Capita Selecta - InfovisThe Symbiosis of Visualization & Designa/prof. Andrew Vande MoereDesign Lab - Department ASRO - KU...
Hackers - United Artists - 1996
Tron - The Electronic Gladiator - 1982
Johnny Mnemonic - Tristar Pictures -1995
Cyber Swap Worlds - 1997
City of News - MIT Media Lab - 1997
VR/Search - Andrew Vande Moere - 1998
VR Data Visualization - ETH-Zurich
Information Visualization for Immersive VR - Andrew Vande Moere - 2004http://www.youtube.com/watch?v=AZmcrVplqDUVR Data Vi...
Stock Market Swarm - Andrew Vande Moere - 2004http://www.youtube.com/watch?v=LjUZ6vcTc1Q
Stock Market Swarm - Andrew Vande Moere - 2004http://www.youtube.com/watch?v=LjUZ6vcTc1Q
University Finances Visualization - Andrew Vande Moere - 2003
University Finances Visualization - Andrew Vande Moere - 2003http://www.youtube.com/watch?v=duxjQKgYtNY
Information Aesthetics - “Where Form Follows Data” - http://infosthetics.com
ThemeRiver - pnl.gov - 1999http://vis.pnnl.gov/pdf/themeriver99.pdf
ThemeRiver - pnl.gov - 1999http://vis.pnnl.gov/pdf/themeriver99.pdf
Stacked Graphs – Geometry & Aesthetics - StreamGraphs - Lee Byron - 2007http://www.leebyron.com/else/streamgraph/
The Ebb and Flow of Movies - The New York Timeshttp://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPH...
From “research” in visualization to visualization “practice”
Movie Narrative Charts - Randall Munroe - xkcdhttp://xkcd.com/657/large/
zSoftware Evolution Storylines - Ogawa and Ma - 2010http://www.michaelogawa.com/research/storylines/
Software Evolution Storylines - Ogawa and Ma - 2010http://www.michaelogawa.com/research/storylines/
Design Considerations for Optimizing Storyline VisualizationsYuzuru Tanahashi and Kwan-Liu Ma - 2012http://ieeexplore.ieee...
Design Considerations for Optimizing Storyline VisualizationsYuzuru Tanahashi and Kwan-Liu Ma - 2012http://ieeexplore.ieee...
From visualization ‘exploration’ to visualization ‘research’
Learning Goals1.Approaches of ‘designing’ infovis2. Appreciation of kinds of infovis3. Guidelines for ‘engaging’ infovis
http://www.slideshare.net/mobile/jkofmsk/intro-to-information-visualization
information visualisation                          “... is the use of computer-                      supported, interactiv...
“information visualisation is the use of      computer-supported, interactive,      visual representations of abstract    ...
“information visualisation is the use of     computer-supported, interactive,     visual representations of abstract     d...
“information visualisation is the use of     computer-supported, interactive,     visual representations of abstract     d...
“information visualisation is the use of     computer-supported, interactive,     visual representations of abstract     d...
because the data is abstract...                    “the challenge is to invent                           new metaphors for...
“information visualisation is the use of      computer-supported, interactive,      visual representations of abstract    ...
Web2DNAhttp://www.baekdal.com/web2dna/
Web2DNAhttp://www.baekdal.com/web2dna/
Web2DNA Flickr Collectionhttp://www.flickr.com/photos/tags/web2dna/
Choice of “Metaphor”. can be potentially seemingly “useless”. yet receive a lot of interest. how to interpret “useful”?. p...
data                                insight      10010110                   knowledge                                   tr...
Visualization as a “Medium”. scientific visualization. data graphics. infographics. information design. data art
1. (Scientific) Visualization
LineAO - Improved Three-Dimensional Line Renderinghttp://www.informatik.uni-leipzig.de/~ebaum/Publications/eichelbaum2012a/
DNA Coiling, Replication, Transcription and Translation - WEHIhttp://www.youtube.com/watch?v=DA2t5N72mgw
2. Data GraphicsEurovizion - Ben Willershttp://lifeindata.site50.net/work/eurovizion/eurovizion.html
Statistical Atlases of the United States - 1870-1890http://www.handsomeatlas.com/
The Jobless Rate for People Like You - The New York Timeshttp://www.nytimes.com/interactive/2009/11/06/business/economy/un...
Four Ways to Slice Obama’s 2013 Budget Proposal - The New York Timeshttp://www.nytimes.com/interactive/2012/02/13/us/polit...
Spotlight on Profitability - Information is Beautiful Competition Entry (not winning...)http://www.informationisbeautifula...
2. Information Graphics
Starbucks Coffee Cup vs. Country Origins - Fast Food Revenue vs. Brands
Telenet Social Media Reporthttp://blog.telenet.be/wp-content/uploads/2012/01/Telenet-Social-Media-Report-20111.jpg
Year Report 2011 - http://feltron.com
Debtris - David McCandless / Information is Beautifulhttp://www.informationisbeautiful.net/2010/debtris/
4. Data VisualizationOECD Better Life Index - Moritz Stefanerhttp://www.oecdbetterlifeindex.org/
Flight & Expulsion - Nice Onehttp://www.niceone.org/lab/refugees/
Take a Look at Health - Fathom Designhttp://visualization.geblogs.com/visualization/health_visualizer/
5. Information DesignChromosome 14 - Ben Fry
We Feel Fine - Jonathan Harris and Sep Kamvarhttp://www.wefeelfine.org/
WorldShapin - Compare Countries through their Shape - Carlo Zapponi & Vasundhara Parakhhttp://www.worldshap.in/#/PH/BZ/KE/
Notabilia - Visualizing Deletion Discussions on Wikipedia - Moritz Stefanerhttp://notabilia.net/
6. Information ArtDNA Portrait - dna11.com
TextArc - An Alternative Way to View a Text - Brad Paleyhttp://www.textarc.org/
Poetry on the Road 6 - Boris Müllerhttp://www.esono.com/boris/projects/poetry06/
DoodleBuzz - A Typographic News Explorerhttp://www.doodlebuzz.com/
data                                insight      10010110                   knowledge                                   tr...
Name Trendshttp://nametrends.net/name.php?name=Andrew
Baby Name Wizard - Martin Wattenberghttp://www.babynamewizard.com/voyager#
Color Object - Martin WattenbergOffline Demo
1. The Role of Interaction
Amazon Digital Cameras Treemap - The Hive Grouphttp://www.hivegroup.com/demos/amazon/499052.html
Newsmap - Marumishi - 2004http://newsmap.jp/ and http://marumushi.com/projects/newsmap
2. The Role of Aesthetics
A Year in Iraq and Afghanistan - The New York Times - 2009http://www.nytimes.com/2011/01/30/opinion/30casualty-chart.html
Faces of the Fallen - Washington Post - 2009http://apps.washingtonpost.com/national/fallen/
UK Casualties in Afghanistan and Iraq - BBC News - 2009http://www.bbc.co.uk/news/uk-10634102
CNN Home and Away - CNN - Stamen Designhttp://edition.cnn.com/SPECIALS/war.casualties/
Monument - Caleb Larsen - 2006http://caleblarsen.com/
Monument - Caleb Larsen - 2006http://caleblarsen.com/
3. The Role of Data Focus (~ Meaning)
Lau A. and Vande Moere A. (2007), "Towards a Model of Information Aesthetic Visualization",IEEE International Conference o...
Lau A. and Vande Moere A. (2007), "Towards a Model of Information Aesthetic Visualization",IEEE International Conference o...
Narrative Visualization: Telling Stories with DataEdward Segel and Jeffrey Heerhttp://vis.stanford.edu/files/2010-Narrativ...
Narrative Visualization: Telling Stories with DataEdward Segel and Jeffrey Heerhttp://vis.stanford.edu/files/2010-Narrativ...
Our Irresistible Fascination with All Things Circularhttp://www.perceptualedge.com/articles/visual_business_intelligence/o...
Our Irresistible Fascination with All Things Circularhttp://www.perceptualedge.com/articles/visual_business_intelligence/o...
Aesthetic Effect in Data Visualization - Nick Cawthon and Andrew Vande Moere - 2007
Aesthetic Effect in Data Visualization - Nick Cawthon and Andrew Vande Moere - 2007
Aesthetic Effect in Data Visualization - Most Beautiful
Aesthetic Effect in Data Visualization - Least Beautiful
Aesthetic Effect in Data Visualization - Correct Responses
Aesthetic Effect in Data Visualization - Least Correct Responses
Aesthetic Effect in Data Visualization - Low Abandonment Rate
Aesthetic Effect in Data Visualization - High Abandonment Rate
Goal        •visualizationimpact of style in information         to measure           • by comparing 3 different ‘design a...
“Reversible”“Factual”Gapminder (2007)Many Eyes (2007)OECD eXplorer (2009)
“Irreversible”“Meaningful”    Bitalizer (2008)   Poetry on the Road (2004)   Texone (2005)
Partly “Reversible”Partly “Factual”          Digg Swarm (2007)              ReMap (2009)                              We F...
“Analytical” Style (ANA)
“Magazine” Style (MAG)
“Artistic” Style (ART)
Interaction 18m09s  (average)                        12m49s                         (average)                             ...
No Reported Insights     1  participant                         11                        participants                    ...
Interface “Insights’  6%  6 insights                        12%                        13 insights                        ...
Insight Analysis                 ANA       MAG         ART Difference    24% (24)   26% (26)   17% (11)     Cluster   22% ...
Insight Analysis    Rating (1 - 5)           ANA          MAG            ART uncertain - confident    4.10 (1.11)   4.21 (0...
Insight Analysis            Rating (1 - 5)           ANA          MAG            ART        uncertain - confident     4.10 ...
Insight Analysis Rating (1 - 5)           ANA          MAG            ART   ugly - beautiful   3.48 (0.85)   3.08 (1.03)  ...
Insight Analysis          Rating (1 - 5)             ANA          MAG            ART             ugly - beautiful    3.48 ...
Conclusions•style impacts perception of usability • analytical style was perceived as more   understandable, clear, enjoya...
Design Study Methodology: Reflections from the Trenches and the StacksMichael Sedlmair, Miriah Meyer, Tamara Munzner, IEEE...
Design Study Methodology: Reflections from the Trenches and the StacksMichael Sedlmair, Miriah Meyer, Tamara Munzner, IEEE...
your techniqueDesign Study Methodology: Reflections from the Trenches and the StacksMichael Sedlmair, Miriah Meyer, Tamara...
Design Study Methodology: Reflections from the Trenches and the StacksMichael Sedlmair, Miriah Meyer, Tamara Munzner, IEEE...
Edward Tufte
French Invasion of Russia (Minard, +-1864)Napoleon Retreat (Minard, +-1864)
temperaturetimetemp[day]
longitudelatitudearmy[size, day]army[position, day]
1. Show comparisons, contrasts, differences2. Show causality, mechanism, explanation,systematic structure3. Show multivari...
1. Show comparisons, contrasts,differences
2. Show causality, mechanism, explanation, systematic structureFrench Invasion of Russia (Minard, +-1864)Napoleon Retreat ...
3. Show multivariate data; that is, show more than 1 or 2 variablesFrench Invasion of Russia (Minard, +-1864)Napoleon Retr...
4. Completely integrate words, numbers, images, diagramsFrench Invasion of Russia (Minard, +-1864)Napoleon Retreat (Minard...
5.Thoroughly describe the evidence: title, authors and sponsors, data sources, add measurement scales, highlight relevant ...
6.Analytical presentations ultimately stand or fall depending on the quality, relevance and integrity of their contentFren...
The Friendly Graphic - Tufte (p. 183, 1983)
http://www.informationisbeautifulawards.com/2012/02/hollywood-dataviz-challenge-
• Lau A. and Vande Moere A. (2007), "Towards a Model of Information Aesthetic Visualization", IEEE International Conferenc...
• http://www.tableausoftware.com/public/    first explorations of dataset for insights•    http://visualizing.org    http:/...
Thank you! Questions?------.----------@asro.kuleuven.be /// http://infosthetics.com /// @infosthetics
The Symbiosis of Information Visualization and Design
The Symbiosis of Information Visualization and Design
The Symbiosis of Information Visualization and Design
Prochain SlideShare
Chargement dans... 5
×

The Symbiosis of Information Visualization and Design

1,781

Published on

Lecture for Capita Selecta - Infovis course at Computer Science - KU Leuven

Published in: Design
0 commentaires
3 mentions J'aime
Statistiques
Remarques
  • Soyez le premier à commenter

Aucun téléchargement
Vues
Total des vues
1,781
Sur Slideshare
0
À partir des ajouts
0
Nombre d'ajouts
1
Actions
Partages
0
Téléchargements
0
Commentaires
0
J'aime
3
Ajouts 0
No embeds

No notes for slide

Transcript of "The Symbiosis of Information Visualization and Design"

  1. 1. Capita Selecta - InfovisThe Symbiosis of Visualization & Designa/prof. Andrew Vande MoereDesign Lab - Department ASRO - KU Leuven------.----------@asro.kuleuven.be - http://infosthetics.com - @infosthetics
  2. 2. Hackers - United Artists - 1996
  3. 3. Tron - The Electronic Gladiator - 1982
  4. 4. Johnny Mnemonic - Tristar Pictures -1995
  5. 5. Cyber Swap Worlds - 1997
  6. 6. City of News - MIT Media Lab - 1997
  7. 7. VR/Search - Andrew Vande Moere - 1998
  8. 8. VR Data Visualization - ETH-Zurich
  9. 9. Information Visualization for Immersive VR - Andrew Vande Moere - 2004http://www.youtube.com/watch?v=AZmcrVplqDUVR Data Visualization
  10. 10. Stock Market Swarm - Andrew Vande Moere - 2004http://www.youtube.com/watch?v=LjUZ6vcTc1Q
  11. 11. Stock Market Swarm - Andrew Vande Moere - 2004http://www.youtube.com/watch?v=LjUZ6vcTc1Q
  12. 12. University Finances Visualization - Andrew Vande Moere - 2003
  13. 13. University Finances Visualization - Andrew Vande Moere - 2003http://www.youtube.com/watch?v=duxjQKgYtNY
  14. 14. Information Aesthetics - “Where Form Follows Data” - http://infosthetics.com
  15. 15. ThemeRiver - pnl.gov - 1999http://vis.pnnl.gov/pdf/themeriver99.pdf
  16. 16. ThemeRiver - pnl.gov - 1999http://vis.pnnl.gov/pdf/themeriver99.pdf
  17. 17. Stacked Graphs – Geometry & Aesthetics - StreamGraphs - Lee Byron - 2007http://www.leebyron.com/else/streamgraph/
  18. 18. The Ebb and Flow of Movies - The New York Timeshttp://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html
  19. 19. From “research” in visualization to visualization “practice”
  20. 20. Movie Narrative Charts - Randall Munroe - xkcdhttp://xkcd.com/657/large/
  21. 21. zSoftware Evolution Storylines - Ogawa and Ma - 2010http://www.michaelogawa.com/research/storylines/
  22. 22. Software Evolution Storylines - Ogawa and Ma - 2010http://www.michaelogawa.com/research/storylines/
  23. 23. Design Considerations for Optimizing Storyline VisualizationsYuzuru Tanahashi and Kwan-Liu Ma - 2012http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06327274
  24. 24. Design Considerations for Optimizing Storyline VisualizationsYuzuru Tanahashi and Kwan-Liu Ma - 2012http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06327274
  25. 25. From visualization ‘exploration’ to visualization ‘research’
  26. 26. Learning Goals1.Approaches of ‘designing’ infovis2. Appreciation of kinds of infovis3. Guidelines for ‘engaging’ infovis
  27. 27. http://www.slideshare.net/mobile/jkofmsk/intro-to-information-visualization
  28. 28. information visualisation “... is the use of computer- supported, interactive, visual representations of abstract data to amplify cognition”Information Visualization Definition
  29. 29. “information visualisation is the use of computer-supported, interactive, visual representations of abstract data to amplify cognition”. automatic/automated algorithm. versus custom or hand-made (sketching!). facilitates high complexity, analytics, ...
  30. 30. “information visualisation is the use of computer-supported, interactive, visual representations of abstract data to amplify cognition”. to make assumptions, test hypotheses. to allow individualized exploration scenarios. while and during the exploration itself
  31. 31. “information visualisation is the use of computer-supported, interactive, visual representations of abstract data to amplify cognition”. just ‘representing’ values or conveying meaning?. guiding users, show example insights, highlighting. engagement? involvement? immersion?
  32. 32. “information visualisation is the use of computer-supported, interactive, visual representations of abstract data to amplify cognition”. data without natural representation. requires metaphor to be perceived. complexity: size, dimensionality, time-variance
  33. 33. because the data is abstract... “the challenge is to invent new metaphors for presenting information & developing ways to manipulate these metaphors to make sense out of the information...”Information Visualization ‘Design’ Challenge
  34. 34. “information visualisation is the use of computer-supported, interactive, visual representations of abstract data to amplify cognition”. analytics versus communication. creating insights: new, valuable, deep,.... requires different kinds of visuals, interactivity, ...
  35. 35. Web2DNAhttp://www.baekdal.com/web2dna/
  36. 36. Web2DNAhttp://www.baekdal.com/web2dna/
  37. 37. Web2DNA Flickr Collectionhttp://www.flickr.com/photos/tags/web2dna/
  38. 38. Choice of “Metaphor”. can be potentially seemingly “useless”. yet receive a lot of interest. how to interpret “useful”?. persuasiveness of visual representations?
  39. 39. data insight 10010110 knowledge transfer data mapping mapping inversion visualisation comprehension ! visual transferVisual Mapping Methodology
  40. 40. Visualization as a “Medium”. scientific visualization. data graphics. infographics. information design. data art
  41. 41. 1. (Scientific) Visualization
  42. 42. LineAO - Improved Three-Dimensional Line Renderinghttp://www.informatik.uni-leipzig.de/~ebaum/Publications/eichelbaum2012a/
  43. 43. DNA Coiling, Replication, Transcription and Translation - WEHIhttp://www.youtube.com/watch?v=DA2t5N72mgw
  44. 44. 2. Data GraphicsEurovizion - Ben Willershttp://lifeindata.site50.net/work/eurovizion/eurovizion.html
  45. 45. Statistical Atlases of the United States - 1870-1890http://www.handsomeatlas.com/
  46. 46. The Jobless Rate for People Like You - The New York Timeshttp://www.nytimes.com/interactive/2009/11/06/business/economy/unemployment-lines.html
  47. 47. Four Ways to Slice Obama’s 2013 Budget Proposal - The New York Timeshttp://www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html
  48. 48. Spotlight on Profitability - Information is Beautiful Competition Entry (not winning...)http://www.informationisbeautifulawards.com/2012/02/hollywood-visualisation-challenge-design-shortlist/http://szucskrisztina.hu/images/holly.png
  49. 49. 2. Information Graphics
  50. 50. Starbucks Coffee Cup vs. Country Origins - Fast Food Revenue vs. Brands
  51. 51. Telenet Social Media Reporthttp://blog.telenet.be/wp-content/uploads/2012/01/Telenet-Social-Media-Report-20111.jpg
  52. 52. Year Report 2011 - http://feltron.com
  53. 53. Debtris - David McCandless / Information is Beautifulhttp://www.informationisbeautiful.net/2010/debtris/
  54. 54. 4. Data VisualizationOECD Better Life Index - Moritz Stefanerhttp://www.oecdbetterlifeindex.org/
  55. 55. Flight & Expulsion - Nice Onehttp://www.niceone.org/lab/refugees/
  56. 56. Take a Look at Health - Fathom Designhttp://visualization.geblogs.com/visualization/health_visualizer/
  57. 57. 5. Information DesignChromosome 14 - Ben Fry
  58. 58. We Feel Fine - Jonathan Harris and Sep Kamvarhttp://www.wefeelfine.org/
  59. 59. WorldShapin - Compare Countries through their Shape - Carlo Zapponi & Vasundhara Parakhhttp://www.worldshap.in/#/PH/BZ/KE/
  60. 60. Notabilia - Visualizing Deletion Discussions on Wikipedia - Moritz Stefanerhttp://notabilia.net/
  61. 61. 6. Information ArtDNA Portrait - dna11.com
  62. 62. TextArc - An Alternative Way to View a Text - Brad Paleyhttp://www.textarc.org/
  63. 63. Poetry on the Road 6 - Boris Müllerhttp://www.esono.com/boris/projects/poetry06/
  64. 64. DoodleBuzz - A Typographic News Explorerhttp://www.doodlebuzz.com/
  65. 65. data insight 10010110 knowledge transfer data mapping mapping inversion visualisation comprehension ! visual transferVisual Mapping Methodology
  66. 66. Name Trendshttp://nametrends.net/name.php?name=Andrew
  67. 67. Baby Name Wizard - Martin Wattenberghttp://www.babynamewizard.com/voyager#
  68. 68. Color Object - Martin WattenbergOffline Demo
  69. 69. 1. The Role of Interaction
  70. 70. Amazon Digital Cameras Treemap - The Hive Grouphttp://www.hivegroup.com/demos/amazon/499052.html
  71. 71. Newsmap - Marumishi - 2004http://newsmap.jp/ and http://marumushi.com/projects/newsmap
  72. 72. 2. The Role of Aesthetics
  73. 73. A Year in Iraq and Afghanistan - The New York Times - 2009http://www.nytimes.com/2011/01/30/opinion/30casualty-chart.html
  74. 74. Faces of the Fallen - Washington Post - 2009http://apps.washingtonpost.com/national/fallen/
  75. 75. UK Casualties in Afghanistan and Iraq - BBC News - 2009http://www.bbc.co.uk/news/uk-10634102
  76. 76. CNN Home and Away - CNN - Stamen Designhttp://edition.cnn.com/SPECIALS/war.casualties/
  77. 77. Monument - Caleb Larsen - 2006http://caleblarsen.com/
  78. 78. Monument - Caleb Larsen - 2006http://caleblarsen.com/
  79. 79. 3. The Role of Data Focus (~ Meaning)
  80. 80. Lau A. and Vande Moere A. (2007), "Towards a Model of Information Aesthetic Visualization",IEEE International Conference on Information Visualisation (IV07), pp. 87-92.
  81. 81. Lau A. and Vande Moere A. (2007), "Towards a Model of Information Aesthetic Visualization",IEEE International Conference on Information Visualisation (IV07), pp. 87-92.
  82. 82. Narrative Visualization: Telling Stories with DataEdward Segel and Jeffrey Heerhttp://vis.stanford.edu/files/2010-Narrative-InfoVis.pdfGenres of Narrative Visualization, Balancing Author-Driven versus Reader-Driven Stories
  83. 83. Narrative Visualization: Telling Stories with DataEdward Segel and Jeffrey Heerhttp://vis.stanford.edu/files/2010-Narrative-InfoVis.pdf
  84. 84. Our Irresistible Fascination with All Things Circularhttp://www.perceptualedge.com/articles/visual_business_intelligence/our_fascination_with_all_things_circular.pdf
  85. 85. Our Irresistible Fascination with All Things Circularhttp://www.perceptualedge.com/articles/visual_business_intelligence/our_fascination_with_all_things_circular.pdf
  86. 86. Aesthetic Effect in Data Visualization - Nick Cawthon and Andrew Vande Moere - 2007
  87. 87. Aesthetic Effect in Data Visualization - Nick Cawthon and Andrew Vande Moere - 2007
  88. 88. Aesthetic Effect in Data Visualization - Most Beautiful
  89. 89. Aesthetic Effect in Data Visualization - Least Beautiful
  90. 90. Aesthetic Effect in Data Visualization - Correct Responses
  91. 91. Aesthetic Effect in Data Visualization - Least Correct Responses
  92. 92. Aesthetic Effect in Data Visualization - Low Abandonment Rate
  93. 93. Aesthetic Effect in Data Visualization - High Abandonment Rate
  94. 94. Goal •visualizationimpact of style in information to measure • by comparing 3 different ‘design alternatives’ • in terms of visual and interactive style • style demonstrators based on real-world examples • then contrasted resulting insights against each otherEvaluating the Effect of Style in Information VisualizationAndrew Vande Moere, Martin Tomitsch, Christoph Wimmer, Christoph Boesch, and ThomasGrechenig, IEEE Infovis 2012
  95. 95. “Reversible”“Factual”Gapminder (2007)Many Eyes (2007)OECD eXplorer (2009)
  96. 96. “Irreversible”“Meaningful” Bitalizer (2008) Poetry on the Road (2004) Texone (2005)
  97. 97. Partly “Reversible”Partly “Factual” Digg Swarm (2007) ReMap (2009) We Feel Fine (2006)
  98. 98. “Analytical” Style (ANA)
  99. 99. “Magazine” Style (MAG)
  100. 100. “Artistic” Style (ART)
  101. 101. Interaction 18m09s (average) 12m49s (average) 11m55s (average) 181.0 interactions 87.7 interactions 88.9 interactions (average) (average) (average) Analytical Magazine Artistic
  102. 102. No Reported Insights 1 participant 11 participants 9 participants Analytical Magazine Artistic
  103. 103. Interface “Insights’ 6% 6 insights 12% 13 insights 29% 27 insights Analytical Magazine Artistic
  104. 104. Insight Analysis ANA MAG ART Difference 24% (24) 26% (26) 17% (11) Cluster 22% (22) 15% (15) 9% (6)Distribution 11% (11) 12% (12) 17% (11)Compound 9% (9) 14% (14) 11% (7) Trend 8% (8) 4% (4) 8% (5) Outliers 6% (6) 10% (10) 15% (10) Value 6% (6) 1% (1) 0% (0)Association 5% (5) 3% (3) 6% (4)Meaning (*) 3% (3) 4% (4) 14% (9) Extreme 4% (4) 6% (6) 0% (0)Categories 2% (2) 1% (1) 0% (0) Rank 1% (1) 2% (2) 3% (2)
  105. 105. Insight Analysis Rating (1 - 5) ANA MAG ART uncertain - confident 4.10 (1.11) 4.21 (0.87) 4.17 (0.95) difficult - easy 3.78 (1.17) 3.63 (1.29) 4.00 (1.24) shallow - deep 3.18 (1.10) 2.93 (1.08) 2.54 (1.17)
  106. 106. Insight Analysis Rating (1 - 5) ANA MAG ART uncertain - confident 4.10 (1.11) 4.21 (0.87) 4.17 (0.95) difficult - easy 3.78 (1.17) 3.63 (1.29) 4.00 (1.24) shallow - deep 3.18 (1.10) 2.93 (1.08) 2.54 (1.17)shallow – deep (expert rating) 2.44 (0.78) 2.36 (0.70) 2.28 (0.64)
  107. 107. Insight Analysis Rating (1 - 5) ANA MAG ART ugly - beautiful 3.48 (0.85) 3.08 (1.03) 3.11 (1.02) obtrusive - fluid 3.27 (0.95) 3.08 (1.01) 2.80 (1.00)
  108. 108. Insight Analysis Rating (1 - 5) ANA MAG ART ugly - beautiful 3.48 (0.85) 3.08 (1.03) 3.11 (1.02) obtrusive - fluid 3.27 (0.95) 3.08 (1.01) 2.80 (1.00) ambiguous - clear 3.39 (1.17) 1.98 (0.89) 2.00 (0.86)difficult - easy to understand 3.55 (1.04) 2.08 (1.07) 2.14 (1.07) intended inform – express 2.80 (1.15) 3.54 (1.18) 3.66 (1.06) useless - useful 3.61 (0.95) 2.70 (1.09) 2.45 (0.90) frustrating - enjoyable 3.43 (1.00) 2.54 (1.16) 2.34 (1.06) unusable - usable 3.77 (0.91) 2.78 (1.13) 2.64 (1.12) boring - engaging 3.43 (0.93) 3.10 (0.95) 2.80 (1.00) non-functional - functional 3.93 (0.82) 2.80 (1.18) 2.50 (1.13) tool - art 2.30 (1.07) 3.32 (1.19) 3.68 (0.93)
  109. 109. Conclusions•style impacts perception of usability • analytical style was perceived as more understandable, clear, enjoyable, engaging, useful, functional, ...•style does not impact insight depth • participants were able to overcome huge incomprehensibility issues of ART, and in a minimum amount of time• style has impact on ‘kind’ of insights • analytical focus of facts versus meaning of content, explanation of reasoning, ...
  110. 110. Design Study Methodology: Reflections from the Trenches and the StacksMichael Sedlmair, Miriah Meyer, Tamara Munzner, IEEE Infovis 2012http://www.cs.ubc.ca/nest/imager/tr/2012/dsm/
  111. 111. Design Study Methodology: Reflections from the Trenches and the StacksMichael Sedlmair, Miriah Meyer, Tamara Munzner, IEEE Infovis 2012http://www.cs.ubc.ca/nest/imager/tr/2012/dsm/
  112. 112. your techniqueDesign Study Methodology: Reflections from the Trenches and the StacksMichael Sedlmair, Miriah Meyer, Tamara Munzner, IEEE Infovis 2012http://www.cs.ubc.ca/nest/imager/tr/2012/dsm/
  113. 113. Design Study Methodology: Reflections from the Trenches and the StacksMichael Sedlmair, Miriah Meyer, Tamara Munzner, IEEE Infovis 2012http://www.cs.ubc.ca/nest/imager/tr/2012/dsm/
  114. 114. Edward Tufte
  115. 115. French Invasion of Russia (Minard, +-1864)Napoleon Retreat (Minard, +-1864)
  116. 116. temperaturetimetemp[day]
  117. 117. longitudelatitudearmy[size, day]army[position, day]
  118. 118. 1. Show comparisons, contrasts, differences2. Show causality, mechanism, explanation,systematic structure3. Show multivariate data; that is, show morethan 1 or 2 variables4. Completely integrate words, numbers, images,diagrams5.Thoroughly describe the evidence: title, authorsand sponsors, data sources, add measurementscales, highlight relevant issues6.Analytical presentations ultimately stand or falldepending on the quality, relevance andintegrity of their contentPrinciples for the Analysis and Presentation of Data - Tufte
  119. 119. 1. Show comparisons, contrasts,differences
  120. 120. 2. Show causality, mechanism, explanation, systematic structureFrench Invasion of Russia (Minard, +-1864)Napoleon Retreat (Minard, +-1864)
  121. 121. 3. Show multivariate data; that is, show more than 1 or 2 variablesFrench Invasion of Russia (Minard, +-1864)Napoleon Retreat (Minard, +-1864)
  122. 122. 4. Completely integrate words, numbers, images, diagramsFrench Invasion of Russia (Minard, +-1864)Napoleon Retreat (Minard, +-1864)
  123. 123. 5.Thoroughly describe the evidence: title, authors and sponsors, data sources, add measurement scales, highlight relevant issuesFrench Invasion of Russia (Minard, +-1864)Napoleon Retreat (Minard, +-1864)
  124. 124. 6.Analytical presentations ultimately stand or fall depending on the quality, relevance and integrity of their contentFrench Invasion of Russia (Minard, +-1864)Napoleon Retreat (Minard, +-1864)
  125. 125. The Friendly Graphic - Tufte (p. 183, 1983)
  126. 126. http://www.informationisbeautifulawards.com/2012/02/hollywood-dataviz-challenge-
  127. 127. • Lau A. and Vande Moere A. (2007), "Towards a Model of Information Aesthetic Visualization", IEEE International Conference on Information Visualisation (IV07), IEEE, Zurich, Switzerland, pp. 87-92.• Cawthon N. and Vande Moere A. (2007), "The Effect of Aesthetic on the Usability of Data Visualization", IEEE International Conference on Information Visualisation (IV07), IEEE, Zurich, Switzerland, pp. 637-648.• Vande Moere A., Tomitsch M., Wimmer C., Boesch C. and Grechenig T. (2012), "Evaluating the Effect of Style in Information Visualization", IEEE Transactions on Visualization and Computer Graphics, 18(12), December 2012, pp.2739-2748.• Sedlmair, Michael; Meyer, Miriah; Munzner, Tamara; , "Design Study Methodology: Reflections from the Trenches and the Stacks”, IEEE Transactions on Visualization and Computer Graphics, 18 (12), pp.2431-2440.• Edward Segel, Jeffrey Heer, Narrative Visualization: Telling Stories with Data, IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2010.• Jeffrey Heer, Michael Bostock,Vadim Ogievetsky, A Tour through the Visualization Zoo http://queue.acm.org/detail.cfm?id=1805128...
  128. 128. • http://www.tableausoftware.com/public/ first explorations of dataset for insights• http://visualizing.org http://www.informationisbeautifulawards.com/ check winning entries!• http://infosthetics.com http://flowingdata.com/ blog with wide selection• http://selection.datavisualization.ch/ collection of good tools!• http://thewhyaxis.info http://www.perceptualedge.com/blog/ what is good, what is bad, and why?• http://moritz.stefaner.eu/ http://www.periscopic.com/ http://stamen.com/ http://tulpinteractive.com/ high quality infovis examples...
  129. 129. Thank you! Questions?------.----------@asro.kuleuven.be /// http://infosthetics.com /// @infosthetics

×