SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 2 Issue 7 ǁ July. 2013 ǁ PP.25-30
www.ijesi.org 25 | Page
Towards a Win-Win Scenario in National Energy and Food
Security: The Role of Comprehensive Extraction of Uranium
from Phosphates
S. O. Obaje
Nigerian Geological Survey Agency, P.M.B. 1423, Ilorin, Kwara State, Nigeria
ABSTRACT: The main aim of this paper is to draw policy attention to the comprehensive extraction of
uranium from phosphates so as to achieve a win-win scenario in energy and food security in Nigeria. Nigeria is
located on latitude 100
North and longitude 80
East surrounded in the north by Niger and Chad and in the east
by Cameroun and in the west by Benin Republic. The Nigerian, Sokoto phosphate rock contains significant
quantities 65 ppm of uranium that meets the minimum international benchmark for uranium extraction from
phosphates and phosphogypsum. Nigeria’s current energy generation is 2,987.6 MW using hydropower and gas
plants. However, for Nigeria to meet her energy security need, the comprehensive extraction of uranium from
phosphates is imperative. This is because the recovered uranium can be used as nuclear fuel to generate energy
for national development, besides other benefits such as environmental/health, social and economic impact,
respectively. It has been confirmed that the safest and greenest source of energy generation is nuclear energy.
KEYWORDS: National energy security, food security, uranium extraction, phosphates
I. INTRODUCTION
Energy and food security via the comprehensive extraction of uranium from phosphates in Nigeria is
the focal aim of this paper. Nigeria is located within the Equator and the Tropic of Cancer on latitude 100
North
and longitude 80
East. Nigeria is surrounded in the north by Niger and Chad and in the east by Cameroun and in
the west by Benin Republic (Fig. 1). It occupies an area of 923,768 m2
made up of landmass of 910,768 m2
and
water area of 13,000 m2
. The Nigerian coastline is 853 km. The seat of government is Abuja. Nigerian has
stable democratic system of government and the present President of the country is Dr. Goodluck Ebele
Jonathan, GCFR. According to Wikipedia (2012), Nigeria‟s population is 170 million people with three major
tribes, namely: Hausa/Fulani, Yoruba and Ibo. The official business language is English and the currency is
Naira (N) which has an exchange rate of N159.98 to US Dollar ($1) as at June 2nd
, 2013. The major religions
practised in Nigeria are Christianity and Islam, while there are minor adherents of indigenous religions,
Hinduism, Buddhism, Baha‟i and other faiths. Nigeria is a tourism and investment destination despite the recent
security challenges. Nigeria has 4,660 km of standard/narrow gauges rail network across the entire country.
Other modes of transportation are road network of 195,000 km, sea, inland water ways and air transportation.
Nigeria has several international sea-ports (Lagos, Port Harcourt, Warri, Calabar, Onne and Sapele) and
international air-ports (Abuja, Lagos, Kano, Port Harcourt, Enugu, Kaduna, Maiduguri, Yola, Calabar, Sokoto,
Owerri, Jos and Ilorin) and local air-ports (Gombe, Minna, Yola, etc). The temperature ranges from 22 – 360
c.
There is rain forest in the South and savannah vegetation in the Northern part of the country (Wikipedia, 2012).
II. GEOLOGICAL SETTING OF NIGERIA
The geology of Nigeria is composed of 4 main groups, namely: the Basement Complex, Younger
Granites, Sedimentary series and Tertiary-Recent Volcanic rocks. The Basement Complex is made up of the
migmatite-gnesis complex, pegmatites, the schist belts composed of metasedimentary and metavolcanic rocks
and the pan-African Granitoids comprising the Older Granites and the associated charnockitic rocks. The
Younger Granites are of Jurassic age and they are found as ring-complex outcrops within the Basement
Complex areas. The Younger Granites are rich in minerals such as columbite, cassiterite, etc. The sedimentary
series are made up of seven basins, namely: Niger Delta, Dahomey, Anambra, Bida, Benue Trough related to
the opening of the Gulf of the Guinea and the Sokoto (Illummeden) and Chad basins are parts of larger basins
that extend beyond Nigeria.
Towards a Win-Win Scenario in National…
www.ijesi.org 26 | Page
The Tertiary-Recent volcanic rocks are found in Biu and Longuda plateaux, Jos Plateau and the Benue
Trough. Though phosphate occurrences in Nigeria have been reported in four States such as Sokoto, Ogun, Edo
and Imo (Tian and Kolawole, 1999; Ojo, 2003), in this paper the focus will be placed only on the first two
mentioned occurrences because only the phosphate occurrences in Sokoto and Ogun States are in commercial
quantities (Akinrinde and Obigbesan, 2006).
2.1 Phosphate Deposits in Sokoto and Ogun States
According to van Straaten (2002), the five major types of phosphate resources in the world are marine
phosphates, igneous phosphates, metamorphic phosphates, biogenic and phosphates from weathering.
Sedimentary, marine phosphate rock deposits provide 75% of the world‟s phosphate resources, while 15 – 20 %
come from igneous and weathered deposits and only 1 – 2% from biogenic (mainly from bird and bat guano
accumulations) resources (van Straaten, 2002). In Nigeria, the phosphate deposits are of the sedimentary, marine
origin.
In Sokoto State, phosphates of Paleocene sedimentary deposits occur in the Dange Formation. The
Dange Formation also contains gysiferous shales and phosphate nodules (Kogbe, 1972, 1976). The overlying
Paleocene Kalambaina and Gamba Formations are dominated by limestones and laminated („paper‟) shales. A
horizon with phosphate pellets within the Gamba Formation (Kogbe, 1976, quoted by van Straaten, 2002) is
probably equivalent to the phosphate-containing marine sequence in neighbouring Niger and Mali (Wright et al.,
1985, Hanon, 1990). The exploration work by the Geological Survey of Nigeria (now called Nigerian
Geological Survey Agency) also established the occurrence of phosphate nodules and pellets in Dange, Gidan
Bauchi, Illela, Gada and Kalambaina (Ogunleye et al., 2002). The thickness of phosphate deposits ranges from 1
– 5 m in the Dukamaje Formation and the phospatic nodules/pellets occur in sizes of 0.1 – 1 cm with varying
concentration in different locations (Etu-Efeotor, 1998; Okosun, 1997, quoted in Ogunleye, 2002). The Sokoto
phosphates have an estimated reserves of 5 – 10 million tonnes (Akinrinde and Obigbesan, 2006).
According to van Straaten (2002), Lower Eocene sedimentary phosphates have been known from
south-western Nigeria since 1921 (Russ, 1924, quoted in McClellan and Notholt, 1986). Phosphate rocks are
found in Oja-Odan and Ifo areas of Ogun State. Detailed work is needed to establish the actual reserves of the
deposits. However, there are several conflicting reserve figures for the same deposits. Akinrinde and Obigbesan
(2006) quoted 0.5 million tonnes, while McClellan and Notholt (1986) gave values of 1 million tonnes and the
Ministry of Solid Minerals Development (2000) quoted 40 million tonnes as the reserves for the deposits. The
phosphate rock deposits in Ogun State occur in nodules, granular and vesicular forms (Sobulo, 1994; Adediran
and Sobulo, 1998; Adegoke et al., 1991; Akinrinde and Obigbesan, 2006).
III. COMPARATIVE GEOCHEMISTRY OF NIGERIAN PHOSPHATES
According to Akinrinde and Obigbesan (2006), Sokoto phosphates have calculated average percentage
of 30.5 – 36.6% P2O5, while the Ogun phosphates have 26.3 – 32.0% P2O5. The above average values for the
Nigerian phosphates compare favourably with the Togo phosphate which have the values of 28.0 – 36.6% P2O5
(Akinrinde and Obigbesan, 2006) and imported to feed the superphosphate fertilizer plant in Kaduna, Nigeria
(Ogunleye et al., 2002). Table 1 shows the oxide percentages of the Sokoto and Ogun phosphates. On the other
hand, Table 2 indicates the comparative geochemical analysis of trace elements of the Nigerian and Togo
phosphates. Plate 1 indicates a photograph of uranium yellow cake (U3O8).
Towards a Win-Win Scenario in National…
www.ijesi.org 27 | Page
Table 1. Oxide Weight Percentages of Sokoto and Ogun Phosphate Rock Deposits (Source: 1
Akinrinde
and Obigbesan, 2006; 2
NIPC, 2009)
1
SOKOTO 2
SOKOTO 1
OGUN (%)
P2O5 32.50 36.25 30.50
CaO 44.23 52.30 19.23
F - 3.84 -
CaCO3 79.0 - 34.30
MgO 0.95 - 1.35
Fe2O3 3.19 1.50 7.28
Al2O3 1.79 1.50 6.91
SiO2 4.20 3.44 6.68
H2O - 0.75 -
Solubility in 2% citric acid 45.55 - 38.42
Cd (mg Kg-1
) 0.63 - 9.70
Table 2. Trace Elements in PPM of Nigerian and Togo Phosphate Rock Deposits (Source: 1
Adesanwo et
al., 2010; 2
Ogunleye et al., 2002)
ELEMENT 2
SOKOTO (MEAN) 1
OGUN (MEAN) 2
TOGO (MEAN)
Cr 28.00 613.75 75.00
V 65.00 330.50 68.00
Ba 397.00 327.75 302.00
U 65.00 22.50 72.00
Th 3.20 9.25 17.40
Zn 59.00 126.00 143.00
Sc 11.80 12.00 11.60
Zr 810.00 89.75 765.00
3.1 Suitability of Nigerian Phosphates for Fertilizer Production
The Nigerian phosphates have been proven to have very high reactivity, thus making it very suitable as
fertilizer material even for direct application to the soil to improve soil fertility and higher crop productivity
(van Straaten, 2002; Akinrinde and Obigbesan, 2006; Okosun, 1997). However, in view of the high content of
uranium especially in the Sokoto phosphates, the need to comprehensively extract out the uranium from the
phosphates has become very imperative for the cogent reasons on the grounds of livestock and human health,
environmental, surface and ground-water pollution control and energy sufficiency.
3.2 Fertilizer Production
Phosphate rock (phosphorite) is a marine sedimentary rock which contains 18 – 40% P2O5, as well as
some uranium and all its decay products, often 65 to 200 ppm U, and sometimes up to 800 ppm. The main
mineral in the phosphate rock is apatite, and most commonly, fluorapatite - Ca5(PO4)3F or Ca10(PO4)6(F,OH)2.
This is insoluble, so cannot directly be used as a fertilizer (unless in very acidic soils) so must first be
processed. This is normally in a wet process phosphoric acid (WPA) plant where it is first dissolved in
sulphuric acid. About 2 – 4% fluorine is usually present. When phosphate rock is treated with sulphuric acid in
sub-stoichiometric quantity, normal superphosphate is formed. If more sulphuric acid is added, a mixture of
phosphoric acid and gypsum (calcium sulphate) called “phosphogypsum” is obtained. After the gypsum is
filtered out, the resultant phosphoric acid can be treated to recover uranium (World Nuclear Association, 2012).
The basic reaction is:
Towards a Win-Win Scenario in National…
www.ijesi.org 28 | Page
Ca3(PO4)2 + 3H2SO4 + 6H2O ==> 2H3PO4 + 3CaSO4.2H2O - exothermic
The process used produces different varieties of calcium sulphate such as anhydrous: CaSO4,
hemihydrate: CaSO4.½H2O or dihydrate: CaSO4.2H2O. The Phosphoric acid is treated with ammonia produced
from natural gas (Haber process) to produce diammonium phosphate or DAP as final product, which is adjusted
to industry standard composition of 18-40-0 in N-P-K.
2NH3 + H3PO4  (NH4)2HPO4
IV. EXTRACTION OF URANIUM FROM PHOSPHATES
Phosphate rock is digested with sulphuric acid to produce a phosphoric acid solution (called wet
process phosphoric acid) and an insoluble calcium sulphate (gypsum). Sokoto Phosphate rock contains
significant quantities 65 ppm of uranium (Ogunleye et al., 2002).
Attempts to recover uranium values from wet-process phosphoric acid have centred on the use of
solvent extraction processes in which the uranium values are transferred to an organic phase, stripped from the
organic phase and subsequently recovered as a uranium precipitate. The uranium-free wet-process phosphoric
acid is then processed conventionally to form various phosphate-containing fertilizer products.
Uranium from phosphate extraction using a mixture of di(2-ethylhexyl) phosphoric acid (DEPA) and
tri-octylphosphine oxide (TOPO) dissolved in an organic diluents have a high affinity for uranium in the
hexavalent oxidation state by using H2O4 oxidation agent. Uranium extracted as yellow cake (U3O8) and the
phosphoric acid free of uranium is recovered for fertilizer production for food security. The gypsum is also of
economic importance. Many countries such as USA, Canada, Belgium, Syria, Israel, Taiwan, Egypt, Morocco,
etc. have active process plants for the extraction of uranium from phosphates. The yellow cake is used as
nuclear fuel for electricity production.
Nigeria has some fertilizer production plants such as the Superphosphate Fertilizer Company located in
Kaduna, Fertilizer production at Crystal Talc Limited at Kagara, Niger State, Fertilizer Concentrate Company,
Edo State and the National Fertilizer Company of Nigeria (NAFCON), Port Harcourt, Rivers State. Presently,
there is no uranium from phosphates extraction plant in Nigeria.
4.1 Why Comprehensive Extraction of Uranium from Phosphates in Nigeria?
The comprehensive extraction of uranium from phosphates has three implications, namely:
environmental/health, social and economic impact, respectively. Unrecovered uranium in phosphates will
eventually pollutes our environments, contaminate our surface and underground water resources and
consequently affect human, livestock and plants health. The comprehensive extraction of uranium from
phosphates is a social licensing gain via poverty eradication, jobs creation and economic development. The
recovered uranium may be used for energy sufficiency and independence. The phosphate freed of uranium will
be used for fertilizer production for food security. National prosperity is directly related to energy generation
and consumption. Thus improved energy generation coupled with food security will greatly stimulate economic
growth and development of the nation.
V. DISCUSSION
As at December 17, 2013 electricity power, herein referred to as energy generation in Nigeria was
4,349.7 megawatts (MW) but declined to 2,987.6 MW on April 6, 2013 (Saturday Punch, 2013). The drop in
energy generation has untold negative economic impact on the people and businesses. In Nigeria, energy is
generated via hydropower and gas plants. Other sources of energy generation are wind, solar, petrol, coal,
biofuel and nuclear. The safest and greenest source of energy generation is nuclear energy. However, necessary
regulatory and safety measures must be engaged to prevent any mishap like the case of the Japan‟s Fukushima
Daiichi Nuclear Power Plant accident. US$2 billion Nuclear Power Plant can produce 1,000 MW that can run
for 40 years. One kilogram of natural uranium can release about 20,000 times as much energy as the same
quantity of coal (World Nuclear Association, 2012, 2013). According to the Saturday Punch (2013), the Late
President of Nigeria, Alhaji Musa Yar‟Adua promised to deliver 5000 MW of energy to Nigerians in 2008, but
in 2013 Nigeria has not achieved that goal. The author strongly believes that the investment into four to five
nuclear power plants will help Nigeria achieve energy security.
The uranium in phosphate rock deposits in Nigeria and phosphogysum must be comprehensively
recovered for nuclear fuel, while the phosphate freed of uranium may be used for fertilizer production for food
security and the gypsum may be used as very useful industrial raw material for cement production and other
important uses. Thus, sustainability and sufficiency in Energy and Food Security will become a Win-Win
scenario for all stakeholders (Nigerian government, people and environment). It has been established that the
Towards a Win-Win Scenario in National…
www.ijesi.org 29 | Page
cost of nuclear fuel is very minimal (US$40 per Kilogram of U) and so it is very attractive cost savings option
for energy security in comparison to other energy generation sources (IAEA, 2004).
On the other hand, the absence of the Win-Win Scenario can predicate social unrests, riots, poverty,
starvation, terrorism, political collapse, environmental pollution, diseases, etc.
VI. CONCLUSION AND RECOMMENDATIONS
In Nigeria, the phosphate deposits are of the sedimentary, marine origin. In Sokoto State, phosphates of
Paleocene sedimentary deposits occur in the Dange Formation. The exploration work by the Geological Survey
of Nigeria (now called Nigerian Geological Survey Agency) also established the occurrence of phosphate
nodules and pellets in Dange, Gidan Bauchi, Illela, Gada and Kalambaina (Ogunleye et al., 2002). The thickness
of phosphate deposits ranges from 1 – 5 m in the Dukamaje Formation and the phospatic nodules/pellets occur
in sizes of 0.1 – 1 cm with varying concentration in different locations (Etu-Efeotor, 1998; Okosun, 1997,
quoted in Ogunleye, 2002). The Sokoto phosphates have an estimated reserves of 5 – 10 million tonnes
(Akinrinde and Obigbesan, 2006).
According to van Straaten (2002), Lower Eocene sedimentary phosphates have been known from
south-western Nigeria since 1921 (Russ, 1924, quoted in McClellan and Notholt, 1986). Phosphate rocks are
found in Oja-Odan and Ifo areas of Ogun State. Detailed work is needed to establish the actual reserves of the
deposits. However, there are several conflicting reserve figures for the same deposits. Akinrinde and Obigbesan
(2006) quoted 0.5 million tonnes, while McClellan and Notholt (1986) gave values of 1 million tonnes and the
Ministry of Solid Minerals Development (2000) quoted 40 million tonnes as the reserves for the deposits. The
phosphate rock deposits in Ogun State occur in nodules, granular and vesicular forms (Sobulo, 1994; Adediran
and Sobulo, 1998; Adegoke et al., 1991; Akinrinde and Obigbesan, 2006). According to Akinrinde and
Obigbesan (2006), Sokoto phosphates have calculated average percentage of 30.5 – 36.6% P2O5, while the Ogun
phosphates have 26.3 – 32.0% P2O5. The above average values for the Nigerian phosphates compare favourably
with the Togo phosphate which have the values of 28.0 – 36.6% P2O5 (Akinrinde and Obigbesan, 2006) and
imported to feed the superphosphate fertilizer plant in Kaduna, Nigeria (Ogunleye et al, 2002). Comparative
geochemical analysis of trace elements of the Nigerian and Togo phosphates indicated that the Nigerian
phosphates meet the minimum international benchmark for uranium extraction from phosphates and
phosphogypsum.
The Nigerian phosphates have been proven to have very high reactivity, thus making it very suitable as
fertilizer material even for direct application to the soil to improve soil fertility and higher crop productivity
(van Straaten, 2002; Akinrinde and Obigbesan, 2006; Okosun, 1997). However, in view of the high content of
uranium especially in the Sokoto phosphates, the need to comprehensively extract out the uranium from the
phosphates has become very imperative for the cogent reasons on the grounds of livestock and human health,
environmental, surface and ground-water pollution control and energy sufficiency.
Attempts to recover uranium values from wet-process phosphoric acid have centred on the use of
solvent extraction processes in which the uranium values are transferred to an organic phase, stripped from the
organic phase and subsequently recovered as a uranium precipitate. The uranium-free wet-process phosphoric
acid is then processed conventionally to form various phosphate-containing fertilizer products. Uranium from
phosphate is extracted using a mixture of di(2-ethylhexyl) phosphoric acid (DEPA) and tri-octylphosphine oxide
(TOPO) dissolved in an organic diluent. This extraction mixture is known to have a high affinity for uranium in
the hexavalent oxidation state by using H2O4 oxidation agent. Uranium extracted as yellow cake (U3O8) and the
phosphoric acid free of uranium is recovered for fertilizer production for food security. The gypsum is also of
economic importance.
For Nigeria to join the League of Nations such as USA, Canada, Belgium, Syria, Israel, Taiwan, Egypt,
Morocco, etc. that have achieved energy security, the following far-reaching recommendations are proffered:
(a) That basic legal framework should be set up for the comprehensive extraction of uranium from phosphates.
(b) That the existing fertilizers in the country should be assessed to ascertain their uranium concentration.
(c) That necessary policy should be developed to mitigate possible environmental pollution and contamination
from uranium in farmlands, surface and underground water systems.
(d) That necessary publicity and enlightenment/awareness campaigns involving all stakeholders with respect to
the comprehensive extraction of uranium from phosphates before they are used for fertilizer production
should be carried out.
Towards a Win-Win Scenario in National…
www.ijesi.org 30 | Page
REFERENCES
[1]. Adediran, J. A. and Sobulo, R. A., 1998. Agronomic evaluation of phosphate fertilizers developed from Sokoto rock phosphate
in Nigeria. Communication in Soil Science and Plant Analysis vol. 29, pp. 2415-2428.
[2]. Adegoke, S.O., Ajayi, J.A., Rahman, M.A. and Nehikhare, J.I., 1991. Fertilizer raw material situation in Nigeria. In: Anonymous
(Ed.), Proceedings of the National Organic Fertilizers Seminar held at Kaduna, March 26-27, Federal Ministry of Agriculture, pp.
51-66.
[3]. Adesanwo, O.O., Dunlevey, J.N., Adetunji, M.T., Adesanwo, J.K., Diattas, and Osiname, O.A., 2010. Geochemistry and
mineralogy of Ogun phosphate rock. African J. Environ. Sci. Techn.vol. 4, no. 10, pp. 698-708. Available at
http://www.academic journals.org/AJEST.
[4]. Akinrinde, E.A. and Obigbesan, G.O., 2006. Benefits of phosphate rocks in crop production: Experience in benchmark tropical
soil areas in Nigeria. J. Biol. Sci. vol. 6 no. 6, pp. 999-1004.
[5]. Etu-Efeotor, J.O., 1998. A review of the mineral resources of Sokoto basin, northwest Nigeria. Journal of Mining and Geology,
vol. 38, no. 2, pp. 171-180.
[6]. Hanon, M., 1990. Notice explicative sur la carte geologique de L‟Ader Doutchi. Ministere des Mines et de Recherches
Geologique et Minieres, Niamey, Niger, 36 pp.
[7]. IAEA, 2004. Recent developments in uranium resources and production with emphasis on in-situ leaching mining. Proceedings
of a technical meeting organized by IAEA in cooperation with OECD Nuclear Energy, the Bureau of Geology, and China
National Nuclear Corporation held in Beijing, 18-23 September, 2002, IAEA-TECDOC-1396, Vienna, 332 pp.
[8]. Kogbe, C.A., 19972. Geology of the Upper Cretaceous and Lower Tertiary sediments of the Nigerian sector of the Illummeden
Basin (West Africa), Geol. Rdsch. vol. 62, pp. 197-211.
[9]. Kogbe, C.A., 19976. Outline of the geology of the Illummeden Basin in North-Western Nigeria. In: Kogbe, C.A. (Ed.), Geology
of Nigeria. Elizabethan Publ. Co., Surulere (Lagos), Nigeria, pp. 331-343.
[10]. Magellan, 1992. Nigeria Atlas: Maps and Online Resources. Available at www.infoplease.com/atlas/country/nigeria.html.
[11]. McClellan, G.H. and Notholt, A.J.G., 1986. Phosphate deposits of sub-Sahara Africa. In: Mokwunye, A.U. and Vlek, P.L.G.
(eds.). Management of nitrogen and phosphorus fertilizers in sub-Sahara Africa. Martinus Nijhoff, Dordretch, Netherland, pp.
173-224.
[12]. Ministry of Solid minerals Development, 2000. An inventory of solid minerals potentials of Nigeria. Prospectus for Investors, 15
pp.
[13]. NIPC, 2009. Rich deposits of phosphate rock found in Northern Nigeria. Nigerian Investment Promotion Council (NIPC) web
publ., April 22, 2009. Available in www.tradeinvestnigeria.com/investment_opportunities/183759.htm
[14]. Ogunleye, P.O., Mayaki, M.C. and Amapu, I.Y., 2002. Radioactivity and heavy metal composition of Nigerian phosphate rocks:
possible environment implications. J. Environ. Radioactivity vol. 62, pp. 39-48.
[15]. Ojo, O.D., 2003. Growth, development and yield of amaranth (amaranthus cruentus L.) varieties in response to different sources
of phosphorus. Ph.D. dissertation, University of Ibadan, Nigeria, 300 pp.
[16]. Okosun, E.A., 1997. The potential application of Sokoto phosphate for the manufacture of fertilizer. Journal of Agricultural
Technology, vol. 5, no. 2, pp. 59-64.
[17]. Saturday Punch, 2013. Nigerians lament drop in power generation. Nigerian newspaper issued June 29, 2013, vol. 7182, no.
1682, p. 47. Available at http://www.punchng.com/feature/power-talkback/nigerians-lament-drop-in-power-generation/.
[18]. Russ, W., 1924. The phosphate deposits of Abeokuta Province. Geol. Surv. Nigeria, Bull. 7, 43 pp.
[19]. Sobulo, R.A., 1994. Final report on agro-mineral project. Raw Materials Research and Development Council and National
Fertilizer Company of Nigeria, Port Harcourt, Nigeria.
[20]. Tian, G. and Kolawole, G.O., 1999. Comparison of various plant residues as phosphate rock amendment on Savannah soils of
West Africa, vol. 27, pp. 571-583.
[21]. Van Straaten, P., 2002. Rocks for crops: Agro-minerals of sub-Saharan Africa. ICRAF, Nairobi, Kenya, 338 pp.
[22]. Wikipedia, 2012. Nigeria. Available at https://en.wikipedia.org/wiki/Nigeria.
[23]. World Nuclear Association, 2012. World nuclear industry status report: The independent assessment of nuclear development in
the world. Available in www.worlsnuclearreport.org/the-world-nuclear-industry-status.html.
[24]. World Nuclear Association, 2013. The economics of nuclear power. Available in www.world-nuclear.org/info/economic-
aspects/economic-of-nuclear-power/.
[25]. Wright, J.B., Hastings, D.A., Jones, W.B. and Williams, H.R., 1985. Geology and mineral resources of West Africa. Allen and
Unwin, London, UK, 187 pp.

Contenu connexe

En vedette

Síndrome de-asperger guía-para-los-profesionales-de-la-educación
Síndrome de-asperger guía-para-los-profesionales-de-la-educaciónSíndrome de-asperger guía-para-los-profesionales-de-la-educación
Síndrome de-asperger guía-para-los-profesionales-de-la-educaciónAitor_Lopez
 
Ampliación del Estudio Diagnóstico sobre la Formación Académica de Personas d...
Ampliación del Estudio Diagnóstico sobre la Formación Académica de Personas d...Ampliación del Estudio Diagnóstico sobre la Formación Académica de Personas d...
Ampliación del Estudio Diagnóstico sobre la Formación Académica de Personas d...Asociacion Kosmopolis
 
ArchiSurance Case Study
ArchiSurance Case StudyArchiSurance Case Study
ArchiSurance Case StudyIver Band
 
Getting started in transmedia
Getting started in transmedia Getting started in transmedia
Getting started in transmedia N. Bilge Ispir
 
Causasyconsecuenciasdelosaccidenteslaborales cortabien-130914105229-phpapp01
Causasyconsecuenciasdelosaccidenteslaborales cortabien-130914105229-phpapp01Causasyconsecuenciasdelosaccidenteslaborales cortabien-130914105229-phpapp01
Causasyconsecuenciasdelosaccidenteslaborales cortabien-130914105229-phpapp01Rogmer Guevara
 
Libro blanco atencion temprana
Libro blanco atencion temprana Libro blanco atencion temprana
Libro blanco atencion temprana Marta Montoro
 
Libro blanco atencion temprana
Libro blanco atencion tempranaLibro blanco atencion temprana
Libro blanco atencion tempranaMarta Montoro
 
Discapacidad visual y esquema corporal
Discapacidad visual y esquema corporalDiscapacidad visual y esquema corporal
Discapacidad visual y esquema corporalzurdo2748
 
Cloud Adoption - Journey of IT Service Management
Cloud Adoption - Journey of IT Service ManagementCloud Adoption - Journey of IT Service Management
Cloud Adoption - Journey of IT Service ManagementCaroline Hsieh
 
International Journal of Business and Management Invention (IJBMI)
International Journal of Business and Management Invention (IJBMI)International Journal of Business and Management Invention (IJBMI)
International Journal of Business and Management Invention (IJBMI)inventionjournals
 
Elaboración de material didáctico maría vede
Elaboración de material didáctico maría vedeElaboración de material didáctico maría vede
Elaboración de material didáctico maría vedemariavede
 
32 ways to make your blog suck less
32 ways to make your blog suck less32 ways to make your blog suck less
32 ways to make your blog suck lessScott Hanselman
 

En vedette (18)

USP-D Managemententwicklung in China
USP-D Managemententwicklung in ChinaUSP-D Managemententwicklung in China
USP-D Managemententwicklung in China
 
Analisis tecnico
Analisis tecnicoAnalisis tecnico
Analisis tecnico
 
Síndrome de-asperger guía-para-los-profesionales-de-la-educación
Síndrome de-asperger guía-para-los-profesionales-de-la-educaciónSíndrome de-asperger guía-para-los-profesionales-de-la-educación
Síndrome de-asperger guía-para-los-profesionales-de-la-educación
 
Guia tratamiento tea
Guia tratamiento teaGuia tratamiento tea
Guia tratamiento tea
 
Isocentre Help Forum
Isocentre Help   ForumIsocentre Help   Forum
Isocentre Help Forum
 
Ampliación del Estudio Diagnóstico sobre la Formación Académica de Personas d...
Ampliación del Estudio Diagnóstico sobre la Formación Académica de Personas d...Ampliación del Estudio Diagnóstico sobre la Formación Académica de Personas d...
Ampliación del Estudio Diagnóstico sobre la Formación Académica de Personas d...
 
Iso17799
Iso17799Iso17799
Iso17799
 
ArchiSurance Case Study
ArchiSurance Case StudyArchiSurance Case Study
ArchiSurance Case Study
 
Getting started in transmedia
Getting started in transmedia Getting started in transmedia
Getting started in transmedia
 
Causasyconsecuenciasdelosaccidenteslaborales cortabien-130914105229-phpapp01
Causasyconsecuenciasdelosaccidenteslaborales cortabien-130914105229-phpapp01Causasyconsecuenciasdelosaccidenteslaborales cortabien-130914105229-phpapp01
Causasyconsecuenciasdelosaccidenteslaborales cortabien-130914105229-phpapp01
 
Libro blanco atencion temprana
Libro blanco atencion temprana Libro blanco atencion temprana
Libro blanco atencion temprana
 
Libro blanco atencion temprana
Libro blanco atencion tempranaLibro blanco atencion temprana
Libro blanco atencion temprana
 
Discapacidad visual y esquema corporal
Discapacidad visual y esquema corporalDiscapacidad visual y esquema corporal
Discapacidad visual y esquema corporal
 
Cloud Adoption - Journey of IT Service Management
Cloud Adoption - Journey of IT Service ManagementCloud Adoption - Journey of IT Service Management
Cloud Adoption - Journey of IT Service Management
 
International Journal of Business and Management Invention (IJBMI)
International Journal of Business and Management Invention (IJBMI)International Journal of Business and Management Invention (IJBMI)
International Journal of Business and Management Invention (IJBMI)
 
Elaboración de material didáctico maría vede
Elaboración de material didáctico maría vedeElaboración de material didáctico maría vede
Elaboración de material didáctico maría vede
 
Cap6
Cap6Cap6
Cap6
 
32 ways to make your blog suck less
32 ways to make your blog suck less32 ways to make your blog suck less
32 ways to make your blog suck less
 

Similaire à Towards a Win-Win Scenario in National Energy and Food Security

Iron Ore Deposits in Agbaja Area by Olatinpo O.A.
Iron Ore Deposits in Agbaja Area by Olatinpo O.A.Iron Ore Deposits in Agbaja Area by Olatinpo O.A.
Iron Ore Deposits in Agbaja Area by Olatinpo O.A.Olusegun Ayobami Olatinpo
 
Application of UNFC in Nigeria: lessons learned, experiences and proposals
Application of UNFC in Nigeria: lessons learned, experiences and proposalsApplication of UNFC in Nigeria: lessons learned, experiences and proposals
Application of UNFC in Nigeria: lessons learned, experiences and proposalsAfrican Minerals Development Centre
 
Geology and groundwater quality assessment of ido osi area, southwestern nigeria
Geology and groundwater quality assessment of ido osi area, southwestern nigeriaGeology and groundwater quality assessment of ido osi area, southwestern nigeria
Geology and groundwater quality assessment of ido osi area, southwestern nigeriaAlexander Decker
 
Keys to paleogeographical interpretation of the enugu and the mamu formations...
Keys to paleogeographical interpretation of the enugu and the mamu formations...Keys to paleogeographical interpretation of the enugu and the mamu formations...
Keys to paleogeographical interpretation of the enugu and the mamu formations...Alexander Decker
 
Geochemistry and petrogenesis of gneisses around kafur yari bori-tsiga area w...
Geochemistry and petrogenesis of gneisses around kafur yari bori-tsiga area w...Geochemistry and petrogenesis of gneisses around kafur yari bori-tsiga area w...
Geochemistry and petrogenesis of gneisses around kafur yari bori-tsiga area w...Alexander Decker
 
Bioaccumulation of heavy metals in african red snapper (lutjanus agennes) and...
Bioaccumulation of heavy metals in african red snapper (lutjanus agennes) and...Bioaccumulation of heavy metals in african red snapper (lutjanus agennes) and...
Bioaccumulation of heavy metals in african red snapper (lutjanus agennes) and...Alexander Decker
 
Star Paper 5 (1)
Star Paper 5 (1)Star Paper 5 (1)
Star Paper 5 (1)Ukwa Uche
 
Mineralogy and geochemical appraisal of paleo redox indicators in maastrichti...
Mineralogy and geochemical appraisal of paleo redox indicators in maastrichti...Mineralogy and geochemical appraisal of paleo redox indicators in maastrichti...
Mineralogy and geochemical appraisal of paleo redox indicators in maastrichti...Alexander Decker
 
paleoenvironmental reconstruction of the cental swamp depobelt niger delta ba...
paleoenvironmental reconstruction of the cental swamp depobelt niger delta ba...paleoenvironmental reconstruction of the cental swamp depobelt niger delta ba...
paleoenvironmental reconstruction of the cental swamp depobelt niger delta ba...AkpatiChidinmachuks
 
Oil exploration and spillage in the niger delta of nigeria
Oil exploration and spillage in the niger delta of nigeriaOil exploration and spillage in the niger delta of nigeria
Oil exploration and spillage in the niger delta of nigeriaAlexander Decker
 
Effects of Baryte Mining on Water Quality in Azara-Awe Local Government Area...
Effects of Baryte Mining on Water Quality in Azara-Awe Local  Government Area...Effects of Baryte Mining on Water Quality in Azara-Awe Local  Government Area...
Effects of Baryte Mining on Water Quality in Azara-Awe Local Government Area...Sryahwa Publications
 
Group 4 presentation 2019
Group 4 presentation 2019Group 4 presentation 2019
Group 4 presentation 2019AkeemAdetola
 
Evidences of metasomatic processes during the emplacement of pan african gran...
Evidences of metasomatic processes during the emplacement of pan african gran...Evidences of metasomatic processes during the emplacement of pan african gran...
Evidences of metasomatic processes during the emplacement of pan african gran...Alexander Decker
 
Jalaludin study geothermal djibouti unu gtp-sc-11-46
Jalaludin study geothermal djibouti unu gtp-sc-11-46Jalaludin study geothermal djibouti unu gtp-sc-11-46
Jalaludin study geothermal djibouti unu gtp-sc-11-46Parti Djibouti
 
Petrographic evaluation of rocks around Arikya and its environs, North Centra...
Petrographic evaluation of rocks around Arikya and its environs, North Centra...Petrographic evaluation of rocks around Arikya and its environs, North Centra...
Petrographic evaluation of rocks around Arikya and its environs, North Centra...Premier Publishers
 
Integrated Geophysical Studies Over Parts of Central Cross River State for th...
Integrated Geophysical Studies Over Parts of Central Cross River State for th...Integrated Geophysical Studies Over Parts of Central Cross River State for th...
Integrated Geophysical Studies Over Parts of Central Cross River State for th...iosrjce
 
Jmestn42351367
Jmestn42351367Jmestn42351367
Jmestn42351367David Alao
 
Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...
Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...
Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...Premier Publishers
 
Source rock maturation studies using vitrinite reflectance and geothermal dat...
Source rock maturation studies using vitrinite reflectance and geothermal dat...Source rock maturation studies using vitrinite reflectance and geothermal dat...
Source rock maturation studies using vitrinite reflectance and geothermal dat...Premier Publishers
 

Similaire à Towards a Win-Win Scenario in National Energy and Food Security (20)

Iron Ore Deposits in Agbaja Area by Olatinpo O.A.
Iron Ore Deposits in Agbaja Area by Olatinpo O.A.Iron Ore Deposits in Agbaja Area by Olatinpo O.A.
Iron Ore Deposits in Agbaja Area by Olatinpo O.A.
 
The Influence of Vertical Thermal and Dissolved Oxygen (DO) Trend on Some Fis...
The Influence of Vertical Thermal and Dissolved Oxygen (DO) Trend on Some Fis...The Influence of Vertical Thermal and Dissolved Oxygen (DO) Trend on Some Fis...
The Influence of Vertical Thermal and Dissolved Oxygen (DO) Trend on Some Fis...
 
Application of UNFC in Nigeria: lessons learned, experiences and proposals
Application of UNFC in Nigeria: lessons learned, experiences and proposalsApplication of UNFC in Nigeria: lessons learned, experiences and proposals
Application of UNFC in Nigeria: lessons learned, experiences and proposals
 
Geology and groundwater quality assessment of ido osi area, southwestern nigeria
Geology and groundwater quality assessment of ido osi area, southwestern nigeriaGeology and groundwater quality assessment of ido osi area, southwestern nigeria
Geology and groundwater quality assessment of ido osi area, southwestern nigeria
 
Keys to paleogeographical interpretation of the enugu and the mamu formations...
Keys to paleogeographical interpretation of the enugu and the mamu formations...Keys to paleogeographical interpretation of the enugu and the mamu formations...
Keys to paleogeographical interpretation of the enugu and the mamu formations...
 
Geochemistry and petrogenesis of gneisses around kafur yari bori-tsiga area w...
Geochemistry and petrogenesis of gneisses around kafur yari bori-tsiga area w...Geochemistry and petrogenesis of gneisses around kafur yari bori-tsiga area w...
Geochemistry and petrogenesis of gneisses around kafur yari bori-tsiga area w...
 
Bioaccumulation of heavy metals in african red snapper (lutjanus agennes) and...
Bioaccumulation of heavy metals in african red snapper (lutjanus agennes) and...Bioaccumulation of heavy metals in african red snapper (lutjanus agennes) and...
Bioaccumulation of heavy metals in african red snapper (lutjanus agennes) and...
 
Star Paper 5 (1)
Star Paper 5 (1)Star Paper 5 (1)
Star Paper 5 (1)
 
Mineralogy and geochemical appraisal of paleo redox indicators in maastrichti...
Mineralogy and geochemical appraisal of paleo redox indicators in maastrichti...Mineralogy and geochemical appraisal of paleo redox indicators in maastrichti...
Mineralogy and geochemical appraisal of paleo redox indicators in maastrichti...
 
paleoenvironmental reconstruction of the cental swamp depobelt niger delta ba...
paleoenvironmental reconstruction of the cental swamp depobelt niger delta ba...paleoenvironmental reconstruction of the cental swamp depobelt niger delta ba...
paleoenvironmental reconstruction of the cental swamp depobelt niger delta ba...
 
Oil exploration and spillage in the niger delta of nigeria
Oil exploration and spillage in the niger delta of nigeriaOil exploration and spillage in the niger delta of nigeria
Oil exploration and spillage in the niger delta of nigeria
 
Effects of Baryte Mining on Water Quality in Azara-Awe Local Government Area...
Effects of Baryte Mining on Water Quality in Azara-Awe Local  Government Area...Effects of Baryte Mining on Water Quality in Azara-Awe Local  Government Area...
Effects of Baryte Mining on Water Quality in Azara-Awe Local Government Area...
 
Group 4 presentation 2019
Group 4 presentation 2019Group 4 presentation 2019
Group 4 presentation 2019
 
Evidences of metasomatic processes during the emplacement of pan african gran...
Evidences of metasomatic processes during the emplacement of pan african gran...Evidences of metasomatic processes during the emplacement of pan african gran...
Evidences of metasomatic processes during the emplacement of pan african gran...
 
Jalaludin study geothermal djibouti unu gtp-sc-11-46
Jalaludin study geothermal djibouti unu gtp-sc-11-46Jalaludin study geothermal djibouti unu gtp-sc-11-46
Jalaludin study geothermal djibouti unu gtp-sc-11-46
 
Petrographic evaluation of rocks around Arikya and its environs, North Centra...
Petrographic evaluation of rocks around Arikya and its environs, North Centra...Petrographic evaluation of rocks around Arikya and its environs, North Centra...
Petrographic evaluation of rocks around Arikya and its environs, North Centra...
 
Integrated Geophysical Studies Over Parts of Central Cross River State for th...
Integrated Geophysical Studies Over Parts of Central Cross River State for th...Integrated Geophysical Studies Over Parts of Central Cross River State for th...
Integrated Geophysical Studies Over Parts of Central Cross River State for th...
 
Jmestn42351367
Jmestn42351367Jmestn42351367
Jmestn42351367
 
Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...
Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...
Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...
 
Source rock maturation studies using vitrinite reflectance and geothermal dat...
Source rock maturation studies using vitrinite reflectance and geothermal dat...Source rock maturation studies using vitrinite reflectance and geothermal dat...
Source rock maturation studies using vitrinite reflectance and geothermal dat...
 

Dernier

The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024christinemoorman
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?Olivia Kresic
 
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...lizamodels9
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607dollysharma2066
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...ictsugar
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Pereraictsugar
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMintel Group
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03DallasHaselhorst
 
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In.../:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...lizamodels9
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailAriel592675
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCRashishs7044
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCRashishs7044
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCRashishs7044
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyotictsugar
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...lizamodels9
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 

Dernier (20)

The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?
 
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Perera
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 Edition
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03
 
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In.../:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detail
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyot
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 

Towards a Win-Win Scenario in National Energy and Food Security

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 2 Issue 7 ǁ July. 2013 ǁ PP.25-30 www.ijesi.org 25 | Page Towards a Win-Win Scenario in National Energy and Food Security: The Role of Comprehensive Extraction of Uranium from Phosphates S. O. Obaje Nigerian Geological Survey Agency, P.M.B. 1423, Ilorin, Kwara State, Nigeria ABSTRACT: The main aim of this paper is to draw policy attention to the comprehensive extraction of uranium from phosphates so as to achieve a win-win scenario in energy and food security in Nigeria. Nigeria is located on latitude 100 North and longitude 80 East surrounded in the north by Niger and Chad and in the east by Cameroun and in the west by Benin Republic. The Nigerian, Sokoto phosphate rock contains significant quantities 65 ppm of uranium that meets the minimum international benchmark for uranium extraction from phosphates and phosphogypsum. Nigeria’s current energy generation is 2,987.6 MW using hydropower and gas plants. However, for Nigeria to meet her energy security need, the comprehensive extraction of uranium from phosphates is imperative. This is because the recovered uranium can be used as nuclear fuel to generate energy for national development, besides other benefits such as environmental/health, social and economic impact, respectively. It has been confirmed that the safest and greenest source of energy generation is nuclear energy. KEYWORDS: National energy security, food security, uranium extraction, phosphates I. INTRODUCTION Energy and food security via the comprehensive extraction of uranium from phosphates in Nigeria is the focal aim of this paper. Nigeria is located within the Equator and the Tropic of Cancer on latitude 100 North and longitude 80 East. Nigeria is surrounded in the north by Niger and Chad and in the east by Cameroun and in the west by Benin Republic (Fig. 1). It occupies an area of 923,768 m2 made up of landmass of 910,768 m2 and water area of 13,000 m2 . The Nigerian coastline is 853 km. The seat of government is Abuja. Nigerian has stable democratic system of government and the present President of the country is Dr. Goodluck Ebele Jonathan, GCFR. According to Wikipedia (2012), Nigeria‟s population is 170 million people with three major tribes, namely: Hausa/Fulani, Yoruba and Ibo. The official business language is English and the currency is Naira (N) which has an exchange rate of N159.98 to US Dollar ($1) as at June 2nd , 2013. The major religions practised in Nigeria are Christianity and Islam, while there are minor adherents of indigenous religions, Hinduism, Buddhism, Baha‟i and other faiths. Nigeria is a tourism and investment destination despite the recent security challenges. Nigeria has 4,660 km of standard/narrow gauges rail network across the entire country. Other modes of transportation are road network of 195,000 km, sea, inland water ways and air transportation. Nigeria has several international sea-ports (Lagos, Port Harcourt, Warri, Calabar, Onne and Sapele) and international air-ports (Abuja, Lagos, Kano, Port Harcourt, Enugu, Kaduna, Maiduguri, Yola, Calabar, Sokoto, Owerri, Jos and Ilorin) and local air-ports (Gombe, Minna, Yola, etc). The temperature ranges from 22 – 360 c. There is rain forest in the South and savannah vegetation in the Northern part of the country (Wikipedia, 2012). II. GEOLOGICAL SETTING OF NIGERIA The geology of Nigeria is composed of 4 main groups, namely: the Basement Complex, Younger Granites, Sedimentary series and Tertiary-Recent Volcanic rocks. The Basement Complex is made up of the migmatite-gnesis complex, pegmatites, the schist belts composed of metasedimentary and metavolcanic rocks and the pan-African Granitoids comprising the Older Granites and the associated charnockitic rocks. The Younger Granites are of Jurassic age and they are found as ring-complex outcrops within the Basement Complex areas. The Younger Granites are rich in minerals such as columbite, cassiterite, etc. The sedimentary series are made up of seven basins, namely: Niger Delta, Dahomey, Anambra, Bida, Benue Trough related to the opening of the Gulf of the Guinea and the Sokoto (Illummeden) and Chad basins are parts of larger basins that extend beyond Nigeria.
  • 2. Towards a Win-Win Scenario in National… www.ijesi.org 26 | Page The Tertiary-Recent volcanic rocks are found in Biu and Longuda plateaux, Jos Plateau and the Benue Trough. Though phosphate occurrences in Nigeria have been reported in four States such as Sokoto, Ogun, Edo and Imo (Tian and Kolawole, 1999; Ojo, 2003), in this paper the focus will be placed only on the first two mentioned occurrences because only the phosphate occurrences in Sokoto and Ogun States are in commercial quantities (Akinrinde and Obigbesan, 2006). 2.1 Phosphate Deposits in Sokoto and Ogun States According to van Straaten (2002), the five major types of phosphate resources in the world are marine phosphates, igneous phosphates, metamorphic phosphates, biogenic and phosphates from weathering. Sedimentary, marine phosphate rock deposits provide 75% of the world‟s phosphate resources, while 15 – 20 % come from igneous and weathered deposits and only 1 – 2% from biogenic (mainly from bird and bat guano accumulations) resources (van Straaten, 2002). In Nigeria, the phosphate deposits are of the sedimentary, marine origin. In Sokoto State, phosphates of Paleocene sedimentary deposits occur in the Dange Formation. The Dange Formation also contains gysiferous shales and phosphate nodules (Kogbe, 1972, 1976). The overlying Paleocene Kalambaina and Gamba Formations are dominated by limestones and laminated („paper‟) shales. A horizon with phosphate pellets within the Gamba Formation (Kogbe, 1976, quoted by van Straaten, 2002) is probably equivalent to the phosphate-containing marine sequence in neighbouring Niger and Mali (Wright et al., 1985, Hanon, 1990). The exploration work by the Geological Survey of Nigeria (now called Nigerian Geological Survey Agency) also established the occurrence of phosphate nodules and pellets in Dange, Gidan Bauchi, Illela, Gada and Kalambaina (Ogunleye et al., 2002). The thickness of phosphate deposits ranges from 1 – 5 m in the Dukamaje Formation and the phospatic nodules/pellets occur in sizes of 0.1 – 1 cm with varying concentration in different locations (Etu-Efeotor, 1998; Okosun, 1997, quoted in Ogunleye, 2002). The Sokoto phosphates have an estimated reserves of 5 – 10 million tonnes (Akinrinde and Obigbesan, 2006). According to van Straaten (2002), Lower Eocene sedimentary phosphates have been known from south-western Nigeria since 1921 (Russ, 1924, quoted in McClellan and Notholt, 1986). Phosphate rocks are found in Oja-Odan and Ifo areas of Ogun State. Detailed work is needed to establish the actual reserves of the deposits. However, there are several conflicting reserve figures for the same deposits. Akinrinde and Obigbesan (2006) quoted 0.5 million tonnes, while McClellan and Notholt (1986) gave values of 1 million tonnes and the Ministry of Solid Minerals Development (2000) quoted 40 million tonnes as the reserves for the deposits. The phosphate rock deposits in Ogun State occur in nodules, granular and vesicular forms (Sobulo, 1994; Adediran and Sobulo, 1998; Adegoke et al., 1991; Akinrinde and Obigbesan, 2006). III. COMPARATIVE GEOCHEMISTRY OF NIGERIAN PHOSPHATES According to Akinrinde and Obigbesan (2006), Sokoto phosphates have calculated average percentage of 30.5 – 36.6% P2O5, while the Ogun phosphates have 26.3 – 32.0% P2O5. The above average values for the Nigerian phosphates compare favourably with the Togo phosphate which have the values of 28.0 – 36.6% P2O5 (Akinrinde and Obigbesan, 2006) and imported to feed the superphosphate fertilizer plant in Kaduna, Nigeria (Ogunleye et al., 2002). Table 1 shows the oxide percentages of the Sokoto and Ogun phosphates. On the other hand, Table 2 indicates the comparative geochemical analysis of trace elements of the Nigerian and Togo phosphates. Plate 1 indicates a photograph of uranium yellow cake (U3O8).
  • 3. Towards a Win-Win Scenario in National… www.ijesi.org 27 | Page Table 1. Oxide Weight Percentages of Sokoto and Ogun Phosphate Rock Deposits (Source: 1 Akinrinde and Obigbesan, 2006; 2 NIPC, 2009) 1 SOKOTO 2 SOKOTO 1 OGUN (%) P2O5 32.50 36.25 30.50 CaO 44.23 52.30 19.23 F - 3.84 - CaCO3 79.0 - 34.30 MgO 0.95 - 1.35 Fe2O3 3.19 1.50 7.28 Al2O3 1.79 1.50 6.91 SiO2 4.20 3.44 6.68 H2O - 0.75 - Solubility in 2% citric acid 45.55 - 38.42 Cd (mg Kg-1 ) 0.63 - 9.70 Table 2. Trace Elements in PPM of Nigerian and Togo Phosphate Rock Deposits (Source: 1 Adesanwo et al., 2010; 2 Ogunleye et al., 2002) ELEMENT 2 SOKOTO (MEAN) 1 OGUN (MEAN) 2 TOGO (MEAN) Cr 28.00 613.75 75.00 V 65.00 330.50 68.00 Ba 397.00 327.75 302.00 U 65.00 22.50 72.00 Th 3.20 9.25 17.40 Zn 59.00 126.00 143.00 Sc 11.80 12.00 11.60 Zr 810.00 89.75 765.00 3.1 Suitability of Nigerian Phosphates for Fertilizer Production The Nigerian phosphates have been proven to have very high reactivity, thus making it very suitable as fertilizer material even for direct application to the soil to improve soil fertility and higher crop productivity (van Straaten, 2002; Akinrinde and Obigbesan, 2006; Okosun, 1997). However, in view of the high content of uranium especially in the Sokoto phosphates, the need to comprehensively extract out the uranium from the phosphates has become very imperative for the cogent reasons on the grounds of livestock and human health, environmental, surface and ground-water pollution control and energy sufficiency. 3.2 Fertilizer Production Phosphate rock (phosphorite) is a marine sedimentary rock which contains 18 – 40% P2O5, as well as some uranium and all its decay products, often 65 to 200 ppm U, and sometimes up to 800 ppm. The main mineral in the phosphate rock is apatite, and most commonly, fluorapatite - Ca5(PO4)3F or Ca10(PO4)6(F,OH)2. This is insoluble, so cannot directly be used as a fertilizer (unless in very acidic soils) so must first be processed. This is normally in a wet process phosphoric acid (WPA) plant where it is first dissolved in sulphuric acid. About 2 – 4% fluorine is usually present. When phosphate rock is treated with sulphuric acid in sub-stoichiometric quantity, normal superphosphate is formed. If more sulphuric acid is added, a mixture of phosphoric acid and gypsum (calcium sulphate) called “phosphogypsum” is obtained. After the gypsum is filtered out, the resultant phosphoric acid can be treated to recover uranium (World Nuclear Association, 2012). The basic reaction is:
  • 4. Towards a Win-Win Scenario in National… www.ijesi.org 28 | Page Ca3(PO4)2 + 3H2SO4 + 6H2O ==> 2H3PO4 + 3CaSO4.2H2O - exothermic The process used produces different varieties of calcium sulphate such as anhydrous: CaSO4, hemihydrate: CaSO4.½H2O or dihydrate: CaSO4.2H2O. The Phosphoric acid is treated with ammonia produced from natural gas (Haber process) to produce diammonium phosphate or DAP as final product, which is adjusted to industry standard composition of 18-40-0 in N-P-K. 2NH3 + H3PO4  (NH4)2HPO4 IV. EXTRACTION OF URANIUM FROM PHOSPHATES Phosphate rock is digested with sulphuric acid to produce a phosphoric acid solution (called wet process phosphoric acid) and an insoluble calcium sulphate (gypsum). Sokoto Phosphate rock contains significant quantities 65 ppm of uranium (Ogunleye et al., 2002). Attempts to recover uranium values from wet-process phosphoric acid have centred on the use of solvent extraction processes in which the uranium values are transferred to an organic phase, stripped from the organic phase and subsequently recovered as a uranium precipitate. The uranium-free wet-process phosphoric acid is then processed conventionally to form various phosphate-containing fertilizer products. Uranium from phosphate extraction using a mixture of di(2-ethylhexyl) phosphoric acid (DEPA) and tri-octylphosphine oxide (TOPO) dissolved in an organic diluents have a high affinity for uranium in the hexavalent oxidation state by using H2O4 oxidation agent. Uranium extracted as yellow cake (U3O8) and the phosphoric acid free of uranium is recovered for fertilizer production for food security. The gypsum is also of economic importance. Many countries such as USA, Canada, Belgium, Syria, Israel, Taiwan, Egypt, Morocco, etc. have active process plants for the extraction of uranium from phosphates. The yellow cake is used as nuclear fuel for electricity production. Nigeria has some fertilizer production plants such as the Superphosphate Fertilizer Company located in Kaduna, Fertilizer production at Crystal Talc Limited at Kagara, Niger State, Fertilizer Concentrate Company, Edo State and the National Fertilizer Company of Nigeria (NAFCON), Port Harcourt, Rivers State. Presently, there is no uranium from phosphates extraction plant in Nigeria. 4.1 Why Comprehensive Extraction of Uranium from Phosphates in Nigeria? The comprehensive extraction of uranium from phosphates has three implications, namely: environmental/health, social and economic impact, respectively. Unrecovered uranium in phosphates will eventually pollutes our environments, contaminate our surface and underground water resources and consequently affect human, livestock and plants health. The comprehensive extraction of uranium from phosphates is a social licensing gain via poverty eradication, jobs creation and economic development. The recovered uranium may be used for energy sufficiency and independence. The phosphate freed of uranium will be used for fertilizer production for food security. National prosperity is directly related to energy generation and consumption. Thus improved energy generation coupled with food security will greatly stimulate economic growth and development of the nation. V. DISCUSSION As at December 17, 2013 electricity power, herein referred to as energy generation in Nigeria was 4,349.7 megawatts (MW) but declined to 2,987.6 MW on April 6, 2013 (Saturday Punch, 2013). The drop in energy generation has untold negative economic impact on the people and businesses. In Nigeria, energy is generated via hydropower and gas plants. Other sources of energy generation are wind, solar, petrol, coal, biofuel and nuclear. The safest and greenest source of energy generation is nuclear energy. However, necessary regulatory and safety measures must be engaged to prevent any mishap like the case of the Japan‟s Fukushima Daiichi Nuclear Power Plant accident. US$2 billion Nuclear Power Plant can produce 1,000 MW that can run for 40 years. One kilogram of natural uranium can release about 20,000 times as much energy as the same quantity of coal (World Nuclear Association, 2012, 2013). According to the Saturday Punch (2013), the Late President of Nigeria, Alhaji Musa Yar‟Adua promised to deliver 5000 MW of energy to Nigerians in 2008, but in 2013 Nigeria has not achieved that goal. The author strongly believes that the investment into four to five nuclear power plants will help Nigeria achieve energy security. The uranium in phosphate rock deposits in Nigeria and phosphogysum must be comprehensively recovered for nuclear fuel, while the phosphate freed of uranium may be used for fertilizer production for food security and the gypsum may be used as very useful industrial raw material for cement production and other important uses. Thus, sustainability and sufficiency in Energy and Food Security will become a Win-Win scenario for all stakeholders (Nigerian government, people and environment). It has been established that the
  • 5. Towards a Win-Win Scenario in National… www.ijesi.org 29 | Page cost of nuclear fuel is very minimal (US$40 per Kilogram of U) and so it is very attractive cost savings option for energy security in comparison to other energy generation sources (IAEA, 2004). On the other hand, the absence of the Win-Win Scenario can predicate social unrests, riots, poverty, starvation, terrorism, political collapse, environmental pollution, diseases, etc. VI. CONCLUSION AND RECOMMENDATIONS In Nigeria, the phosphate deposits are of the sedimentary, marine origin. In Sokoto State, phosphates of Paleocene sedimentary deposits occur in the Dange Formation. The exploration work by the Geological Survey of Nigeria (now called Nigerian Geological Survey Agency) also established the occurrence of phosphate nodules and pellets in Dange, Gidan Bauchi, Illela, Gada and Kalambaina (Ogunleye et al., 2002). The thickness of phosphate deposits ranges from 1 – 5 m in the Dukamaje Formation and the phospatic nodules/pellets occur in sizes of 0.1 – 1 cm with varying concentration in different locations (Etu-Efeotor, 1998; Okosun, 1997, quoted in Ogunleye, 2002). The Sokoto phosphates have an estimated reserves of 5 – 10 million tonnes (Akinrinde and Obigbesan, 2006). According to van Straaten (2002), Lower Eocene sedimentary phosphates have been known from south-western Nigeria since 1921 (Russ, 1924, quoted in McClellan and Notholt, 1986). Phosphate rocks are found in Oja-Odan and Ifo areas of Ogun State. Detailed work is needed to establish the actual reserves of the deposits. However, there are several conflicting reserve figures for the same deposits. Akinrinde and Obigbesan (2006) quoted 0.5 million tonnes, while McClellan and Notholt (1986) gave values of 1 million tonnes and the Ministry of Solid Minerals Development (2000) quoted 40 million tonnes as the reserves for the deposits. The phosphate rock deposits in Ogun State occur in nodules, granular and vesicular forms (Sobulo, 1994; Adediran and Sobulo, 1998; Adegoke et al., 1991; Akinrinde and Obigbesan, 2006). According to Akinrinde and Obigbesan (2006), Sokoto phosphates have calculated average percentage of 30.5 – 36.6% P2O5, while the Ogun phosphates have 26.3 – 32.0% P2O5. The above average values for the Nigerian phosphates compare favourably with the Togo phosphate which have the values of 28.0 – 36.6% P2O5 (Akinrinde and Obigbesan, 2006) and imported to feed the superphosphate fertilizer plant in Kaduna, Nigeria (Ogunleye et al, 2002). Comparative geochemical analysis of trace elements of the Nigerian and Togo phosphates indicated that the Nigerian phosphates meet the minimum international benchmark for uranium extraction from phosphates and phosphogypsum. The Nigerian phosphates have been proven to have very high reactivity, thus making it very suitable as fertilizer material even for direct application to the soil to improve soil fertility and higher crop productivity (van Straaten, 2002; Akinrinde and Obigbesan, 2006; Okosun, 1997). However, in view of the high content of uranium especially in the Sokoto phosphates, the need to comprehensively extract out the uranium from the phosphates has become very imperative for the cogent reasons on the grounds of livestock and human health, environmental, surface and ground-water pollution control and energy sufficiency. Attempts to recover uranium values from wet-process phosphoric acid have centred on the use of solvent extraction processes in which the uranium values are transferred to an organic phase, stripped from the organic phase and subsequently recovered as a uranium precipitate. The uranium-free wet-process phosphoric acid is then processed conventionally to form various phosphate-containing fertilizer products. Uranium from phosphate is extracted using a mixture of di(2-ethylhexyl) phosphoric acid (DEPA) and tri-octylphosphine oxide (TOPO) dissolved in an organic diluent. This extraction mixture is known to have a high affinity for uranium in the hexavalent oxidation state by using H2O4 oxidation agent. Uranium extracted as yellow cake (U3O8) and the phosphoric acid free of uranium is recovered for fertilizer production for food security. The gypsum is also of economic importance. For Nigeria to join the League of Nations such as USA, Canada, Belgium, Syria, Israel, Taiwan, Egypt, Morocco, etc. that have achieved energy security, the following far-reaching recommendations are proffered: (a) That basic legal framework should be set up for the comprehensive extraction of uranium from phosphates. (b) That the existing fertilizers in the country should be assessed to ascertain their uranium concentration. (c) That necessary policy should be developed to mitigate possible environmental pollution and contamination from uranium in farmlands, surface and underground water systems. (d) That necessary publicity and enlightenment/awareness campaigns involving all stakeholders with respect to the comprehensive extraction of uranium from phosphates before they are used for fertilizer production should be carried out.
  • 6. Towards a Win-Win Scenario in National… www.ijesi.org 30 | Page REFERENCES [1]. Adediran, J. A. and Sobulo, R. A., 1998. Agronomic evaluation of phosphate fertilizers developed from Sokoto rock phosphate in Nigeria. Communication in Soil Science and Plant Analysis vol. 29, pp. 2415-2428. [2]. Adegoke, S.O., Ajayi, J.A., Rahman, M.A. and Nehikhare, J.I., 1991. Fertilizer raw material situation in Nigeria. In: Anonymous (Ed.), Proceedings of the National Organic Fertilizers Seminar held at Kaduna, March 26-27, Federal Ministry of Agriculture, pp. 51-66. [3]. Adesanwo, O.O., Dunlevey, J.N., Adetunji, M.T., Adesanwo, J.K., Diattas, and Osiname, O.A., 2010. Geochemistry and mineralogy of Ogun phosphate rock. African J. Environ. Sci. Techn.vol. 4, no. 10, pp. 698-708. Available at http://www.academic journals.org/AJEST. [4]. Akinrinde, E.A. and Obigbesan, G.O., 2006. Benefits of phosphate rocks in crop production: Experience in benchmark tropical soil areas in Nigeria. J. Biol. Sci. vol. 6 no. 6, pp. 999-1004. [5]. Etu-Efeotor, J.O., 1998. A review of the mineral resources of Sokoto basin, northwest Nigeria. Journal of Mining and Geology, vol. 38, no. 2, pp. 171-180. [6]. Hanon, M., 1990. Notice explicative sur la carte geologique de L‟Ader Doutchi. Ministere des Mines et de Recherches Geologique et Minieres, Niamey, Niger, 36 pp. [7]. IAEA, 2004. Recent developments in uranium resources and production with emphasis on in-situ leaching mining. Proceedings of a technical meeting organized by IAEA in cooperation with OECD Nuclear Energy, the Bureau of Geology, and China National Nuclear Corporation held in Beijing, 18-23 September, 2002, IAEA-TECDOC-1396, Vienna, 332 pp. [8]. Kogbe, C.A., 19972. Geology of the Upper Cretaceous and Lower Tertiary sediments of the Nigerian sector of the Illummeden Basin (West Africa), Geol. Rdsch. vol. 62, pp. 197-211. [9]. Kogbe, C.A., 19976. Outline of the geology of the Illummeden Basin in North-Western Nigeria. In: Kogbe, C.A. (Ed.), Geology of Nigeria. Elizabethan Publ. Co., Surulere (Lagos), Nigeria, pp. 331-343. [10]. Magellan, 1992. Nigeria Atlas: Maps and Online Resources. Available at www.infoplease.com/atlas/country/nigeria.html. [11]. McClellan, G.H. and Notholt, A.J.G., 1986. Phosphate deposits of sub-Sahara Africa. In: Mokwunye, A.U. and Vlek, P.L.G. (eds.). Management of nitrogen and phosphorus fertilizers in sub-Sahara Africa. Martinus Nijhoff, Dordretch, Netherland, pp. 173-224. [12]. Ministry of Solid minerals Development, 2000. An inventory of solid minerals potentials of Nigeria. Prospectus for Investors, 15 pp. [13]. NIPC, 2009. Rich deposits of phosphate rock found in Northern Nigeria. Nigerian Investment Promotion Council (NIPC) web publ., April 22, 2009. Available in www.tradeinvestnigeria.com/investment_opportunities/183759.htm [14]. Ogunleye, P.O., Mayaki, M.C. and Amapu, I.Y., 2002. Radioactivity and heavy metal composition of Nigerian phosphate rocks: possible environment implications. J. Environ. Radioactivity vol. 62, pp. 39-48. [15]. Ojo, O.D., 2003. Growth, development and yield of amaranth (amaranthus cruentus L.) varieties in response to different sources of phosphorus. Ph.D. dissertation, University of Ibadan, Nigeria, 300 pp. [16]. Okosun, E.A., 1997. The potential application of Sokoto phosphate for the manufacture of fertilizer. Journal of Agricultural Technology, vol. 5, no. 2, pp. 59-64. [17]. Saturday Punch, 2013. Nigerians lament drop in power generation. Nigerian newspaper issued June 29, 2013, vol. 7182, no. 1682, p. 47. Available at http://www.punchng.com/feature/power-talkback/nigerians-lament-drop-in-power-generation/. [18]. Russ, W., 1924. The phosphate deposits of Abeokuta Province. Geol. Surv. Nigeria, Bull. 7, 43 pp. [19]. Sobulo, R.A., 1994. Final report on agro-mineral project. Raw Materials Research and Development Council and National Fertilizer Company of Nigeria, Port Harcourt, Nigeria. [20]. Tian, G. and Kolawole, G.O., 1999. Comparison of various plant residues as phosphate rock amendment on Savannah soils of West Africa, vol. 27, pp. 571-583. [21]. Van Straaten, P., 2002. Rocks for crops: Agro-minerals of sub-Saharan Africa. ICRAF, Nairobi, Kenya, 338 pp. [22]. Wikipedia, 2012. Nigeria. Available at https://en.wikipedia.org/wiki/Nigeria. [23]. World Nuclear Association, 2012. World nuclear industry status report: The independent assessment of nuclear development in the world. Available in www.worlsnuclearreport.org/the-world-nuclear-industry-status.html. [24]. World Nuclear Association, 2013. The economics of nuclear power. Available in www.world-nuclear.org/info/economic- aspects/economic-of-nuclear-power/. [25]. Wright, J.B., Hastings, D.A., Jones, W.B. and Williams, H.R., 1985. Geology and mineral resources of West Africa. Allen and Unwin, London, UK, 187 pp.