al l y i mp ro ve s t h e N u s sel t
n u mb e r. Ho we ver , t h e p r es s ur e lo s s is a lso i m p o rta nt . Fo r t he ca se o f i nc li n ed b a ffle s ,
th e y fo u nd t ha t t he N u s sel t n u mb er i s ma x i mu m fo r a n g le s o f i n cli n at io n d ire cted
d o wn s tre a m o f t he b a f f l e, wi t h a mi n i mu m o f p r es s ure lo ss .
Mo re rece n tl y, Sa i m et al [ 4 ] p r ese n ted a n u me ric al st ud y o f t he d y na mi c b e h a vio r o f
tu rb ule n t a ir flo w i n ho r izo nt al c h a n ne l wi t h t r an s ve rs e b a ffle s. T he y a d ap ted n u me ric al
fi ni te vo l u me me t ho d b ased o n t he SIMP LE a l go r it h m a nd c ho se
K- mo d el fo r
trea t me n t o f t ur b u le nc e. Re s ul t s o b ta i ned fo r a ca se o f s uc h t yp e, at lo w R e yn o ld s
n u mb e r, wer e p r es e nte d in te r ms o f velo ci t y and te mp era t ure fi eld s. T he y fo u nd t he
ex i ste n ce o f r el at i ve l y str o n g r e cir c ula tio n zo ne s nea r t he b a ffle s. T he ed d y zo n es a re
resp o n sib le o f lo cal v ar i atio n s i n t h e N u s se lt s n u mb e rs alo n g t he b a ffl e s and wa ll s.
W e k no w t h at t h e p r i ma r y he at e x c ha n ge r go al is to e ffici e nt l y tr a ns fer he at fro m
o ne fl u id to a no t her s e p ar at ed , i n mo st p rac ti c al ca se s, b y so lid wa l l. T o in cre as e he at
tra n s fer, se ver al ap p r o a ch es ha v e b ee n p ro p o s e d . W e ca n cit e t h e sp ec i fic t rea t me n t o f
so l id sep ar at io n s u r fac e ( r o u g h n es s, t ub e wi nd i n g, v ib ra tio n, etc .). T h i s tr a ns fer c a n a lso
b e i mp ro ved b y cr eat i o n o f lo n gi t ud i na l vo r tic es i n t h e c ha n ne l. T hes e ed d ie s are

6
Numerical modelling of heat transfer in a channel with …
p ro d uc ed b y i ntr o d uc i n g o ne o r mo re tra n s ver s e b arr ier s (b a ffle p lat es) i n sid e t h e
ch a n nel . T he fo r ma tio n o f t h es e vo r ti ce s d o wn s t rea m o f b a ffl es c a u se s recir c ula tio n zo n es
cap ab l e o f r ap id a nd e f f ici e nt he at tr a ns fer b et we e n so l id wa ll s a nd fl uid flo w. I t i s t h i s
ap p ro ac h t ha t we wi ll f o llo w i n t h is s t ud y. I nd ee d , we are i nt ere st ed i n t hi s wo r k o n t h e
n u me ric al mo d e li n g o f d yna mi c a nd t her ma l b eh a vio r o f t urb u le n t fo r ced co n vec tio n i n
ho r izo nt al c ha n n el wh e r e t wo wal l s ar e ra i sed to a hi g h te mp era t ure. T hi s c ha n n el ma y
co n ta i n o ne o r s e ver a l r ecta n g u lar b a ffle s.
A sp ec ial i n ter e s t is gi v e n to t h e i n fl ue n ce o f d i ffere n t p ar a me ter s, s uc h a s he i g ht ,
n u mb e r a nd b a f fl e p o sit i o n s o n he at tra n s fer a nd fl uid flo w.

II.

MATHEMATICAL FORMULATION

T he geo met r y o f t h e p r o b le m i s s ho wn sc h e ma ti cal l y i n Fi g u re 1 . It i s a rect a n g u lar
d uc t wi t h i so t h er ma l ho r izo nt al wa l ls , cro ss ed b y a sta tio n ar y t ur b ul e nt flo w. T h e
p h ys i cal p ro p er tie s ar e c o n sid er ed to b e co ns ta n t s.

Figure 1: The studied channel
At e ac h p o i n t o f t h e f lo w t h e ve lo ci t y ha s c o mp o ne n t s ( u, v) i n t h e x a nd y
d ir ec tio n s, a nd t he te m p er at ur e i s d e no ted T . T he t urb u le nc e mo d el i n g i s ha nd led b y t he
cla s sic al mo d e l ( k - ) . k i s t he t ur b u le nt ki n et ic e ner g y a nd  t he v is c o u s d i ss ip a tio n o f
tu rb ule n ce.
T he T r an sp o r t eq ua tio n s ( co n ti n u it y, mo me n t u m, te mp era t ure, t u rb ul en t ki n et ic
en er g y a nd d i ss ip a tio n o f t ur b u le nc e) go v er ni n g t he s ys te m, are wr it te n i n t h e fo llo wi n g
ge n era l fo r m :
      
 
 

 ( u )  ( v )
x 
   y   S

 

x
y
x
y

(1)

W her e ρ i s t he d e n s it y o f t he f l uid p as s i n g t hro u g h t he c h a n nel a nd ɸ, F φ an d S φ ar e gi v e n
b y:
Eq u at io ns





S

Co nt i n ui té
Q ua nt it é d e
mo u ve me nt s elo n x

1
u

0

0

Q ua nt it é d e
mo u ve me nt s elo n y

v

  t

En er gie to tal e

T



En er gie ci n ét iq ue
tu r b ule n te

k

Di s sip a tio n t ur b u le nt e



  t

t
T

 t
k

 t

7

P
x
P

y


0

 .  G
(C1 G 
C 2  )


k
Numerical modelling of heat transfer in a channel with …
2
2
  u  2
 v 
 v u  


W it h : G   t 2   2   
   µ a nd µ t
  x 
 y 
 x y  



rep re se n t, re sp ec ti v el y, t he

d yna mi c a nd t u r b ule n t v is co s it ie s.

 t   .C 

k2



T he co n st a nt s u sed i n t h e t ur b u le nc e mo d e l ( k -Ɛ ) Are t ho se ad o p ted b y C hi e n g a nd
La u nd er (1 9 8 0 ) [ 8 ] :

C

C1

C2

T

k



0 ,0 9

1 ,4 4

1 ,9 2

0 ,9

1

1 ,3

B o un da ry co n d it io n s
At t he c h a n ne l i n le t :
u  U in ; v  0 a n d T  Tin
2
k  0,005 U in and   0,1 k 3 / 2

At so l id wal l s :
u  v  0 ; k    0 and T  Tw  Tin
At t h e c ha n n el e x it s t he gr ad ie n t o f a n y q u an ti t y, wi t h r esp ect to th e lo n g it ud i nal
d irec tio n x i s n ul .
O ur go al i s to d ete r mi n e v elo ci t y a nd t e mp er at ure fie ld s, a s we l l a s t h e t urb ul e nce
p ara me ter s. P ar tic u lar a tte n tio n i s gi ve n to t h e q ua n ti fic ati o n p ara me t ers r e fle ct i n g hea t
ex c ha n ge s s uc h a s t h e N u s sel t n u mb er (lo cal a nd av era g e).

III.

NUMERICAL FORMULATION

T he co mp ut er co d e t ha t we ha v e d e velo p ed is b a sed o n t he fi ni te vo l u me
me t ho d . Co mp ut at io nal d o ma i n i s d i v id ed i n to a n u mb er o f st it c he s. T o cho o se t he n u mb er
o f ce ll s us ed i n t hi s s tud y, we p er fo r me d se ver al si mu l a tio n s o n a cha n n el ( wi t h o r
wi t h o ut b a ff le s) . F i na ll y , we h a ve o p ted fo r a 2 1 0 × 9 0 me s he s.
T he me s h d i me n s io ns ar e var iab le s; t he y t i g hte n at t he so l id wa ll s nei g hb o r ho o d s .
Co n seq ue n tl y, t he s ti tc h d e ns it y i s hi g h er ne ar t he h o t wal l s a nd b a ffl es .
W e co ns id er a me s h ha vi n g d i me n s io ns ∆ x a nd ∆ y. I n t he mi d d l e o f e ac h vo l u me
we co n s id er t he p o i n t s P , cal led c e nte rs o f co nt ro l vo l u me s . E, W , N, S are t h e c e nter s o f
th e ad j ace n t co n tr o l vo l u me s. W e al so co n sid er cen ter s, E E; W W , N N, SS. T h e fac es o f
eac h co n tro l vo l u me ar e d e no ted e, w, n, s.

Figure 2: Mesh with P at center
B y i nt e gr at i n g t he tr a n sp o r t eq ua tio n (1 ) o f ɸ o n t he co n tro l vo l u me , we fi nd a
rela tio n to t he x d ir ec tio n:

 u  e   u  w   d 



 d 
    S P
 dx  e  dx  w
8
Numerical modelling of heat transfer in a channel with …
W her e

S 

 P

is t he so u r ce ter m.

O ne no te F   u , t he co n ve ct io n flo w a nd
wi t h ta k i n g :

D   / x , t he d i ffu sio n co e ffic ie n t. And

Fe   u e ; Fw   u w

De   / x e ; Dw   / xw

 e   E

An d : d

 P

W e fo u nd :

;

d w   P  W

Fe e  Fw w  De (E  P )  Dw (P  W )  S P

T o esti mat e ɸ on t he fa ces " e " a nd " w " we o p t ed fo r t he c la s s ica l q ui c k s c he me
[5 ] wh ic h is a q u ad r at ic fo r ms u si n g t hr ee no d e s . T he c ho ic e o f t he se no d es i s d i ct ated b y
th e d i rec tio n o f flo w o n th e se fa ce s (u  0 or u  0) .
Fi n all y, t h e tr a nsp o r t eq ua tio n ( 1 ) i s d i scre ti zed o n t he me s h wi t h P a t c e nt er a s :

aP P  aW W  aE E  aWW WW  aEE EE  S P

( 2)

W it h :
6
1
3

 aW  D w  8  w Fw  8  e Fe  8 (1   w ) Fw

1
W her e :

aWW    w Fw
8


a E  De  3  e Fe  6 (1   e ) Fe  1 (1   w ) Fw

8
8
8

1
a EE  (1   e ) Fe

8

a P  aW  aWW  a E  a EE  S  P


 e  1 ou 0 , si

Fe  0 ou Fe  0

 w  1 ou 0 , si Fw  0 ou Fw  0
T he sa me t h i n g is d o ne fo r t h e ver ti ca l " y" d ir ect io n, u si n g t h e fa ce s " n" and " s"
and b y i n tro d uc i n g t h e Q uic k d ia gr a m no d e s N, NN, S a nd SS.
i f co n v ect io n f lo w a nd d i f f us io n co e ffici e nt o f t he s id e s " e" , " w" , " s " , " n" are k no wn
An d e sp ec ia ll y t he so ur ce t er m S  , t he so l u tio n o f eq u at io n (2 ) t he n gi v e s u s t h e va l ue s

 

P

o f ɸ i n d i ffer e nt P no d e s .
O ne no te s t ha t to a cc eler ate t h e co n v er ge nc e o f eq uat io n (2 ) we ha v e i ntro d u ced a
rela x at io n fac to r

aP



W her e

:

P  aW W  aE E  aWW WW  aEE EE  S P 

1 



0
aPP

(3)

0
 P is t he v al u e o f  P in t he p re v io us s tep .

T he so ur ce te r m ap p ear s e sp e ci al l y i n t h e co n s erv at io n o f mo me n t u m e q ua tio n s i n
th e fo r m o f a p r e s s ur e gr ad ie n t wh i c h i s i n p rin cip le u n k no wn . T o ge t aro u nd t h is
co up li n g we ha v e c ho se n to u se i n o ur co d e t he " Si mp le" al go r it h m d e v elo p ed b y
P an ta n kar [ 7 ] . T he b a si c id e a o f t hi s al go rit h m i s to a s s u me a fie ld o f i n iti al p re s s ure a nd
inj e ct it i nto t he eq u at io n s o f co n ser v at io n o f m o me n t u m. Then we so l ve th e s ys te m to fi nd
a field o f i n ter med i at e s p eed ( wh i c h i s no t fa ir b eca u se t h e p re ss ur e i s n ’ t.) T he co n ti n u it y
eq u at io n i s tr a n s fo r me d in to a p r e s s ure co rre ct io n eq uat io n. T h is la s t i s d eter mi n ed to fi nd
a
p re s s ur e co r r e ct io n t ha t wi ll i nj ec t a ne w p res s ure i n t he eq ua tio n s o f mo t io n. T he
c ycle i s rep e ated as m an y ti me s a s n ece s sar y u nt il a p re s s ure co rr e ctio n eq ual " zero "
co rre sp o nd i n g to t h e al go r it h m co n v er ge nc e. I n the e nd we so l ve t h e t ran sp o r t eq ua tio n s
o f T , k a nd Ɛ.
In t h is ap p r o ac h, a p r o b le m i s e nco u nt ered . It is k no wn a s t he c h ec kerb o ard
p ro b le m.
T he r i s k i s t ha t a p r e ss u r e f ie ld ca n b e hi g h l y d is t urb ed b y t he se n sed fo r mu l a tio n
wh ic h co mp r i se s p er fo r mi n g a li n ear i n terp o lat io n fo r e s ti ma te t he p re s s ure val u e o n t he
fa ce ts o f t he co ntr o l vo lu me. T o cir c u mv e nt t h i s p ro b l e m we u se t h e s o -c al led st a g gered
gr id s p ro p o sed b y Har lo w a nd W el c h [6 ]. I n t h i s tec h n iq ue, a fir st gr id p res s ure ( a nd o t he r

9
Numerical modelling of heat transfer in a channel with …
sca lar q u a nt it ie s T , k a nd Ɛ ) is p la ced i n t h e ce nte r o f t h e co n tro l v o lu me. W hi le o t her
st a g gered g r id s ar e ad o p ted fo r t he v elo c it y co m p o ne n t s u a nd v (s ee Fi g ure 3 ).

F i g ure 3 : S h i ft ed me s h
T he s ca lar var iab le s, i n cl ud i n g p r e ss ur e, ar e s t o red at t he no d es ( I, J ). Eac h no d e
(I, J ) is s urr o u nd ed b y n o d es E, W , S a nd N. The ho r izo nt al v elo c it y co m p o ne n t u i s sto r ed
o n fac e s " e" and " w" , wh i le t he ve r t ica l co mp o ne n t v i s s to red o n t he fac e s d e no ted " n"
and " s" .
So t h e co n tr o l vo l u me f o r p r es s ur e a nd o t her sc alar q u a nt it ie s T , k a nd Ɛ is

(i  1, j ); (i  1, j  1); (i, j  1); (i, j )

Fo r co mp o n e nt u co nt r o l vo l u me i s

( I , j ); ( I , j  1); ( I  1, j  1); ( I  1, j ) .
W hi le f o r t h e v co mp o n en t we u se : (i  1, J  1); (i  1, J ); (i, J ); (i  1, J  1) .

B y i n te gr ati n g t he co n s er v at io n mo me n t u m eq ua tio n i n t he ho r izo n ta l d ire ct io n o n t he
vo l u me ( I , j ); ( I , j  1); ( I  1, j  1); ( I  1, j ) , we fo u nd :



W her e :



ai , J ui , J  anbunb  P(I  1, J )  P(I , J )( y j 1  y j )

a

(4)

u  aWWuWW  aW uW  aEEuEE  aEuE  aSS uSS  aS uS  aNN uNN  aN uN

nb nb

T he co e ffic ie n ts anb ar e d eter mi n ed b y t he q uic k s ch e me me n t io ned ab o ve.
Si mi l ar l y, t he i n te gr a ti o n o f co n ser va tio n mo me n t u m eq u at io n i n t h e ver ti ca l
d irec tio n o n t he vo l u me
(i  1, J  1); (i  1, J ); (i, J ); (i  1, J  1) ,



gi v e s u s :

a I , jvI , j   a nb vnb  P(I,J 1)  P(I,J)(xi 1  xi )



(5)

*

O ne co ns id er s p r i ma r i l y a n i ni ti al p re s s ure fie ld P . T he p ro v i sio na l so l ut io n o f t he
eq u at io ns (4 ) a nd ( 5 ) wi ll b e d e no ted u * a nd v * . W e no te t ha t u * a nd v * d o es n ’t c h ec k s t h e
co n ti n u it y eq ua t io n, and:



 P (I , J 1)  P (I , J )( x

ai ,J u*i ,J   anbu*nb  P* (I  1, J )  P* (I , J ) ( y j1  y j ) (6  a)
*

aI , j v

I,j

  anbv

*

nb

*

*

i1

 xi ) (6  b)

At t hi s st a ge a n y o ne o f th e t h r ee v ar i ab le s i s co rrect. T he y req u ire co rre ctio n :

 p'  P  P *

*
 u'  u  u
 v'  v  v *


(7 )

Inj ec ti n g (7 ) i n eq ua tio n s ( 4 ) , ( 5 ) a n d (6 ) we fi n d :

ai ,J u'i ,J   anbu'nb P' ( I  1, J )  P' (I , J )( y j1  y j ) (8  a)

aI , j v'I , j   anbv'nb P' (I , J 1)  P' (I , J )( xi1  xi ) (8  b)
10
Numerical modelling of heat transfer in a channel with …
At

t hi s

l e ve l,

eq u at io ns (8 ) , t he ter ms

an

a

a p p r o x i ma tio n
nb

is

i n tro d uc ed . In o rd er

u' nb and  a nb v' nb are s i mp l y n e gl ect e d .

to

li ne ari ze

the

No r ma ll y t he se t er ms m u st ca n ce l a t t he p ro ced ure co n v er ge nc e. T hat i s to s a y t hat
th i s o mi s sio n d o e s no t af f ec t t he fi n al re s u lt. Ho we v er, t he co n v er ge n ce rat e i s c ha n ged
b y t hi s s i mp l i fi ca tio n. I t t ur n s o ut t ha t t he co r re ct io n P ' i s o ver e st i ma t ed b y t he S i mp le
al go ri t h m a nd t he c alc u l atio n t e nd s to d i ver ge . T he re me d y to s tab ili ze t he c alc u la tio n s i s
to us e a rel a xat io n f acto r .
W e No te t ha t a f ur t he r tr e at me n t o f t he se te r ms i s p ro p o sed i n t h e so - cal led
al go ri t h ms " SI M P LE R" and " SI MP LE C" [7 ].
T he eq ua tio n s ( 8 ) b eco m e:

u 'i , J  d i J P ' ( I  1, J )  P ' ( I , J ) (9  a )
v' I , j  d I j P' ( I , J  1)  P' ( I , J ) (9  b)

W it h

di J 

y j 1  y j
ai J

and

dI j 

xi 1  xi
a Ij

Eq u at io ns ( 9 ) g i ve t he co r r ec tio n s to ap p l y o n v elo c it ie s t hro u g h t he fo r mu la s (7 ). W e
ha v e t h ere fo r e :

ui ,J  u*i ,J  di J P' ( I  1, J )  P' ( I , J )

(10  a)

vI , j  v

(10  b)

*

 d I j P' ( I , J  1)  P' ( I , J )

I,j

No w t he d is cr e tiz ed co nt i n ui t y eq u at io n o n t h e co ntro l vo l u me o f sc alar q u a nt it ie s i s
wr i tte n a s fo l lo ws :

( uA)

i 1, J





 ( uA)i , J   ( vA) I , j 1  ( vA) I , j  0

W her e a n ar e t he s ize o f t he co r r e sp o nd i n g face s .
T he i n tr o d uc tio n o f t h e v elo ci t y co rre ct io n eq u at io ns (1 0 ) i n t he co n ti n u it y
eq u at io n g i ve s a fi n al e q ua tio n a llo wi n g u s to d eter mi n e t he sco p e o f p r es s ure co rr ect io n s
P:

a 'I J P' ( I , J )  a 'I 1 J P' ( I  1, J )  a 'I 1J P' ( I  1, J )  a 'I J 1 P' ( I , J  1)  a ' I J 1 P' ( I , J  1) (11)
T he a l go ri t h m ca n b e s u m m ar ized a s fo llo ws : o ne s tar t s fro m a n i n it ial
field P* , u* , v* and  * , wi t h  r ep r e se n t s t he s ca lar q u a nt it ie s T, k and Ɛ. T he n t he s ys t e m (6 )
is so l ved to ha v e ne w va lu e s o f u *and v* .
T he n t h e s ys t e m ( 1 1 ) i s so l v ed fo r t he co rrec tio n s field p re ss u re P '.
T herea fter, p r e ss u r e a nd ve lo c it y ar e co r rec ted b y eq u at io ns (7 ) a nd (1 0 ) to ha ve P , u a nd
v.
W e so l ve t he fo llo wi n g tr a n sp o rt eq ua tio n o f s c alar q u a nt it ie s (2 ), ɸ = T, K and Ɛ .
Fi n all y, we co n sid er :

P*  P ; u *  u ; v*  v ;  *   .
An d t h e c yc le i s r ep e at e d u n ti l co n ve r ge nc e.

IV.

RESULTS AND DISCUSSIONS

T he d i me n s io n s o f t h e ch a n nel p re se n ted i n t h is wo r k a r e b a sed o n e xp er i me n ta l
d ata p ub l is h ed b y De m ar ti n i et a l [ 2 ]. T he air flo w i s carri ed o u t u n d er t he fo ll o wi n g
co nd it io n s.
 C ha n n el le n g t h: 𝐿 = 0 .5 5 4 m;
 C h a n ne l d i a me ter D = 0 .1 4 6 𝑚 ;
 b a ffl e he i g ht : 0 < ℎ < 0 1 . 𝑚 ;
 b affle t h ic k ne s s: δ = 0 .0 1 𝑚 ;
 Re yn o ld s n u mb er : 𝑅 𝑒 = 8 .7 3 1 0 4 ;
 T he h yd r o d yn a mi c a nd t her mal b o u nd ar y co nd it i o n s ar e gi v e n b y
At t he c h a n ne l i n le t
u  uin =7 ,8 m/ s;

v  0 ; T  Tin =3 0 0 K
11
Numerical modelling of heat transfer in a channel with …
O n t h e c ha n n el wa ll s
u  v  0 an d T  Tw  373 K
At t he c h a n ne l e x it t he s ys t e m i s as s u me d to b e ful l y d e v elo p ed , i e

u

x

 v

x

 T

x



0

Fir s t, we co mp ar ed t he str u ct ur e o f s trea ml i ne s and i so t her ms i n a c h a n ne l wi t ho u t
b affle wi t h t ho se o b tai n ed wh e n we i n tro d uce b affle ha v i n g a he i g ht
h = 0 .0 5
m ( Ca se 2 -1 ) at t h e ab s c is e 𝐿 1 = 0 .2 1 8 𝑚 . Ind e ed , in fi g ur es 4 a nd 5 we p res e nt s trea ml i ne s
and i so t h er ms fo r t wo c o n f i g ur at io n s.
T hes e r e s u lt s cle ar l y s ho w t h e i mp o rt a nce o f p re se nc e o f b a ffl e (a cti n g a s a
co o li n g fi n) . I nd e ed t he b af f le i ncr e as e s h ea t tr an s fer b et wee n t he wal l an d t he fl u id . This
in cre as e i s ca u sed b y r e cir c u la tio n zo ne s d o wn s trea m o f t h e b a ffle.

(a)

(b)
Fi g ur e 4 : s tr ea ml i ne s: ( a ) ca se 1 ; (b ) ca s e 2 -1

(a)

(b)
Fig u re 5 : I so t her ms : (a) ca se 1 ; (b ) ca se 2 -1
W e t he n s t ud i ed t he in f l ue n ce o f b a ffle he ig h t o n flo w s tr uc t ure and he at
tra n s fer. W e c ho s e t h e h ei g ht s ( h = 0 .0 5 m; c as es 2 -1 ) h = 0 , 0 7 3 𝑚 ( Ca se 2 -2 ) a nd
h
= 0 , 1 𝑚 (ca s e 2 -3 ) .
T he fi g ure s 6 a nd 7 p r e s en t s tr e a ml i ne s a nd i so t her ms fo r a c ha n ne l co n t ai ni n g b a ffle wi t h
d i ffere n t he i g ht s .

(a)

12
Numerical modelling of heat transfer in a channel with …

(b)
Fi g ur e 6 : str ea ml i n es : (a ) ca se 2 -2 ; (b ) ca se 2 -3

(a)

(b )
Fi g ur e 7 : I so t her ms : (a) cas e 2 -2 ; (b ) c as e 2 -3
It i s c le ar t h at t he i so t her ms are mo re co nd e n sed n ear b a ffle , a s a nd wh e n t he
he i g ht h i n cr ea se s. T h i s i nd i cat es a n i ncr ea se o f h eat tr a ns fer ne ar b affle. I nd eed , t he
in cre as e i n h e xp a nd e d ex c ha n ge are a b et we en fl uid a nd wa l l s. I n ad d it io n, wh e n h
in cre as es , t he r ec ir c ul at io n zo n e b e co me s i ncr e as i n gl y i mp o r ta n t ( se e Fi g ur es 4 (b ) a nd
fi g ure s 6 (a) a nd ( b ) ) . T hi s ca u s es a n acc ele ra tio n o f flo w, wh i c h i mp ro ve s hea t t ra n s fer
wi t h i n t he c h a n ne l.
W e p r e se nt fi g ur es 8 a n d 9 i n o rd er t o id e n ti fy th e i n fl ue n ce o f h o n ve lo ci ti es a nd
te mp er at ur e p r o f il e s al o n g y at x = 0 .4 5 fr o m c ha n n el i n le t. Fo ur val u e s o f h are
co n s id ered .

Fi g ur e 8 : Ho r izo nt al v el o cit y P ro fi le s alo n g y at x = 0 .4 5 « i n fl ue n ce o f h »

13
Numerical modelling of heat transfer in a channel with …

Fi g ur e 9 : Te mp er at ur e p r o file s alo n g y at x = 0 .4 5 m « i n fl ue nc e o f h »
T hes e r e s ul ts a llo w u s to co n cl ud e t h at t he i ncr ea se o f b a ffle he i g ht ha s t wo
co n trad ic to r y e f fe ct s. I t is tr ue t hat t her e i s s ub sta n ti al i ncre as e i n he at e x c ha n ge
(ap p eara n ce o f r ec ir c u l atio n zo ne s mo s t co m m o n), b u t t here i s a l so a lo s s o f p re s s ure
(flo w b lo c k a ge) .
In t h e p ur p o s e o f mea s ur i n g t he i n fl ue n ce o f 'h ' o n lo ca l h ea t tra n s fe r, we ha ve
p res e nted i n fi g ur e 1 0 , t he lo cal N u s se lt n u mb er alo n g t h e c h a n nel fo r t he fo ur ca se s o f h
co n s id ered . I t s ho ws t ha t up s tr ea m o f t he b a ffle (x <0 .2 m) c ur v es are co n fu s ed , wh i le,
j us t a fter b a f f le lo c atio n, e f fe ct o f b a ffle hei g ht o n N us s el t n u mb er b eco me i ncr ea si n g l y
i mp o rt a nt a wa y f r o m t he b a f fle s.

Fi g ur e 1 0 : Lo c al n u mb er N u alo n g t he c ha n ne l « i n fl u e nce o f h »
W e t he n s t ud i ed t h e i n f lu e nce o f b a ffle s n u mb e r a nd p o si tio n 'F i g ure 1 1 a nd 1 2 '.

(a)

(b )

14
Numerical modelling of heat transfer in a channel with …

(c)
Fi g ur e 1 1 : S tr e a ml i ne s : (a) c a s 3 -1 ; (b ) ca s 3 - 2 ; (c) ca s 3 -3
W e co n s id er t wo b a f f le s o f s a me he i g ht h = 0 .0 8 m. T he fir st b a ffle i s p l aced a t t he
d is ta nc e 𝐿 1 = 0 .1 5 𝑚 , whi le th e seco nd i s p o si ti o ned at t he d i st a nce d 1 = 0 .0 5 m fro m t h e
firs t (ca se 3 -1 ) , d 1 = 0 .1 0 m ( c as e 3 -2 ) a nd d 1 = 0 .1 5 m (c as e 3 -3 ). We no te t he
ex i ste n ce o f t wo r e cir cu la tio n zo ne s d o wn s t rea m o f t he fir st b a ff le. Al so t h e fir st
r ecir c ula tio n zo ne 'd e fi ned b y b a f fle s ' b eco me s in crea s i n gl y i mp o rt a nt, wh ic h co ntr ib ute
to an i n cre as e i n h eat tr a n s fer i n t h i s area, as sho wn i n F i g ure 1 2 . I nd e ed , wh e n t h e
b affle s are c lo se to ea c h o the r 'd 1 s mal l ', t he fl u id is b lo c ked i n t h e c hi mn e y d e l i mi ted b y
x = L 1 a nd x = L 1 + d 1 . T hi s r ed uc es t he flo w sp eed a t t h at lo ca tio n a nd th u s t her e wi l l b e
a d ecre as e i n t he he at tr an s f er i n t h i s are a. Or wh e n d 1 i n crea s es, t he flu id ha s s u ffi ci e nt
sp ac e to mo ve r ap id l y, h en ce he at tr a n s fer i n crea se s i n t h is zo ne 's ee fi g u re1 5 '.

(a)

(b )

(c)
Fi g ur e 1 2 : I so t her ms ( a ) : « c a s 3 -1 » ; (b ) : « c as 3 -2 » ; ( c) « ca s 3 -3 »
In t h e fo llo wi n g f i g ur e s 1 3 and 1 4 , we co mp are th e p ro fil e o f ho r izo n t al velo ci t y
and te mp era t ur e d i str ib ut io n. C alc u la tio n i s d o ne o n t h e y- a x is a t x = 0 .4 5 m fro m t he
ch a n nel i nle t fo r t hr ee d i f fer e n t b a f fl e s sp a ci n g. W e fi nd t h at mo re sp aci n g i s i mp o r ta n t
mo r e hea t e x c ha n ge i s i mp o r ta n t i n area s li mit e d b y t wo b a ffle s.

15
Numerical modelling of heat transfer in a channel with …

Fi g ur e 1 3 :P r o f il es o f t h e h o r izo n ta l ve lo c it y a t x = 0 .4 5 m « I n fl u e nce o f t he sp a ci n g
b et we e n t wo b a ffl es »

Fi g ur e 1 4 : P r o f ile s o f t he to t al te mp era t ure at x = 0 .4 5 m « I n fl ue n ce o f t he sp a ci n g
b et we e n t wo b a ffl es »
Fi g ur e 1 5 p r e se nt t h e lo cal N u s sel t n u mb er a lo n g t he c ha n n el fo r t h ree co n s id ered
sp ac i n g d 1 = 0 .0 5 m, 0 .1 m a nd 0 .1 5 m .

Fi g ur e 1 5 : Lo ca l N u s se l t n u mb er alo n g t he c ha n ne l « I n fl u e nce o f b a ffle s n u mb e r a nd
p o si tio n »

16
Numerical modelling of heat transfer in a channel with …
We d ist i n g ue t wo ar ea s :
T he f ir st d e fi n ed b y 0 < x <0 .3 m wh i l e t he s eco n d b y x> 0 .3 m. Fo r t he fi rst re g io n,
an i ncr ea se i n n u mb er o f b a f fl es i mp ro v e s t h e h eat tr a ns fer; wh er ea s th e re v er se is tr u e
fo r t he se co nd zo n e.
W e c ho o se s to s ho w t h e i n f l ue nc e o f b a ffl es n u mb e r o n he at tra n s fe r alo n g t he
ch a n nel fo r t hr ee ca se s: C ha n ne l wi t ho u t b a ffl e s, c ha n n el co n ta i ni n g a si n g le b a ffl e a nd
ch a n nel co nt ai n i n g t wo b af f le s 'F i g ure 1 6 '.
It s ho u ld b e no ted t h at ge n er a ll y, h eat tra n s fer is p ro p o r tio n al to b a ffl es n u mb er.
Ind e ed , t he N us s el t n u m b er c har ac teri zi n g h ea t t ran s fer wi t h i n t he c ha n n el i ncre as es wi t h
in cre as i n g b a f f le s n u mb er .

Fig u re 1 6 : Lo c al N u ss e lt n u mb er a lo n g t h e c h a n ne l

V.

CONCLUSION

T he t her mal b e ha vio r o f a s tat io nar y t urb ul e nt fo rc ed co n ve ct io n flo w wi t hi n a
b affled c ha n ne l wa s a na l yzed . T h e r e s ul t s s ho w th e ab il it y o f o ur co d e t o p red ic t d yn a mi c
and t h er ma l f ie ld s i n v ar io u s g eo me tric si t ua ti o n s. W e s t ud i ed mai n l y the i n fl ue n ce o f
b affle s h ei g h t a nd sp a ci n g o n h eat tr a ns fer a nd flu id flo w. O ne ca n co nc l ud e t ha t:
1 - I ncr ea se i n t he b a f f l e he i g ht i mp ro ve s he at t ran s fer b et wee n c ha n ne l wal ls a nd
fl uid p as s i n g t hr o u g h i t;
2 - He at tr a n s fer b eco m es i ncre a si n g l y i mp o r ta n t wi t h ad d i n g b a ffl es .
3 - T he sp ac i n g d 1 b e t wee n b a ffl es ha s d i ffere n t effect s o n lo c al he at tr an s fer. An y
ti me d 1 ha s no t a lo t o f i n f l ue nc e o n t h e o ver al l he at tra n s fer i n t he c ha n ne l.
In p er sp ec ti v e, we i n te n d d eep e n a nd c lar i fy o ur re s ul ts . I nd e ed , we wi l l ad ap t o ur co d e to
o th er s g eo me tr ic c a se s ( no n -r ect a n g ula r b a ffle s o r b affle s i nc li n ed ). F i n all y, we wi l l al so
tr y to r e fi n e mo r e t he t u r b u le nc e mo d e l .

REFERENCES
[1 ].

[2 ].

[3 ].

S.V .P AT AN K AR, E. M. SP AR ROW , « F u ll y d e ve lo p ed flo w a nd h eat tran s fer i n
d uc t s ha v i n g s tr ea m wi s e -p er io d ic vari at io n s o f cro ss - s ect io na l a rea », J o ur na l o f
Hea t T r an s f er , Vo l. 9 9 , p ( 1 8 0 -6 ) , 1 9 7 7 .
L. C .DE M ART NI , H. A.V I E LM O a nd S .V. MO LL ER, « N u mer ica l a nd e xp er i me n ta l
an al ys i s o f t he t ur b ul e nt f lo w t h ro u g h a c ha n ne l wi t h b a ffle p l ate s », J . o f t he
B raz. So c. o f Me c h. Sc i. & E n g., Vo l. X XVI, No . 2 , p (1 5 3 -1 5 9 ), 2 0 0 4 .
R. S AI M, S. AB B O UDI , B .B ENY OU CE F, A. AZ ZI, « Si mu la tio n n u mé riq ue d e la
co n v ect io n fo r c ée t ur b ul en te d a n s le s éc h a n ge ur s d e c h ale u r à fa i s cea u et ca la nd r e
mu n i s d e s c h ica n e s tr a n s ver sa le s », Al géri a n j o ur na l o f ap p l ied fl uid me c ha n ic s /
vo l 2 / 2 0 0 7 ( I SS N 1 7 1 8 – 5 1 3 0 ).

17
Numerical modelling of heat transfer in a channel with …
[4 ].

[5 ].
[6 ].

[7 ].
[8 ].

M. H. N AS I R U DDI N, K. SE DDI Q UI « Hea t tra ns fert a u g me nt at io n in a he at
ex c ha n ger t ub e u s i n g a b af f le », I n ter na tio n al j o ur na l o f Hea t a nd Fl u id Flo w, 2 8
(2 0 0 7 ) , 3 1 8 -3 2 8 .
H.K. Ve r s tee g ; W . Mal ala se k era « An i nt ro d uc tio n to co mp ut at io n al fl u id
d yna mi c s » I SB N 0 .5 8 2 - 2 1 8 8 4 -5 .
F. H ar lo w; J . W el s h ; « Sta g g ered gr id », N u me rica l ca lc ul at io n o f ti me d ep end e nt
vi s co us i nco mp r e s sib le f lo w wi t h fre e s ur face. P h ys ic s o f fl u id s, vo l. 8 ; p p 2 1 8 2 2189; 1965.
P ata n kar , S. V. ( 1 9 8 0 ) , «N u mer ica l H ea t T ran s fe r a nd F l uid F lo w»,
C hi e n g C. C. a nd La u n d er B .E. «O n t he ca lc ul at io n o f t urb u le n t h e at tr a nsp o r t
d o wn s tr e a m fr o m a n ab r up t p ip e e xp a n sio n », N u me ric al Hea t T ran s fer, vo l . 3 , p p .
1 8 9 -2 0 7 .

18

More Related Content

What's hot

Kunzum: Ladakh - The Buddhist Circuit
Kunzum: Ladakh - The Buddhist CircuitKunzum: Ladakh - The Buddhist Circuit
Kunzum: Ladakh - The Buddhist Circuitkunzum
 
Kunzum: Ladakh - The Buddhist Festivals
Kunzum: Ladakh - The Buddhist FestivalsKunzum: Ladakh - The Buddhist Festivals
Kunzum: Ladakh - The Buddhist Festivalskunzum
 
FSCM HighRadius Dispute Resolution Accelerator
FSCM HighRadius Dispute Resolution AcceleratorFSCM HighRadius Dispute Resolution Accelerator
FSCM HighRadius Dispute Resolution AcceleratorHighRadius
 
Caso clínico. hipertrofia benigna prostática
Caso clínico. hipertrofia benigna prostáticaCaso clínico. hipertrofia benigna prostática
Caso clínico. hipertrofia benigna prostáticaAzusalud Azuqueca
 
HIghRadius SAP FSCM Accelerators
HIghRadius SAP FSCM AcceleratorsHIghRadius SAP FSCM Accelerators
HIghRadius SAP FSCM AcceleratorsHighRadius
 
Portfolio - Rafael Oliveira
Portfolio - Rafael OliveiraPortfolio - Rafael Oliveira
Portfolio - Rafael OliveiraRafael Oliveira
 
Corso universitario comunicazione e mediazione interculturale 2014_2015
Corso universitario comunicazione e mediazione interculturale 2014_2015Corso universitario comunicazione e mediazione interculturale 2014_2015
Corso universitario comunicazione e mediazione interculturale 2014_2015Stefano Cera
 
Work Portfolio(Bajaj.Kshitij)
Work Portfolio(Bajaj.Kshitij)Work Portfolio(Bajaj.Kshitij)
Work Portfolio(Bajaj.Kshitij)ksbzdesign
 
UX Direct Storyboard
UX Direct StoryboardUX Direct Storyboard
UX Direct StoryboardYi-Ying Lin
 
Braithwaite Company Profile
Braithwaite Company ProfileBraithwaite Company Profile
Braithwaite Company ProfileBen Braithwaite
 
Hacktivism - The Hacker News Magazine - May 2012 Issue
Hacktivism - The Hacker News Magazine - May 2012 IssueHacktivism - The Hacker News Magazine - May 2012 Issue
Hacktivism - The Hacker News Magazine - May 2012 IssueReputelligence
 

What's hot (15)

Kunzum: Ladakh - The Buddhist Circuit
Kunzum: Ladakh - The Buddhist CircuitKunzum: Ladakh - The Buddhist Circuit
Kunzum: Ladakh - The Buddhist Circuit
 
Kunzum: Ladakh - The Buddhist Festivals
Kunzum: Ladakh - The Buddhist FestivalsKunzum: Ladakh - The Buddhist Festivals
Kunzum: Ladakh - The Buddhist Festivals
 
FSCM HighRadius Dispute Resolution Accelerator
FSCM HighRadius Dispute Resolution AcceleratorFSCM HighRadius Dispute Resolution Accelerator
FSCM HighRadius Dispute Resolution Accelerator
 
Caso clínico. hipertrofia benigna prostática
Caso clínico. hipertrofia benigna prostáticaCaso clínico. hipertrofia benigna prostática
Caso clínico. hipertrofia benigna prostática
 
HIghRadius SAP FSCM Accelerators
HIghRadius SAP FSCM AcceleratorsHIghRadius SAP FSCM Accelerators
HIghRadius SAP FSCM Accelerators
 
Portfolio - Rafael Oliveira
Portfolio - Rafael OliveiraPortfolio - Rafael Oliveira
Portfolio - Rafael Oliveira
 
Corso universitario comunicazione e mediazione interculturale 2014_2015
Corso universitario comunicazione e mediazione interculturale 2014_2015Corso universitario comunicazione e mediazione interculturale 2014_2015
Corso universitario comunicazione e mediazione interculturale 2014_2015
 
Acquisition of Immovable Property in India by Individuals
Acquisition of Immovable Property in India by IndividualsAcquisition of Immovable Property in India by Individuals
Acquisition of Immovable Property in India by Individuals
 
Press Kit
Press KitPress Kit
Press Kit
 
How to draw_a_portrait
How to draw_a_portraitHow to draw_a_portrait
How to draw_a_portrait
 
Work Portfolio(Bajaj.Kshitij)
Work Portfolio(Bajaj.Kshitij)Work Portfolio(Bajaj.Kshitij)
Work Portfolio(Bajaj.Kshitij)
 
Making of: St. Paul's
Making of: St. Paul'sMaking of: St. Paul's
Making of: St. Paul's
 
UX Direct Storyboard
UX Direct StoryboardUX Direct Storyboard
UX Direct Storyboard
 
Braithwaite Company Profile
Braithwaite Company ProfileBraithwaite Company Profile
Braithwaite Company Profile
 
Hacktivism - The Hacker News Magazine - May 2012 Issue
Hacktivism - The Hacker News Magazine - May 2012 IssueHacktivism - The Hacker News Magazine - May 2012 Issue
Hacktivism - The Hacker News Magazine - May 2012 Issue
 

Viewers also liked

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Historia Natural de la enfermedad
Historia Natural de la enfermedadHistoria Natural de la enfermedad
Historia Natural de la enfermedadrozoud
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 

Viewers also liked (8)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Historia Natural de la enfermedad
Historia Natural de la enfermedadHistoria Natural de la enfermedad
Historia Natural de la enfermedad
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 

More from IJERD Editor

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksIJERD Editor
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEIJERD Editor
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...IJERD Editor
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’IJERD Editor
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignIJERD Editor
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationIJERD Editor
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...IJERD Editor
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRIJERD Editor
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingIJERD Editor
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string valueIJERD Editor
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...IJERD Editor
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeIJERD Editor
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...IJERD Editor
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraIJERD Editor
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...IJERD Editor
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...IJERD Editor
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingIJERD Editor
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...IJERD Editor
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart GridIJERD Editor
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderIJERD Editor
 

More from IJERD Editor (20)

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACE
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding Design
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and Verification
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive Manufacturing
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string value
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF Dxing
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart Grid
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powder
 

International Journal of Engineering Research and Development (IJERD)

  • 1. International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 8, Issue 12 (October 2013), PP. 06-18 Numerical modelling of heat transfer in a channel with transverse baffles M.A. Louhibi 1, N. Salhi1, H. Bouali 1 , S. Louhibi 2 1 Laboratoire de Mécanique et Energétique, Faculté des Sciences, BP. 717 Boulevard Mohamed VI - 60000 Oujda, Maroc. 2 Ecole National des sciences Appliquées, Boulevard Mohamed VI - 60000 Oujda, Maroc. Abstract:- In t hi s wo r k, fo r ced co n ve ct io n h ea t tra ns fer i n s id e a c h a n ne l o f rec ta n g u lar sec tio n , co n ta i ni n g so me r e cta n g u lar b a ffle p lat es , i s n u mer ica ll y an al yz ed . W e ha v e d ev elo p ed a n u me r i cal mo d e l b a sed o n a fi n ite - vo l u me me t ho d , a nd we ha v e so l ved t h e co up li n g p r e s s ur e - v elo c it y b y t he SI MP LE al go rit h m [6 ]. W e s ho w t he effec ts o f vario u s p ara me ter s o f t he b a f fl e s, s u c h as, b a ffle ’s hei g ht , lo ca tio n a nd n u mb er o n t he i so t h er ms , str ea ml i ne s, t e mp er at ur es d i str ib ut io n s a nd lo c al N u ss el t n u mb er v al u es. It i s co nc l ud ed th at : I ) t he b a f fl es lo c atio n a nd he i g ht h as a m ea ni n g fu l e ffect o n i so t her ms , s tre a ml i ne s and to ta l he at tr a n s f e r t hr o u g h t he c ha n n el . ( I I ) T he h eat tr a n s fer e n ha n ce s wi t h in cre as i n g b o t h b a f f le ’ s he i g ht a nd n u mb e r. K ey w o rd s: - Fo r c ed co n ve ct io n, B a f f le s, Fi n it e vo l u me me t ho d , S i mp l e, Q ui c k, k - I. INTRODUCTION In r ec e nt ye ar s, a lar ge n u mb er o f e xp eri m en ta l a nd n u mer ica l wo rk s wer e p er fo r med o n t ur b u le nt fo r c ed co n vec ti o n i n hea t e xc ha n g er s wi t h d iffere n t t yp e o f b affle s [1 -4 ] . T h is i n ter es t is d ue to t h e v ario u s i nd u str ial ap p li cat io n s o f t h i s t yp e o f co n fi g ura tio n s u c h a s co o li n g o f n u cl ear p o wer p la nt s a nd a ircra ft e n g i ne ... e tc. S.V P a ta n kar a nd E M S p ar r o w [ 1 ] ha ve ap p li ed a n u mer ica l so l ut io n p r o ced ure i n o rd e r to trea t t he p r o b le m o f f l uid flo w a nd he at tr a n s fer i n ful l y d e v elo p ed h ea t e x c ha n ger s. T hes e o ne wa s eq u ip p ed b y i so t her ma l p la te p la ced tra n s ver se l y to t h e d irec tio n o f flo w. T he y fo u nd t hat t he flo w f i eld i s c har ac ter ized b y s tro n g re cir c ula tio n zo ne s ca u s ed b y so l id p la te s. T h e y co nc lud ed t ha t t he N u ss el t n u mb e r d ep e nd s stro n g l y o n t h e Re yn o ld s n u mb e r, a nd it is hi g he r in t he ca se o f ful l y d e v e lo p ed t h e n t h at o f l a mi n ar flo w re g i me. De mar ti n i et a l [ 2 ] co nd uc ted n u mer ica l a nd e xp eri me n ta l st ud ie s o f t ur b ul e nt flo w in s id e a r ec ta n g ul ar c h an n el co n ta i ni n g t wo r ecta n g u lar b a ffl es . T he n u me ric al r es u lt s we re i n go o d a gr ee me n t wi t h t ho se o b t ai ned b y e xp er i me n t. T h e y no te d th at t h e b a ffl es p la y a n i mp o r ta n t r o le i n t h e d yn a mic e xc h an g er s st ud ied . I nd eed , re gio n s o f hi g h p res s ure 're cir c ula tio n r eg io n s ' a r e fo r me d nea rl y to c h ica n es . Rec e nt l y, Na sir ud d i n a nd Sid d iq ui [3 ] st ud ied n u me ri cal l y e ffec t s o f b a ffl es o n fo rc ed co n v ect io n flo w i n a he at e xc h a n ger. T h e e ffe ct s o f s ize a nd i n cl in at io n a n gl e o f b affle s wer e d eta il ed . T he y co ns id er ed t hre e d iffere n t arra n g e me n t s o f b a ffl e s. T he y fo u nd t h at i n cr ea s i n g t he si ze o f t he ve rt ica l b affle s ub sta n ti al l y i mp ro ve s t h e N u s sel t n u mb e r. Ho we ver , t h e p r es s ur e lo s s is a lso i m p o rta nt . Fo r t he ca se o f i nc li n ed b a ffle s , th e y fo u nd t ha t t he N u s sel t n u mb er i s ma x i mu m fo r a n g le s o f i n cli n at io n d ire cted d o wn s tre a m o f t he b a f f l e, wi t h a mi n i mu m o f p r es s ure lo ss . Mo re rece n tl y, Sa i m et al [ 4 ] p r ese n ted a n u me ric al st ud y o f t he d y na mi c b e h a vio r o f tu rb ule n t a ir flo w i n ho r izo nt al c h a n ne l wi t h t r an s ve rs e b a ffle s. T he y a d ap ted n u me ric al fi ni te vo l u me me t ho d b ased o n t he SIMP LE a l go r it h m a nd c ho se K- mo d el fo r trea t me n t o f t ur b u le nc e. Re s ul t s o b ta i ned fo r a ca se o f s uc h t yp e, at lo w R e yn o ld s n u mb e r, wer e p r es e nte d in te r ms o f velo ci t y and te mp era t ure fi eld s. T he y fo u nd t he ex i ste n ce o f r el at i ve l y str o n g r e cir c ula tio n zo ne s nea r t he b a ffle s. T he ed d y zo n es a re resp o n sib le o f lo cal v ar i atio n s i n t h e N u s se lt s n u mb e rs alo n g t he b a ffl e s and wa ll s. W e k no w t h at t h e p r i ma r y he at e x c ha n ge r go al is to e ffici e nt l y tr a ns fer he at fro m o ne fl u id to a no t her s e p ar at ed , i n mo st p rac ti c al ca se s, b y so lid wa l l. T o in cre as e he at tra n s fer, se ver al ap p r o a ch es ha v e b ee n p ro p o s e d . W e ca n cit e t h e sp ec i fic t rea t me n t o f so l id sep ar at io n s u r fac e ( r o u g h n es s, t ub e wi nd i n g, v ib ra tio n, etc .). T h i s tr a ns fer c a n a lso b e i mp ro ved b y cr eat i o n o f lo n gi t ud i na l vo r tic es i n t h e c ha n ne l. T hes e ed d ie s are 6
  • 2. Numerical modelling of heat transfer in a channel with … p ro d uc ed b y i ntr o d uc i n g o ne o r mo re tra n s ver s e b arr ier s (b a ffle p lat es) i n sid e t h e ch a n nel . T he fo r ma tio n o f t h es e vo r ti ce s d o wn s t rea m o f b a ffl es c a u se s recir c ula tio n zo n es cap ab l e o f r ap id a nd e f f ici e nt he at tr a ns fer b et we e n so l id wa ll s a nd fl uid flo w. I t i s t h i s ap p ro ac h t ha t we wi ll f o llo w i n t h is s t ud y. I nd ee d , we are i nt ere st ed i n t hi s wo r k o n t h e n u me ric al mo d e li n g o f d yna mi c a nd t her ma l b eh a vio r o f t urb u le n t fo r ced co n vec tio n i n ho r izo nt al c ha n n el wh e r e t wo wal l s ar e ra i sed to a hi g h te mp era t ure. T hi s c ha n n el ma y co n ta i n o ne o r s e ver a l r ecta n g u lar b a ffle s. A sp ec ial i n ter e s t is gi v e n to t h e i n fl ue n ce o f d i ffere n t p ar a me ter s, s uc h a s he i g ht , n u mb e r a nd b a f fl e p o sit i o n s o n he at tra n s fer a nd fl uid flo w. II. MATHEMATICAL FORMULATION T he geo met r y o f t h e p r o b le m i s s ho wn sc h e ma ti cal l y i n Fi g u re 1 . It i s a rect a n g u lar d uc t wi t h i so t h er ma l ho r izo nt al wa l ls , cro ss ed b y a sta tio n ar y t ur b ul e nt flo w. T h e p h ys i cal p ro p er tie s ar e c o n sid er ed to b e co ns ta n t s. Figure 1: The studied channel At e ac h p o i n t o f t h e f lo w t h e ve lo ci t y ha s c o mp o ne n t s ( u, v) i n t h e x a nd y d ir ec tio n s, a nd t he te m p er at ur e i s d e no ted T . T he t urb u le nc e mo d el i n g i s ha nd led b y t he cla s sic al mo d e l ( k - ) . k i s t he t ur b u le nt ki n et ic e ner g y a nd  t he v is c o u s d i ss ip a tio n o f tu rb ule n ce. T he T r an sp o r t eq ua tio n s ( co n ti n u it y, mo me n t u m, te mp era t ure, t u rb ul en t ki n et ic en er g y a nd d i ss ip a tio n o f t ur b u le nc e) go v er ni n g t he s ys te m, are wr it te n i n t h e fo llo wi n g ge n era l fo r m :              ( u )  ( v ) x     y   S     x y x y (1) W her e ρ i s t he d e n s it y o f t he f l uid p as s i n g t hro u g h t he c h a n nel a nd ɸ, F φ an d S φ ar e gi v e n b y: Eq u at io ns   S Co nt i n ui té Q ua nt it é d e mo u ve me nt s elo n x 1 u 0 0 Q ua nt it é d e mo u ve me nt s elo n y v   t En er gie to tal e T  En er gie ci n ét iq ue tu r b ule n te k Di s sip a tio n t ur b u le nt e    t t T   t k   t  7 P x P  y  0  .  G (C1 G  C 2  )  k
  • 3. Numerical modelling of heat transfer in a channel with … 2 2   u  2  v   v u     W it h : G   t 2   2       µ a nd µ t   x   y   x y     rep re se n t, re sp ec ti v el y, t he d yna mi c a nd t u r b ule n t v is co s it ie s.  t   .C  k2  T he co n st a nt s u sed i n t h e t ur b u le nc e mo d e l ( k -Ɛ ) Are t ho se ad o p ted b y C hi e n g a nd La u nd er (1 9 8 0 ) [ 8 ] : C C1 C2 T k  0 ,0 9 1 ,4 4 1 ,9 2 0 ,9 1 1 ,3 B o un da ry co n d it io n s At t he c h a n ne l i n le t : u  U in ; v  0 a n d T  Tin 2 k  0,005 U in and   0,1 k 3 / 2 At so l id wal l s : u  v  0 ; k    0 and T  Tw  Tin At t h e c ha n n el e x it s t he gr ad ie n t o f a n y q u an ti t y, wi t h r esp ect to th e lo n g it ud i nal d irec tio n x i s n ul . O ur go al i s to d ete r mi n e v elo ci t y a nd t e mp er at ure fie ld s, a s we l l a s t h e t urb ul e nce p ara me ter s. P ar tic u lar a tte n tio n i s gi ve n to t h e q ua n ti fic ati o n p ara me t ers r e fle ct i n g hea t ex c ha n ge s s uc h a s t h e N u s sel t n u mb er (lo cal a nd av era g e). III. NUMERICAL FORMULATION T he co mp ut er co d e t ha t we ha v e d e velo p ed is b a sed o n t he fi ni te vo l u me me t ho d . Co mp ut at io nal d o ma i n i s d i v id ed i n to a n u mb er o f st it c he s. T o cho o se t he n u mb er o f ce ll s us ed i n t hi s s tud y, we p er fo r me d se ver al si mu l a tio n s o n a cha n n el ( wi t h o r wi t h o ut b a ff le s) . F i na ll y , we h a ve o p ted fo r a 2 1 0 × 9 0 me s he s. T he me s h d i me n s io ns ar e var iab le s; t he y t i g hte n at t he so l id wa ll s nei g hb o r ho o d s . Co n seq ue n tl y, t he s ti tc h d e ns it y i s hi g h er ne ar t he h o t wal l s a nd b a ffl es . W e co ns id er a me s h ha vi n g d i me n s io ns ∆ x a nd ∆ y. I n t he mi d d l e o f e ac h vo l u me we co n s id er t he p o i n t s P , cal led c e nte rs o f co nt ro l vo l u me s . E, W , N, S are t h e c e nter s o f th e ad j ace n t co n tr o l vo l u me s. W e al so co n sid er cen ter s, E E; W W , N N, SS. T h e fac es o f eac h co n tro l vo l u me ar e d e no ted e, w, n, s. Figure 2: Mesh with P at center B y i nt e gr at i n g t he tr a n sp o r t eq ua tio n (1 ) o f ɸ o n t he co n tro l vo l u me , we fi nd a rela tio n to t he x d ir ec tio n:  u  e   u  w   d     d      S P  dx  e  dx  w 8
  • 4. Numerical modelling of heat transfer in a channel with … W her e S   P is t he so u r ce ter m. O ne no te F   u , t he co n ve ct io n flo w a nd wi t h ta k i n g : D   / x , t he d i ffu sio n co e ffic ie n t. And Fe   u e ; Fw   u w De   / x e ; Dw   / xw  e   E An d : d  P W e fo u nd : ; d w   P  W Fe e  Fw w  De (E  P )  Dw (P  W )  S P T o esti mat e ɸ on t he fa ces " e " a nd " w " we o p t ed fo r t he c la s s ica l q ui c k s c he me [5 ] wh ic h is a q u ad r at ic fo r ms u si n g t hr ee no d e s . T he c ho ic e o f t he se no d es i s d i ct ated b y th e d i rec tio n o f flo w o n th e se fa ce s (u  0 or u  0) . Fi n all y, t h e tr a nsp o r t eq ua tio n ( 1 ) i s d i scre ti zed o n t he me s h wi t h P a t c e nt er a s : aP P  aW W  aE E  aWW WW  aEE EE  S P ( 2) W it h : 6 1 3   aW  D w  8  w Fw  8  e Fe  8 (1   w ) Fw  1 W her e :  aWW    w Fw 8   a E  De  3  e Fe  6 (1   e ) Fe  1 (1   w ) Fw  8 8 8  1 a EE  (1   e ) Fe  8  a P  aW  aWW  a E  a EE  S  P   e  1 ou 0 , si Fe  0 ou Fe  0  w  1 ou 0 , si Fw  0 ou Fw  0 T he sa me t h i n g is d o ne fo r t h e ver ti ca l " y" d ir ect io n, u si n g t h e fa ce s " n" and " s" and b y i n tro d uc i n g t h e Q uic k d ia gr a m no d e s N, NN, S a nd SS. i f co n v ect io n f lo w a nd d i f f us io n co e ffici e nt o f t he s id e s " e" , " w" , " s " , " n" are k no wn An d e sp ec ia ll y t he so ur ce t er m S  , t he so l u tio n o f eq u at io n (2 ) t he n gi v e s u s t h e va l ue s   P o f ɸ i n d i ffer e nt P no d e s . O ne no te s t ha t to a cc eler ate t h e co n v er ge nc e o f eq uat io n (2 ) we ha v e i ntro d u ced a rela x at io n fac to r aP  W her e : P  aW W  aE E  aWW WW  aEE EE  S P  1   0 aPP (3) 0  P is t he v al u e o f  P in t he p re v io us s tep . T he so ur ce te r m ap p ear s e sp e ci al l y i n t h e co n s erv at io n o f mo me n t u m e q ua tio n s i n th e fo r m o f a p r e s s ur e gr ad ie n t wh i c h i s i n p rin cip le u n k no wn . T o ge t aro u nd t h is co up li n g we ha v e c ho se n to u se i n o ur co d e t he " Si mp le" al go r it h m d e v elo p ed b y P an ta n kar [ 7 ] . T he b a si c id e a o f t hi s al go rit h m i s to a s s u me a fie ld o f i n iti al p re s s ure a nd inj e ct it i nto t he eq u at io n s o f co n ser v at io n o f m o me n t u m. Then we so l ve th e s ys te m to fi nd a field o f i n ter med i at e s p eed ( wh i c h i s no t fa ir b eca u se t h e p re ss ur e i s n ’ t.) T he co n ti n u it y eq u at io n i s tr a n s fo r me d in to a p r e s s ure co rre ct io n eq uat io n. T h is la s t i s d eter mi n ed to fi nd a p re s s ur e co r r e ct io n t ha t wi ll i nj ec t a ne w p res s ure i n t he eq ua tio n s o f mo t io n. T he c ycle i s rep e ated as m an y ti me s a s n ece s sar y u nt il a p re s s ure co rr e ctio n eq ual " zero " co rre sp o nd i n g to t h e al go r it h m co n v er ge nc e. I n the e nd we so l ve t h e t ran sp o r t eq ua tio n s o f T , k a nd Ɛ. In t h is ap p r o ac h, a p r o b le m i s e nco u nt ered . It is k no wn a s t he c h ec kerb o ard p ro b le m. T he r i s k i s t ha t a p r e ss u r e f ie ld ca n b e hi g h l y d is t urb ed b y t he se n sed fo r mu l a tio n wh ic h co mp r i se s p er fo r mi n g a li n ear i n terp o lat io n fo r e s ti ma te t he p re s s ure val u e o n t he fa ce ts o f t he co ntr o l vo lu me. T o cir c u mv e nt t h i s p ro b l e m we u se t h e s o -c al led st a g gered gr id s p ro p o sed b y Har lo w a nd W el c h [6 ]. I n t h i s tec h n iq ue, a fir st gr id p res s ure ( a nd o t he r 9
  • 5. Numerical modelling of heat transfer in a channel with … sca lar q u a nt it ie s T , k a nd Ɛ ) is p la ced i n t h e ce nte r o f t h e co n tro l v o lu me. W hi le o t her st a g gered g r id s ar e ad o p ted fo r t he v elo c it y co m p o ne n t s u a nd v (s ee Fi g ure 3 ). F i g ure 3 : S h i ft ed me s h T he s ca lar var iab le s, i n cl ud i n g p r e ss ur e, ar e s t o red at t he no d es ( I, J ). Eac h no d e (I, J ) is s urr o u nd ed b y n o d es E, W , S a nd N. The ho r izo nt al v elo c it y co m p o ne n t u i s sto r ed o n fac e s " e" and " w" , wh i le t he ve r t ica l co mp o ne n t v i s s to red o n t he fac e s d e no ted " n" and " s" . So t h e co n tr o l vo l u me f o r p r es s ur e a nd o t her sc alar q u a nt it ie s T , k a nd Ɛ is (i  1, j ); (i  1, j  1); (i, j  1); (i, j ) Fo r co mp o n e nt u co nt r o l vo l u me i s ( I , j ); ( I , j  1); ( I  1, j  1); ( I  1, j ) . W hi le f o r t h e v co mp o n en t we u se : (i  1, J  1); (i  1, J ); (i, J ); (i  1, J  1) . B y i n te gr ati n g t he co n s er v at io n mo me n t u m eq ua tio n i n t he ho r izo n ta l d ire ct io n o n t he vo l u me ( I , j ); ( I , j  1); ( I  1, j  1); ( I  1, j ) , we fo u nd :  W her e :  ai , J ui , J  anbunb  P(I  1, J )  P(I , J )( y j 1  y j ) a (4) u  aWWuWW  aW uW  aEEuEE  aEuE  aSS uSS  aS uS  aNN uNN  aN uN nb nb T he co e ffic ie n ts anb ar e d eter mi n ed b y t he q uic k s ch e me me n t io ned ab o ve. Si mi l ar l y, t he i n te gr a ti o n o f co n ser va tio n mo me n t u m eq u at io n i n t h e ver ti ca l d irec tio n o n t he vo l u me (i  1, J  1); (i  1, J ); (i, J ); (i  1, J  1) ,  gi v e s u s : a I , jvI , j   a nb vnb  P(I,J 1)  P(I,J)(xi 1  xi )  (5) * O ne co ns id er s p r i ma r i l y a n i ni ti al p re s s ure fie ld P . T he p ro v i sio na l so l ut io n o f t he eq u at io ns (4 ) a nd ( 5 ) wi ll b e d e no ted u * a nd v * . W e no te t ha t u * a nd v * d o es n ’t c h ec k s t h e co n ti n u it y eq ua t io n, and:    P (I , J 1)  P (I , J )( x ai ,J u*i ,J   anbu*nb  P* (I  1, J )  P* (I , J ) ( y j1  y j ) (6  a) * aI , j v I,j   anbv * nb * * i1  xi ) (6  b) At t hi s st a ge a n y o ne o f th e t h r ee v ar i ab le s i s co rrect. T he y req u ire co rre ctio n :  p'  P  P *  *  u'  u  u  v'  v  v *  (7 ) Inj ec ti n g (7 ) i n eq ua tio n s ( 4 ) , ( 5 ) a n d (6 ) we fi n d : ai ,J u'i ,J   anbu'nb P' ( I  1, J )  P' (I , J )( y j1  y j ) (8  a) aI , j v'I , j   anbv'nb P' (I , J 1)  P' (I , J )( xi1  xi ) (8  b) 10
  • 6. Numerical modelling of heat transfer in a channel with … At t hi s l e ve l, eq u at io ns (8 ) , t he ter ms an a a p p r o x i ma tio n nb is i n tro d uc ed . In o rd er u' nb and  a nb v' nb are s i mp l y n e gl ect e d . to li ne ari ze the No r ma ll y t he se t er ms m u st ca n ce l a t t he p ro ced ure co n v er ge nc e. T hat i s to s a y t hat th i s o mi s sio n d o e s no t af f ec t t he fi n al re s u lt. Ho we v er, t he co n v er ge n ce rat e i s c ha n ged b y t hi s s i mp l i fi ca tio n. I t t ur n s o ut t ha t t he co r re ct io n P ' i s o ver e st i ma t ed b y t he S i mp le al go ri t h m a nd t he c alc u l atio n t e nd s to d i ver ge . T he re me d y to s tab ili ze t he c alc u la tio n s i s to us e a rel a xat io n f acto r . W e No te t ha t a f ur t he r tr e at me n t o f t he se te r ms i s p ro p o sed i n t h e so - cal led al go ri t h ms " SI M P LE R" and " SI MP LE C" [7 ]. T he eq ua tio n s ( 8 ) b eco m e: u 'i , J  d i J P ' ( I  1, J )  P ' ( I , J ) (9  a ) v' I , j  d I j P' ( I , J  1)  P' ( I , J ) (9  b) W it h di J  y j 1  y j ai J and dI j  xi 1  xi a Ij Eq u at io ns ( 9 ) g i ve t he co r r ec tio n s to ap p l y o n v elo c it ie s t hro u g h t he fo r mu la s (7 ). W e ha v e t h ere fo r e : ui ,J  u*i ,J  di J P' ( I  1, J )  P' ( I , J ) (10  a) vI , j  v (10  b) *  d I j P' ( I , J  1)  P' ( I , J ) I,j No w t he d is cr e tiz ed co nt i n ui t y eq u at io n o n t h e co ntro l vo l u me o f sc alar q u a nt it ie s i s wr i tte n a s fo l lo ws : ( uA) i 1, J    ( uA)i , J   ( vA) I , j 1  ( vA) I , j  0 W her e a n ar e t he s ize o f t he co r r e sp o nd i n g face s . T he i n tr o d uc tio n o f t h e v elo ci t y co rre ct io n eq u at io ns (1 0 ) i n t he co n ti n u it y eq u at io n g i ve s a fi n al e q ua tio n a llo wi n g u s to d eter mi n e t he sco p e o f p r es s ure co rr ect io n s P: a 'I J P' ( I , J )  a 'I 1 J P' ( I  1, J )  a 'I 1J P' ( I  1, J )  a 'I J 1 P' ( I , J  1)  a ' I J 1 P' ( I , J  1) (11) T he a l go ri t h m ca n b e s u m m ar ized a s fo llo ws : o ne s tar t s fro m a n i n it ial field P* , u* , v* and  * , wi t h  r ep r e se n t s t he s ca lar q u a nt it ie s T, k and Ɛ. T he n t he s ys t e m (6 ) is so l ved to ha v e ne w va lu e s o f u *and v* . T he n t h e s ys t e m ( 1 1 ) i s so l v ed fo r t he co rrec tio n s field p re ss u re P '. T herea fter, p r e ss u r e a nd ve lo c it y ar e co r rec ted b y eq u at io ns (7 ) a nd (1 0 ) to ha ve P , u a nd v. W e so l ve t he fo llo wi n g tr a n sp o rt eq ua tio n o f s c alar q u a nt it ie s (2 ), ɸ = T, K and Ɛ . Fi n all y, we co n sid er : P*  P ; u *  u ; v*  v ;  *   . An d t h e c yc le i s r ep e at e d u n ti l co n ve r ge nc e. IV. RESULTS AND DISCUSSIONS T he d i me n s io n s o f t h e ch a n nel p re se n ted i n t h is wo r k a r e b a sed o n e xp er i me n ta l d ata p ub l is h ed b y De m ar ti n i et a l [ 2 ]. T he air flo w i s carri ed o u t u n d er t he fo ll o wi n g co nd it io n s.  C ha n n el le n g t h: 𝐿 = 0 .5 5 4 m;  C h a n ne l d i a me ter D = 0 .1 4 6 𝑚 ;  b a ffl e he i g ht : 0 < ℎ < 0 1 . 𝑚 ;  b affle t h ic k ne s s: δ = 0 .0 1 𝑚 ;  Re yn o ld s n u mb er : 𝑅 𝑒 = 8 .7 3 1 0 4 ;  T he h yd r o d yn a mi c a nd t her mal b o u nd ar y co nd it i o n s ar e gi v e n b y At t he c h a n ne l i n le t u  uin =7 ,8 m/ s; v  0 ; T  Tin =3 0 0 K 11
  • 7. Numerical modelling of heat transfer in a channel with … O n t h e c ha n n el wa ll s u  v  0 an d T  Tw  373 K At t he c h a n ne l e x it t he s ys t e m i s as s u me d to b e ful l y d e v elo p ed , i e u x  v x  T x  0 Fir s t, we co mp ar ed t he str u ct ur e o f s trea ml i ne s and i so t her ms i n a c h a n ne l wi t ho u t b affle wi t h t ho se o b tai n ed wh e n we i n tro d uce b affle ha v i n g a he i g ht h = 0 .0 5 m ( Ca se 2 -1 ) at t h e ab s c is e 𝐿 1 = 0 .2 1 8 𝑚 . Ind e ed , in fi g ur es 4 a nd 5 we p res e nt s trea ml i ne s and i so t h er ms fo r t wo c o n f i g ur at io n s. T hes e r e s u lt s cle ar l y s ho w t h e i mp o rt a nce o f p re se nc e o f b a ffl e (a cti n g a s a co o li n g fi n) . I nd e ed t he b af f le i ncr e as e s h ea t tr an s fer b et wee n t he wal l an d t he fl u id . This in cre as e i s ca u sed b y r e cir c u la tio n zo ne s d o wn s trea m o f t h e b a ffle. (a) (b) Fi g ur e 4 : s tr ea ml i ne s: ( a ) ca se 1 ; (b ) ca s e 2 -1 (a) (b) Fig u re 5 : I so t her ms : (a) ca se 1 ; (b ) ca se 2 -1 W e t he n s t ud i ed t he in f l ue n ce o f b a ffle he ig h t o n flo w s tr uc t ure and he at tra n s fer. W e c ho s e t h e h ei g ht s ( h = 0 .0 5 m; c as es 2 -1 ) h = 0 , 0 7 3 𝑚 ( Ca se 2 -2 ) a nd h = 0 , 1 𝑚 (ca s e 2 -3 ) . T he fi g ure s 6 a nd 7 p r e s en t s tr e a ml i ne s a nd i so t her ms fo r a c ha n ne l co n t ai ni n g b a ffle wi t h d i ffere n t he i g ht s . (a) 12
  • 8. Numerical modelling of heat transfer in a channel with … (b) Fi g ur e 6 : str ea ml i n es : (a ) ca se 2 -2 ; (b ) ca se 2 -3 (a) (b ) Fi g ur e 7 : I so t her ms : (a) cas e 2 -2 ; (b ) c as e 2 -3 It i s c le ar t h at t he i so t her ms are mo re co nd e n sed n ear b a ffle , a s a nd wh e n t he he i g ht h i n cr ea se s. T h i s i nd i cat es a n i ncr ea se o f h eat tr a ns fer ne ar b affle. I nd eed , t he in cre as e i n h e xp a nd e d ex c ha n ge are a b et we en fl uid a nd wa l l s. I n ad d it io n, wh e n h in cre as es , t he r ec ir c ul at io n zo n e b e co me s i ncr e as i n gl y i mp o r ta n t ( se e Fi g ur es 4 (b ) a nd fi g ure s 6 (a) a nd ( b ) ) . T hi s ca u s es a n acc ele ra tio n o f flo w, wh i c h i mp ro ve s hea t t ra n s fer wi t h i n t he c h a n ne l. W e p r e se nt fi g ur es 8 a n d 9 i n o rd er t o id e n ti fy th e i n fl ue n ce o f h o n ve lo ci ti es a nd te mp er at ur e p r o f il e s al o n g y at x = 0 .4 5 fr o m c ha n n el i n le t. Fo ur val u e s o f h are co n s id ered . Fi g ur e 8 : Ho r izo nt al v el o cit y P ro fi le s alo n g y at x = 0 .4 5 « i n fl ue n ce o f h » 13
  • 9. Numerical modelling of heat transfer in a channel with … Fi g ur e 9 : Te mp er at ur e p r o file s alo n g y at x = 0 .4 5 m « i n fl ue nc e o f h » T hes e r e s ul ts a llo w u s to co n cl ud e t h at t he i ncr ea se o f b a ffle he i g ht ha s t wo co n trad ic to r y e f fe ct s. I t is tr ue t hat t her e i s s ub sta n ti al i ncre as e i n he at e x c ha n ge (ap p eara n ce o f r ec ir c u l atio n zo ne s mo s t co m m o n), b u t t here i s a l so a lo s s o f p re s s ure (flo w b lo c k a ge) . In t h e p ur p o s e o f mea s ur i n g t he i n fl ue n ce o f 'h ' o n lo ca l h ea t tra n s fe r, we ha ve p res e nted i n fi g ur e 1 0 , t he lo cal N u s se lt n u mb er alo n g t h e c h a n nel fo r t he fo ur ca se s o f h co n s id ered . I t s ho ws t ha t up s tr ea m o f t he b a ffle (x <0 .2 m) c ur v es are co n fu s ed , wh i le, j us t a fter b a f f le lo c atio n, e f fe ct o f b a ffle hei g ht o n N us s el t n u mb er b eco me i ncr ea si n g l y i mp o rt a nt a wa y f r o m t he b a f fle s. Fi g ur e 1 0 : Lo c al n u mb er N u alo n g t he c ha n ne l « i n fl u e nce o f h » W e t he n s t ud i ed t h e i n f lu e nce o f b a ffle s n u mb e r a nd p o si tio n 'F i g ure 1 1 a nd 1 2 '. (a) (b ) 14
  • 10. Numerical modelling of heat transfer in a channel with … (c) Fi g ur e 1 1 : S tr e a ml i ne s : (a) c a s 3 -1 ; (b ) ca s 3 - 2 ; (c) ca s 3 -3 W e co n s id er t wo b a f f le s o f s a me he i g ht h = 0 .0 8 m. T he fir st b a ffle i s p l aced a t t he d is ta nc e 𝐿 1 = 0 .1 5 𝑚 , whi le th e seco nd i s p o si ti o ned at t he d i st a nce d 1 = 0 .0 5 m fro m t h e firs t (ca se 3 -1 ) , d 1 = 0 .1 0 m ( c as e 3 -2 ) a nd d 1 = 0 .1 5 m (c as e 3 -3 ). We no te t he ex i ste n ce o f t wo r e cir cu la tio n zo ne s d o wn s t rea m o f t he fir st b a ff le. Al so t h e fir st r ecir c ula tio n zo ne 'd e fi ned b y b a f fle s ' b eco me s in crea s i n gl y i mp o rt a nt, wh ic h co ntr ib ute to an i n cre as e i n h eat tr a n s fer i n t h i s area, as sho wn i n F i g ure 1 2 . I nd e ed , wh e n t h e b affle s are c lo se to ea c h o the r 'd 1 s mal l ', t he fl u id is b lo c ked i n t h e c hi mn e y d e l i mi ted b y x = L 1 a nd x = L 1 + d 1 . T hi s r ed uc es t he flo w sp eed a t t h at lo ca tio n a nd th u s t her e wi l l b e a d ecre as e i n t he he at tr an s f er i n t h i s are a. Or wh e n d 1 i n crea s es, t he flu id ha s s u ffi ci e nt sp ac e to mo ve r ap id l y, h en ce he at tr a n s fer i n crea se s i n t h is zo ne 's ee fi g u re1 5 '. (a) (b ) (c) Fi g ur e 1 2 : I so t her ms ( a ) : « c a s 3 -1 » ; (b ) : « c as 3 -2 » ; ( c) « ca s 3 -3 » In t h e fo llo wi n g f i g ur e s 1 3 and 1 4 , we co mp are th e p ro fil e o f ho r izo n t al velo ci t y and te mp era t ur e d i str ib ut io n. C alc u la tio n i s d o ne o n t h e y- a x is a t x = 0 .4 5 m fro m t he ch a n nel i nle t fo r t hr ee d i f fer e n t b a f fl e s sp a ci n g. W e fi nd t h at mo re sp aci n g i s i mp o r ta n t mo r e hea t e x c ha n ge i s i mp o r ta n t i n area s li mit e d b y t wo b a ffle s. 15
  • 11. Numerical modelling of heat transfer in a channel with … Fi g ur e 1 3 :P r o f il es o f t h e h o r izo n ta l ve lo c it y a t x = 0 .4 5 m « I n fl u e nce o f t he sp a ci n g b et we e n t wo b a ffl es » Fi g ur e 1 4 : P r o f ile s o f t he to t al te mp era t ure at x = 0 .4 5 m « I n fl ue n ce o f t he sp a ci n g b et we e n t wo b a ffl es » Fi g ur e 1 5 p r e se nt t h e lo cal N u s sel t n u mb er a lo n g t he c ha n n el fo r t h ree co n s id ered sp ac i n g d 1 = 0 .0 5 m, 0 .1 m a nd 0 .1 5 m . Fi g ur e 1 5 : Lo ca l N u s se l t n u mb er alo n g t he c ha n ne l « I n fl u e nce o f b a ffle s n u mb e r a nd p o si tio n » 16
  • 12. Numerical modelling of heat transfer in a channel with … We d ist i n g ue t wo ar ea s : T he f ir st d e fi n ed b y 0 < x <0 .3 m wh i l e t he s eco n d b y x> 0 .3 m. Fo r t he fi rst re g io n, an i ncr ea se i n n u mb er o f b a f fl es i mp ro v e s t h e h eat tr a ns fer; wh er ea s th e re v er se is tr u e fo r t he se co nd zo n e. W e c ho o se s to s ho w t h e i n f l ue nc e o f b a ffl es n u mb e r o n he at tra n s fe r alo n g t he ch a n nel fo r t hr ee ca se s: C ha n ne l wi t ho u t b a ffl e s, c ha n n el co n ta i ni n g a si n g le b a ffl e a nd ch a n nel co nt ai n i n g t wo b af f le s 'F i g ure 1 6 '. It s ho u ld b e no ted t h at ge n er a ll y, h eat tra n s fer is p ro p o r tio n al to b a ffl es n u mb er. Ind e ed , t he N us s el t n u m b er c har ac teri zi n g h ea t t ran s fer wi t h i n t he c ha n n el i ncre as es wi t h in cre as i n g b a f f le s n u mb er . Fig u re 1 6 : Lo c al N u ss e lt n u mb er a lo n g t h e c h a n ne l V. CONCLUSION T he t her mal b e ha vio r o f a s tat io nar y t urb ul e nt fo rc ed co n ve ct io n flo w wi t hi n a b affled c ha n ne l wa s a na l yzed . T h e r e s ul t s s ho w th e ab il it y o f o ur co d e t o p red ic t d yn a mi c and t h er ma l f ie ld s i n v ar io u s g eo me tric si t ua ti o n s. W e s t ud i ed mai n l y the i n fl ue n ce o f b affle s h ei g h t a nd sp a ci n g o n h eat tr a ns fer a nd flu id flo w. O ne ca n co nc l ud e t ha t: 1 - I ncr ea se i n t he b a f f l e he i g ht i mp ro ve s he at t ran s fer b et wee n c ha n ne l wal ls a nd fl uid p as s i n g t hr o u g h i t; 2 - He at tr a n s fer b eco m es i ncre a si n g l y i mp o r ta n t wi t h ad d i n g b a ffl es . 3 - T he sp ac i n g d 1 b e t wee n b a ffl es ha s d i ffere n t effect s o n lo c al he at tr an s fer. An y ti me d 1 ha s no t a lo t o f i n f l ue nc e o n t h e o ver al l he at tra n s fer i n t he c ha n ne l. In p er sp ec ti v e, we i n te n d d eep e n a nd c lar i fy o ur re s ul ts . I nd e ed , we wi l l ad ap t o ur co d e to o th er s g eo me tr ic c a se s ( no n -r ect a n g ula r b a ffle s o r b affle s i nc li n ed ). F i n all y, we wi l l al so tr y to r e fi n e mo r e t he t u r b u le nc e mo d e l . REFERENCES [1 ]. [2 ]. [3 ]. S.V .P AT AN K AR, E. M. SP AR ROW , « F u ll y d e ve lo p ed flo w a nd h eat tran s fer i n d uc t s ha v i n g s tr ea m wi s e -p er io d ic vari at io n s o f cro ss - s ect io na l a rea », J o ur na l o f Hea t T r an s f er , Vo l. 9 9 , p ( 1 8 0 -6 ) , 1 9 7 7 . L. C .DE M ART NI , H. A.V I E LM O a nd S .V. MO LL ER, « N u mer ica l a nd e xp er i me n ta l an al ys i s o f t he t ur b ul e nt f lo w t h ro u g h a c ha n ne l wi t h b a ffle p l ate s », J . o f t he B raz. So c. o f Me c h. Sc i. & E n g., Vo l. X XVI, No . 2 , p (1 5 3 -1 5 9 ), 2 0 0 4 . R. S AI M, S. AB B O UDI , B .B ENY OU CE F, A. AZ ZI, « Si mu la tio n n u mé riq ue d e la co n v ect io n fo r c ée t ur b ul en te d a n s le s éc h a n ge ur s d e c h ale u r à fa i s cea u et ca la nd r e mu n i s d e s c h ica n e s tr a n s ver sa le s », Al géri a n j o ur na l o f ap p l ied fl uid me c ha n ic s / vo l 2 / 2 0 0 7 ( I SS N 1 7 1 8 – 5 1 3 0 ). 17
  • 13. Numerical modelling of heat transfer in a channel with … [4 ]. [5 ]. [6 ]. [7 ]. [8 ]. M. H. N AS I R U DDI N, K. SE DDI Q UI « Hea t tra ns fert a u g me nt at io n in a he at ex c ha n ger t ub e u s i n g a b af f le », I n ter na tio n al j o ur na l o f Hea t a nd Fl u id Flo w, 2 8 (2 0 0 7 ) , 3 1 8 -3 2 8 . H.K. Ve r s tee g ; W . Mal ala se k era « An i nt ro d uc tio n to co mp ut at io n al fl u id d yna mi c s » I SB N 0 .5 8 2 - 2 1 8 8 4 -5 . F. H ar lo w; J . W el s h ; « Sta g g ered gr id », N u me rica l ca lc ul at io n o f ti me d ep end e nt vi s co us i nco mp r e s sib le f lo w wi t h fre e s ur face. P h ys ic s o f fl u id s, vo l. 8 ; p p 2 1 8 2 2189; 1965. P ata n kar , S. V. ( 1 9 8 0 ) , «N u mer ica l H ea t T ran s fe r a nd F l uid F lo w», C hi e n g C. C. a nd La u n d er B .E. «O n t he ca lc ul at io n o f t urb u le n t h e at tr a nsp o r t d o wn s tr e a m fr o m a n ab r up t p ip e e xp a n sio n », N u me ric al Hea t T ran s fer, vo l . 3 , p p . 1 8 9 -2 0 7 . 18