SlideShare une entreprise Scribd logo
1  sur  22
Télécharger pour lire hors ligne
Motivation
                                    Background
                                      ACM-ES




  Comparison-Based Optimizers Need
    Comparison-Based Surrogates

Ilya Loshchilov1,2 , Marc Schoenauer1,2 , Michèle Sebag2,1

                   1
                       TAO Project-team, INRIA Saclay - Île-de-France
      2
          and Laboratoire de Recherche en Informatique (UMR CNRS 8623)
                 Université Paris-Sud, 91128 Orsay Cedex, France




 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM   1/ 20
Motivation
                                             Background
                                               ACM-ES


Content


  1   Motivation
        Why Comparison-Based Surrogates ?
        Previous Work

  2   Background
        Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
        Support Vector Machine (SVM)

  3   ACM-ES
        Algorithm
        Experiments




          Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM   2/ 20
Motivation
                                                           Why Comparison-Based Surrogates ?
                                            Background
                                                           Previous Work
                                              ACM-ES


Why Comparison-Based Surrogates ?

  Surrogate Model (Meta-Model) assisted optimization
      Construct the approximation model M (x) of f (x).
      Optimize the model M (x) in lieu of f (x) to reduce
      the number of costly evaluations of the function f (x).

  Example
      f (x) = x2 + (x1 + x2 )2 .
               1
      An efficient Evolutionary Algorithm (EA) with
      surrogate models may be 4.3 faster on f (x).
      But the same EA is only 2.4 faster on f (x) = f (x)1/4 ! a
    a CMA-ES   with quadratic meta-model (lmm-CMA-ES) on fSchwefel 2-D




         Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM           3/ 20
Motivation
                                                                                  Why Comparison-Based Surrogates ?
                                                             Background
                                                                                  Previous Work
                                                               ACM-ES


Ordinal Regression in Evolutionary Computation

                      Goal: Find the function F (x) which preserves the ordering of the
                      training points xi (xi has rank i):
                                                        xi       xj ⇔ F (xi ) > F (xj )
                      F (x) is invariant to any rank-preserving transformation.
  CMA-ES with Rank Support Vector Machine on Rosenbrock: 1
                                  n =2                   2
                                                                           n =5                    3
                                                                                                                   n =10
                                                       10                                        10
                  0
                 10
                                                                                                                           ( I ,λ )CMA-ES
                                                                                                                           Poly, d =2
   mean fitness




                                                       10
                                                         1
                                                                                                 10
                                                                                                   2                       Poly, d =4
                  2
                 10
                                                                                                                           RBF, γ =1

                                                         0                                         1
                  4                                    10                                        10
                 10


                  6                                      1                                         0
                 10                                    10                                        10
                          200      400      600                200         600        1000                  1000      2000       3000
                          # function evaluations                  # function evaluations                  # function evaluations




        1 T. Runarsson (2006). "Ordinal Regression in Evolutionary Computation"

                         Ilya Loshchilov, Marc Schoenauer, Michèle Sebag          ACM-ES = CMA-ES + RankSVM                                 4/ 20
Motivation
                                                                                                     Why Comparison-Based Surrogates ?
                                                                                     Background
                                                                                                     Previous Work
                                                                                       ACM-ES


Exploit the local topography of the function

                                               CMA-ES adapts the covariance matrix C which describes the
                                               local structure of the function.
                                               Mahalanobis (fully weighted Euclidean) distance:
                                                                       d(xi , xj ) =           (xi − xj )T C −1 (xi − xj )
                                                                                                                          2
                                      Results of CMA-ES with quadratic meta-models:

                                      8
                                     10                                                      lmm-CMA-ES
 O(FLOP)/saved function evaluation




                                                                                                    Speed-up: a factor of 2-4 for n ≥ 4
                                      6
                                     10
                                                                                                    Complexity: from O(n4 ) to O(n6 )
                                      4
                                     10                                                             Rank-preserving invariance: NO
                                                                                                    becomes intractable for n>16
                                      2
                                     10


                                           2          4            8           16
                                                            n


                                          2 S. Kern et al. (2006). "Local Meta-Models for Optimization Using Evolution Strategies"

                                                  Ilya Loshchilov, Marc Schoenauer, Michèle Sebag    ACM-ES = CMA-ES + RankSVM            5/ 20
Motivation
                                                          Why Comparison-Based Surrogates ?
                                           Background
                                                          Previous Work
                                             ACM-ES


Tractable or Efficient ?




               Answer: Tractable and Efficient and Invariant.

      Ingredients: CMA-ES (Adaptive Encoding) and Rank SVM.




        Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM           6/ 20
Motivation
                                                                Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
                                                 Background
                                                                Support Vector Machine (SVM)
                                                   ACM-ES


Covariance Matrix Adaptation Evolution Strategy
Decompose to understand



          While CMA-ES by definition is CMA and ES, only recently the
          algorithmic decomposition has been presented. 3


   Algorithm 1 CMA-ES = Adaptive Encoding + ES
    1: xi ← m + σNi (0, I), for i = 1 . . . λ
    2: fi ← f (Bxi ), for i = 1 . . . λ
    3: if Evolution Strategy (ES) then
                           success rate
    4:    σ ← σexp∝( expected success rate −1)
    5: if Cumulative Step-Size Adaptation ES (CSA-ES) then
                                         evolution path
     6:     σ ← σexp∝( expected evolution path −1)
     7:   B ←AECMA -Update(Bx1 , . . . , Bxµ )



      3 N. Hansen (2008). "Adaptive Encoding: How to Render Search Coordinate System Invariant"

              Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM                                  7/ 20
Motivation
                                                               Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
                                                Background
                                                               Support Vector Machine (SVM)
                                                  ACM-ES


Adaptive Encoding
Inspired by Principal Component Analysis (PCA)

                                                Principal Component Analysis




                                                  Adaptive Encoding Update




             Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM                                  8/ 20
Motivation
                                                                    Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
                                                      Background
                                                                    Support Vector Machine (SVM)
                                                        ACM-ES


Support Vector Machine for Classification
Linear Classifier




                        L1                        Main Idea
                                 L2
                                                  Training Data:
                    w                                                                      n
                                     L3           D = {(xi , yi )|xi ∈ I p , yi ∈ {−1, +1}}i=1
                                                                       R
                                                   w, xi ≥ b + ⇒ yi = +1;
                                                   w, xi ≤ b − ⇒ yi = −1;
                                                  Dividing by > 0:
   b                                               w, xi − b ≥ +1 ⇒ yi = +1;
                                 +1                w, xi − b ≤ −1 ⇒ yi = −1;
                             b           0
                                 b           -1
 support                             b            Optimization Problem: Primal Form
  vector           w
                                                                                               n
                                                  Minimize{w, ξ} 1 ||w||2 + C i=1 ξi
                                                                   2
            xi                                    subject to: yi ( w, xi − b) ≥ 1 − ξi , ξi ≥ 0
 2/ ||w||

                 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag    ACM-ES = CMA-ES + RankSVM                                  9/ 20
Motivation
                                                                   Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
                                                     Background
                                                                   Support Vector Machine (SVM)
                                                       ACM-ES


Support Vector Machine for Classification
Linear Classifier




                        L1                        Optimization Problem: Dual Form
                                 L2
                                                  From Lagrange Theorem, instead of minimize F :
                    w
                                     L3           Minimize{α,G} F − i αi Gi
                                                  subject to: αi ≥ 0, Gi ≥ 0
                                                  Leaving the details, Dual form:
                                                                  n      1   n
                                                  Maximize{α} i αi − 2 i,j=1 αi αj yi yj xi , xj
   b                                                                         n
                                                  subject to: 0 ≤ αi ≤ C, i αi yi = 0
                                 +1
                             b           0
                                 b           -1   Properties
 support                             b
  vector           w                              Decision Function:
                                                                 n
                                                  F (x) = sign( i αi yi xi , x − b)
            xi
                                                  The Dual form may be solved using standard
 2/ ||w||                                         quadratic programming solver.

                 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM                                  10/ 20
Motivation
                                                               Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
                                                 Background
                                                               Support Vector Machine (SVM)
                                                   ACM-ES


Support Vector Machine for Classification
Non-Linear Classifier



                                                                w,F(x) -b = +1                      w
                               F
                                                                w,F(x) -b = -1                            xi
                                                                     support vector


                                                                                                           2/ ||w||
             a)                             b)                                            c)


    Non-linear classification with the "Kernel trick"
                          1n                   n
    Maximize{α} i αi − 2 i,j=1 αi αj yi yj K(xi , xj )
                        n
    subject to: ai ≥ 0, i αi yi = 0,
    where K(x, x ) =def < Φ(x), Φ(x ) > is the Kernel function
                                      n
    Decision Function: F (x) = sign( i αi yi K(xi , x) − b)


             Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM                                  11/ 20
Motivation
                                                               Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
                                                Background
                                                               Support Vector Machine (SVM)
                                                  ACM-ES


Support Vector Machine for Classification
Non-Linear Classifier: Kernels


         Polynomial: k(xi , xj ) = ( xi , xj + 1)d
                                                                                                                 2
                                                                                                      xi −xj
         Gaussian or Radial Basis Function: k(xi , xj ) = exp(                                          2σ 2         )
         Hyperbolic tangent: k(xi , xj ) = tanh(k xi , xj + c)
    Examples for Polynomial (left) and Gaussian (right) Kernels:




             Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM                                  12/ 20
Motivation
                                                                Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
                                             Background
                                                                Support Vector Machine (SVM)
                                               ACM-ES


Ranking Support Vector Machine

  Find F (x) which preserves the ordering of the training points.

                                                                               w



                                                                x              x
                                                                                          r2)
                                                                                     L(
                                                            x
                                                                         r1)
                                                                    L(




          Ilya Loshchilov, Marc Schoenauer, Michèle Sebag       ACM-ES = CMA-ES + RankSVM                                  13/ 20
Motivation
                                                             Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
                                             Background
                                                             Support Vector Machine (SVM)
                                               ACM-ES


Ranking Support Vector Machine

  Primal problem
                                              N
   Minimize{w, ξ} 1 ||w||2 +
                  2                           i=1   C i ξi
                        w, Φ(xi ) − Φ(xi+1 ) ≥ 1 − ξi (i = 1 . . . N − 1)
   subject to
                      ξi ≥ 0 (i = 1 . . . N − 1)

  Dual problem
                          N −1                  N −1
   Maximize{α}            i       αi −          i,j     αij K(xi − xi+1 , xj − xj+1 ))
   subject to 0 ≤ αi ≤ Ci (i = 1 . . . N − 1)

  Rank Surrogate Function in the case 1 rank = 1 point
                                          N −1
                      F(x) =              i=1     αi (K(xi , x) − K(xi+1 , x))


          Ilya Loshchilov, Marc Schoenauer, Michèle Sebag    ACM-ES = CMA-ES + RankSVM                                  14/ 20
Motivation
                                                                  Algorithm
                                                Background
                                                                  Experiments
                                                  ACM-ES


Model Learning
Non-separable Ellipsoid problem




                               (xi −xj )T (xi −xj )                                   (xi −xj )T C −1 (xi −xj )
       K(xi , xj ) = e−                2σ 2             ;      KC (xi , xj ) = e−               2σ 2




             Ilya Loshchilov, Marc Schoenauer, Michèle Sebag      ACM-ES = CMA-ES + RankSVM                       15/ 20
Motivation
                                                                                  Algorithm
                                                                  Background
                                                                                  Experiments
                                                                    ACM-ES


Optimization or filtering?
Don’t be too greedy

         Optimization: Significant Potential Speed-Up if the surrogate
         model is global and accurate enough
         Filtering: "Guaranteed" Speed-Up with the local surrogate model
                   Prescreen
                     (λ )                                         Retain        with rank              ,     ~
                      Evaluate
                                                                  Retain        with rank         λ,   ~λ
                       (λ′ )
                                                            0.6
                                      Probability Density




                                                            0.5

                                                            0.4

                                                            0.3

                                                            0.2

                                                              0          100       200          300        400   500
                                                                                         Rank


             Ilya Loshchilov, Marc Schoenauer, Michèle Sebag                      ACM-ES = CMA-ES + RankSVM            16/ 20
Motivation
                                                                                                                       Algorithm
                                                                                          Background
                                                                                                                       Experiments
                                                                                            ACM-ES


ACM-ES Optimization Loop
                                                                                                       2. The change of coordinates, defined
                                                                                                          from the current covariance matrix
   A. Select training points                                                                              and the current mean value , reads [4]:
                                                                                                                                                               B. Build a surrogate model
    1. Select best                                   k      training points.


                                                                                     1                                         1


                                                                                    0.5                                       0.5




                                                                                                                            X2
                                                                                   X2
                                                                                     0                                         0


                                                                                   -0.5                                      -0.5


                                                                                    -1                                        -1

                                                                                                                                                                   3. Build a surrogate model using Rank SVM.
                                                                                               -1   -0.5   0    0.5    1            -1   -0.5   0    0.5   1
                                                                                                           X1                                   X1
    7. Add new λ′ training points and
      update parameters of CMA-ES.
                                                                                                                      Rank-based
                                                                                                                       Surrogate
   D. Select most promising children                                                                                                                 C. Generate pre-children
                                                                                                                        Model
    5. Prescreen                                                                                                                            4. Generate               pre-children and rank them
         (λ )                                    Retain     with rank               ,      ~
                                                                                                                                            according to surrogate fitness function.
    6. Evaluate
                                                 Retain     with rank         λ,    ~λ
        (λ′ )
                                           0.6
                     Probability Density




                                           0.5

                                           0.4

                                           0.3

                                           0.2

                                             0        100      200          300         400         500
                                                                     Rank


              Ilya Loshchilov, Marc Schoenauer, Michèle Sebag                                                          ACM-ES = CMA-ES + RankSVM                                                    17/ 20
Motivation
                                                                              Algorithm
                                                         Background
                                                                              Experiments
                                                           ACM-ES


Results
Speed-up




             5                                                           5      Function       n    λ λ′ e        ACM-ES           spu     CMA-ES
                                                                                Schwefel       10   10 3          801 36           3.3      2667 87
                                                                                               20   12 4         3531 179          2.0     7042 172
                                                                                               40   15 5        13440 281          1.7    22400 289
             4                                                           4      Schwefel1/4    10   10 3         1774 37           4.1     7220 206
                                                                                               20   12 4         6138 82           2.5    15600 294
                                                                                               40   15 5        22658 390          1.8    41534 466
                                                                                Rosenbrock     10   10 3         2059 143 (0.95)   3.7     7669 691   (0.90)
   Speedup




             3                                                           3                     20   12 4        11793 574 (0.75)   1.8   21794 1529
                                                                                               40   15 5        49750 2412 (0.9)   1.6   82043 3991
                                                                                N oisySphere   10   10 3 0.15     766 90 (0.95)    2.7     2058 148
                                                                                               20   12 4 0.11    1361 212          2.8     3777 127
             2                                                           2                     40   15 5 0.08    2409 120          2.9     7023 173
                         Schwefel
                                 1/4                                            Ackley         10   10 3          892 28           4.1     3641 154
                         Schwefel                                                              20   12 4         1884 50           3.5     6641 108
                         Rosenbrock                                                            40   15 5         3690 80           3.3    12084 247
             1           Noisy Sphere                                    1      Ellipsoid      10   10 3         1628 95           3.8     6211 264
                         Ackley                                                                20   12 4         8250 393          2.3    19060 501
                         Ellipsoid                                                             40   15 5        33602 548          2.1    69642 644
                                                                                Rastrigin      5    140 70      23293 1374 (0.3)   0.5   12310 1098   (0.75)
             0                                                            0
              0   5      10      15      20     25      30     35       40
                              Problem Dimension




                      Ilya Loshchilov, Marc Schoenauer, Michèle Sebag         ACM-ES = CMA-ES + RankSVM                                                 18/ 20
Motivation
                                                                             Algorithm
                                                           Background
                                                                             Experiments
                                                             ACM-ES


Results
Learning Time



                             Cost of model learning/testing increases
                             quasi-linearly with d on Sphere function:
                                                   10

                                                                        Slope=1.13
                              Learning time (ms)


                                                     3
                                                   10




                                                     2
                                                   10




                                                     1
                                                   10
                                                       0            1                 2            3
                                                     10          10                  10          10
                                                              Problem Dimension



            Ilya Loshchilov, Marc Schoenauer, Michèle Sebag                  ACM-ES = CMA-ES + RankSVM   19/ 20
Motivation
                                                         Algorithm
                                          Background
                                                         Experiments
                                            ACM-ES


Summary


                                                 ACM-ES

    ACM-ES is from 2 to 4 times faster on Uni-Modal Problems.
    Invariant to rank-preserving transformation: Yes
    The computation complexity (the cost of speed-up) is O(n)
    comparing to O(n6 )
    The source code is available online:
    http://www.lri.fr/~ilya/publications/ACMESppsn2010.zip


                                          Open Questions

    Extention to multi-modal optimization
    Adaptation of selection pressure and surrogate model complexity


       Ilya Loshchilov, Marc Schoenauer, Michèle Sebag   ACM-ES = CMA-ES + RankSVM   20/ 20
Motivation
                              Algorithm
                Background
                              Experiments
                  ACM-ES


Summary




          Thank you for your attention!

                    Questions?
Motivation
                                         Algorithm
                           Background
                                         Experiments
                             ACM-ES


Parameters

                            SVM Learning:
                                             √
    Number of training points: Ntraining = 30 d for all problems,
    except Rosenbrock and Rastrigin, where Ntraining = 70 (d)
                                        √
    Number of iterations: Niter = 50000 d
    Kernel function: RBF function with σ equal to the average
    distance of the training points
    The cost of constraint violation: Ci = 106 (Ntraining − i)2.0

                   Offspring Selection Procedure:

    Number of test points: Ntest = 500
    Number of evaluated offsprings: λ = λ3
                                              2        2
    Offspring selection pressure parameters: σsel0 = 2σsel1 = 0.8

Contenu connexe

Similaire à CMA-ES and RankSVM Comparison-Based Optimizers

System Verilog 2009 & 2012 enhancements
System Verilog 2009 & 2012 enhancementsSystem Verilog 2009 & 2012 enhancements
System Verilog 2009 & 2012 enhancementsSubash John
 
Ontology mapping needs context & approximation
Ontology mapping needs context & approximationOntology mapping needs context & approximation
Ontology mapping needs context & approximationFrank van Harmelen
 
Sommari.docx
Sommari.docxSommari.docx
Sommari.docxsldweb360
 
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Craig Chao
 
MATLAB sessions Laboratory 2MAT 275 Laboratory 2Matrix .docx
MATLAB sessions Laboratory 2MAT 275 Laboratory 2Matrix .docxMATLAB sessions Laboratory 2MAT 275 Laboratory 2Matrix .docx
MATLAB sessions Laboratory 2MAT 275 Laboratory 2Matrix .docxandreecapon
 
PCA and LDA in machine learning
PCA and LDA in machine learningPCA and LDA in machine learning
PCA and LDA in machine learningAkhilesh Joshi
 
Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013amanabr
 
Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013Kurmendra Singh
 
TMPA-2015: Implementing the MetaVCG Approach in the C-light System
TMPA-2015: Implementing the MetaVCG Approach in the C-light SystemTMPA-2015: Implementing the MetaVCG Approach in the C-light System
TMPA-2015: Implementing the MetaVCG Approach in the C-light SystemIosif Itkin
 
State of art salbp
State of art salbpState of art salbp
State of art salbpomaror2001
 
Application of combined support vector machines in process fault diagnosis
Application of combined support vector machines in process fault diagnosisApplication of combined support vector machines in process fault diagnosis
Application of combined support vector machines in process fault diagnosisDr.Pooja Jain
 
Panoramic Imaging using SIFT and SURF
Panoramic Imaging using SIFT and SURFPanoramic Imaging using SIFT and SURF
Panoramic Imaging using SIFT and SURFEric Jansen
 
Leap isec 2011
Leap isec 2011Leap isec 2011
Leap isec 2011ClarkTony
 

Similaire à CMA-ES and RankSVM Comparison-Based Optimizers (18)

APSEC2020 Keynote
APSEC2020 KeynoteAPSEC2020 Keynote
APSEC2020 Keynote
 
System Verilog 2009 & 2012 enhancements
System Verilog 2009 & 2012 enhancementsSystem Verilog 2009 & 2012 enhancements
System Verilog 2009 & 2012 enhancements
 
Ontology mapping needs context & approximation
Ontology mapping needs context & approximationOntology mapping needs context & approximation
Ontology mapping needs context & approximation
 
Sommari.docx
Sommari.docxSommari.docx
Sommari.docx
 
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
 
MATLAB sessions Laboratory 2MAT 275 Laboratory 2Matrix .docx
MATLAB sessions Laboratory 2MAT 275 Laboratory 2Matrix .docxMATLAB sessions Laboratory 2MAT 275 Laboratory 2Matrix .docx
MATLAB sessions Laboratory 2MAT 275 Laboratory 2Matrix .docx
 
PCA and LDA in machine learning
PCA and LDA in machine learningPCA and LDA in machine learning
PCA and LDA in machine learning
 
Basic R
Basic RBasic R
Basic R
 
Matlab-fundamentals of matlab-1
Matlab-fundamentals of matlab-1Matlab-fundamentals of matlab-1
Matlab-fundamentals of matlab-1
 
Fundamentals of matlab
Fundamentals of matlabFundamentals of matlab
Fundamentals of matlab
 
YMF2010
YMF2010YMF2010
YMF2010
 
Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013
 
Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013
 
TMPA-2015: Implementing the MetaVCG Approach in the C-light System
TMPA-2015: Implementing the MetaVCG Approach in the C-light SystemTMPA-2015: Implementing the MetaVCG Approach in the C-light System
TMPA-2015: Implementing the MetaVCG Approach in the C-light System
 
State of art salbp
State of art salbpState of art salbp
State of art salbp
 
Application of combined support vector machines in process fault diagnosis
Application of combined support vector machines in process fault diagnosisApplication of combined support vector machines in process fault diagnosis
Application of combined support vector machines in process fault diagnosis
 
Panoramic Imaging using SIFT and SURF
Panoramic Imaging using SIFT and SURFPanoramic Imaging using SIFT and SURF
Panoramic Imaging using SIFT and SURF
 
Leap isec 2011
Leap isec 2011Leap isec 2011
Leap isec 2011
 

Dernier

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Dernier (20)

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

CMA-ES and RankSVM Comparison-Based Optimizers

  • 1. Motivation Background ACM-ES Comparison-Based Optimizers Need Comparison-Based Surrogates Ilya Loshchilov1,2 , Marc Schoenauer1,2 , Michèle Sebag2,1 1 TAO Project-team, INRIA Saclay - Île-de-France 2 and Laboratoire de Recherche en Informatique (UMR CNRS 8623) Université Paris-Sud, 91128 Orsay Cedex, France Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 1/ 20
  • 2. Motivation Background ACM-ES Content 1 Motivation Why Comparison-Based Surrogates ? Previous Work 2 Background Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Support Vector Machine (SVM) 3 ACM-ES Algorithm Experiments Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 2/ 20
  • 3. Motivation Why Comparison-Based Surrogates ? Background Previous Work ACM-ES Why Comparison-Based Surrogates ? Surrogate Model (Meta-Model) assisted optimization Construct the approximation model M (x) of f (x). Optimize the model M (x) in lieu of f (x) to reduce the number of costly evaluations of the function f (x). Example f (x) = x2 + (x1 + x2 )2 . 1 An efficient Evolutionary Algorithm (EA) with surrogate models may be 4.3 faster on f (x). But the same EA is only 2.4 faster on f (x) = f (x)1/4 ! a a CMA-ES with quadratic meta-model (lmm-CMA-ES) on fSchwefel 2-D Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 3/ 20
  • 4. Motivation Why Comparison-Based Surrogates ? Background Previous Work ACM-ES Ordinal Regression in Evolutionary Computation Goal: Find the function F (x) which preserves the ordering of the training points xi (xi has rank i): xi xj ⇔ F (xi ) > F (xj ) F (x) is invariant to any rank-preserving transformation. CMA-ES with Rank Support Vector Machine on Rosenbrock: 1 n =2 2 n =5 3 n =10 10 10 0 10 ( I ,λ )CMA-ES Poly, d =2 mean fitness 10 1 10 2 Poly, d =4 2 10 RBF, γ =1 0 1 4 10 10 10 6 1 0 10 10 10 200 400 600 200 600 1000 1000 2000 3000 # function evaluations # function evaluations # function evaluations 1 T. Runarsson (2006). "Ordinal Regression in Evolutionary Computation" Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 4/ 20
  • 5. Motivation Why Comparison-Based Surrogates ? Background Previous Work ACM-ES Exploit the local topography of the function CMA-ES adapts the covariance matrix C which describes the local structure of the function. Mahalanobis (fully weighted Euclidean) distance: d(xi , xj ) = (xi − xj )T C −1 (xi − xj ) 2 Results of CMA-ES with quadratic meta-models: 8 10 lmm-CMA-ES O(FLOP)/saved function evaluation Speed-up: a factor of 2-4 for n ≥ 4 6 10 Complexity: from O(n4 ) to O(n6 ) 4 10 Rank-preserving invariance: NO becomes intractable for n>16 2 10 2 4 8 16 n 2 S. Kern et al. (2006). "Local Meta-Models for Optimization Using Evolution Strategies" Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 5/ 20
  • 6. Motivation Why Comparison-Based Surrogates ? Background Previous Work ACM-ES Tractable or Efficient ? Answer: Tractable and Efficient and Invariant. Ingredients: CMA-ES (Adaptive Encoding) and Rank SVM. Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 6/ 20
  • 7. Motivation Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Background Support Vector Machine (SVM) ACM-ES Covariance Matrix Adaptation Evolution Strategy Decompose to understand While CMA-ES by definition is CMA and ES, only recently the algorithmic decomposition has been presented. 3 Algorithm 1 CMA-ES = Adaptive Encoding + ES 1: xi ← m + σNi (0, I), for i = 1 . . . λ 2: fi ← f (Bxi ), for i = 1 . . . λ 3: if Evolution Strategy (ES) then success rate 4: σ ← σexp∝( expected success rate −1) 5: if Cumulative Step-Size Adaptation ES (CSA-ES) then evolution path 6: σ ← σexp∝( expected evolution path −1) 7: B ←AECMA -Update(Bx1 , . . . , Bxµ ) 3 N. Hansen (2008). "Adaptive Encoding: How to Render Search Coordinate System Invariant" Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 7/ 20
  • 8. Motivation Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Background Support Vector Machine (SVM) ACM-ES Adaptive Encoding Inspired by Principal Component Analysis (PCA) Principal Component Analysis Adaptive Encoding Update Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 8/ 20
  • 9. Motivation Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Background Support Vector Machine (SVM) ACM-ES Support Vector Machine for Classification Linear Classifier L1 Main Idea L2 Training Data: w n L3 D = {(xi , yi )|xi ∈ I p , yi ∈ {−1, +1}}i=1 R w, xi ≥ b + ⇒ yi = +1; w, xi ≤ b − ⇒ yi = −1; Dividing by > 0: b w, xi − b ≥ +1 ⇒ yi = +1; +1 w, xi − b ≤ −1 ⇒ yi = −1; b 0 b -1 support b Optimization Problem: Primal Form vector w n Minimize{w, ξ} 1 ||w||2 + C i=1 ξi 2 xi subject to: yi ( w, xi − b) ≥ 1 − ξi , ξi ≥ 0 2/ ||w|| Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 9/ 20
  • 10. Motivation Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Background Support Vector Machine (SVM) ACM-ES Support Vector Machine for Classification Linear Classifier L1 Optimization Problem: Dual Form L2 From Lagrange Theorem, instead of minimize F : w L3 Minimize{α,G} F − i αi Gi subject to: αi ≥ 0, Gi ≥ 0 Leaving the details, Dual form: n 1 n Maximize{α} i αi − 2 i,j=1 αi αj yi yj xi , xj b n subject to: 0 ≤ αi ≤ C, i αi yi = 0 +1 b 0 b -1 Properties support b vector w Decision Function: n F (x) = sign( i αi yi xi , x − b) xi The Dual form may be solved using standard 2/ ||w|| quadratic programming solver. Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 10/ 20
  • 11. Motivation Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Background Support Vector Machine (SVM) ACM-ES Support Vector Machine for Classification Non-Linear Classifier w,F(x) -b = +1 w F w,F(x) -b = -1 xi support vector 2/ ||w|| a) b) c) Non-linear classification with the "Kernel trick" 1n n Maximize{α} i αi − 2 i,j=1 αi αj yi yj K(xi , xj ) n subject to: ai ≥ 0, i αi yi = 0, where K(x, x ) =def < Φ(x), Φ(x ) > is the Kernel function n Decision Function: F (x) = sign( i αi yi K(xi , x) − b) Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 11/ 20
  • 12. Motivation Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Background Support Vector Machine (SVM) ACM-ES Support Vector Machine for Classification Non-Linear Classifier: Kernels Polynomial: k(xi , xj ) = ( xi , xj + 1)d 2 xi −xj Gaussian or Radial Basis Function: k(xi , xj ) = exp( 2σ 2 ) Hyperbolic tangent: k(xi , xj ) = tanh(k xi , xj + c) Examples for Polynomial (left) and Gaussian (right) Kernels: Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 12/ 20
  • 13. Motivation Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Background Support Vector Machine (SVM) ACM-ES Ranking Support Vector Machine Find F (x) which preserves the ordering of the training points. w x x r2) L( x r1) L( Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 13/ 20
  • 14. Motivation Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Background Support Vector Machine (SVM) ACM-ES Ranking Support Vector Machine Primal problem N Minimize{w, ξ} 1 ||w||2 + 2 i=1 C i ξi w, Φ(xi ) − Φ(xi+1 ) ≥ 1 − ξi (i = 1 . . . N − 1) subject to ξi ≥ 0 (i = 1 . . . N − 1) Dual problem N −1 N −1 Maximize{α} i αi − i,j αij K(xi − xi+1 , xj − xj+1 )) subject to 0 ≤ αi ≤ Ci (i = 1 . . . N − 1) Rank Surrogate Function in the case 1 rank = 1 point N −1 F(x) = i=1 αi (K(xi , x) − K(xi+1 , x)) Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 14/ 20
  • 15. Motivation Algorithm Background Experiments ACM-ES Model Learning Non-separable Ellipsoid problem (xi −xj )T (xi −xj ) (xi −xj )T C −1 (xi −xj ) K(xi , xj ) = e− 2σ 2 ; KC (xi , xj ) = e− 2σ 2 Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 15/ 20
  • 16. Motivation Algorithm Background Experiments ACM-ES Optimization or filtering? Don’t be too greedy Optimization: Significant Potential Speed-Up if the surrogate model is global and accurate enough Filtering: "Guaranteed" Speed-Up with the local surrogate model Prescreen (λ ) Retain with rank , ~ Evaluate Retain with rank λ, ~λ (λ′ ) 0.6 Probability Density 0.5 0.4 0.3 0.2 0 100 200 300 400 500 Rank Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 16/ 20
  • 17. Motivation Algorithm Background Experiments ACM-ES ACM-ES Optimization Loop 2. The change of coordinates, defined from the current covariance matrix A. Select training points and the current mean value , reads [4]: B. Build a surrogate model 1. Select best k training points. 1 1 0.5 0.5 X2 X2 0 0 -0.5 -0.5 -1 -1 3. Build a surrogate model using Rank SVM. -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 X1 X1 7. Add new λ′ training points and update parameters of CMA-ES. Rank-based Surrogate D. Select most promising children C. Generate pre-children Model 5. Prescreen 4. Generate pre-children and rank them (λ ) Retain with rank , ~ according to surrogate fitness function. 6. Evaluate Retain with rank λ, ~λ (λ′ ) 0.6 Probability Density 0.5 0.4 0.3 0.2 0 100 200 300 400 500 Rank Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 17/ 20
  • 18. Motivation Algorithm Background Experiments ACM-ES Results Speed-up 5 5 Function n λ λ′ e ACM-ES spu CMA-ES Schwefel 10 10 3 801 36 3.3 2667 87 20 12 4 3531 179 2.0 7042 172 40 15 5 13440 281 1.7 22400 289 4 4 Schwefel1/4 10 10 3 1774 37 4.1 7220 206 20 12 4 6138 82 2.5 15600 294 40 15 5 22658 390 1.8 41534 466 Rosenbrock 10 10 3 2059 143 (0.95) 3.7 7669 691 (0.90) Speedup 3 3 20 12 4 11793 574 (0.75) 1.8 21794 1529 40 15 5 49750 2412 (0.9) 1.6 82043 3991 N oisySphere 10 10 3 0.15 766 90 (0.95) 2.7 2058 148 20 12 4 0.11 1361 212 2.8 3777 127 2 2 40 15 5 0.08 2409 120 2.9 7023 173 Schwefel 1/4 Ackley 10 10 3 892 28 4.1 3641 154 Schwefel 20 12 4 1884 50 3.5 6641 108 Rosenbrock 40 15 5 3690 80 3.3 12084 247 1 Noisy Sphere 1 Ellipsoid 10 10 3 1628 95 3.8 6211 264 Ackley 20 12 4 8250 393 2.3 19060 501 Ellipsoid 40 15 5 33602 548 2.1 69642 644 Rastrigin 5 140 70 23293 1374 (0.3) 0.5 12310 1098 (0.75) 0 0 0 5 10 15 20 25 30 35 40 Problem Dimension Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 18/ 20
  • 19. Motivation Algorithm Background Experiments ACM-ES Results Learning Time Cost of model learning/testing increases quasi-linearly with d on Sphere function: 10 Slope=1.13 Learning time (ms) 3 10 2 10 1 10 0 1 2 3 10 10 10 10 Problem Dimension Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 19/ 20
  • 20. Motivation Algorithm Background Experiments ACM-ES Summary ACM-ES ACM-ES is from 2 to 4 times faster on Uni-Modal Problems. Invariant to rank-preserving transformation: Yes The computation complexity (the cost of speed-up) is O(n) comparing to O(n6 ) The source code is available online: http://www.lri.fr/~ilya/publications/ACMESppsn2010.zip Open Questions Extention to multi-modal optimization Adaptation of selection pressure and surrogate model complexity Ilya Loshchilov, Marc Schoenauer, Michèle Sebag ACM-ES = CMA-ES + RankSVM 20/ 20
  • 21. Motivation Algorithm Background Experiments ACM-ES Summary Thank you for your attention! Questions?
  • 22. Motivation Algorithm Background Experiments ACM-ES Parameters SVM Learning: √ Number of training points: Ntraining = 30 d for all problems, except Rosenbrock and Rastrigin, where Ntraining = 70 (d) √ Number of iterations: Niter = 50000 d Kernel function: RBF function with σ equal to the average distance of the training points The cost of constraint violation: Ci = 106 (Ntraining − i)2.0 Offspring Selection Procedure: Number of test points: Ntest = 500 Number of evaluated offsprings: λ = λ3 2 2 Offspring selection pressure parameters: σsel0 = 2σsel1 = 0.8