SlideShare une entreprise Scribd logo
1  sur  7
Télécharger pour lire hors ligne
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 || P-ISSN: 2321 - 4759
www.ijmsi.org || Volume 2 || Issue 1 || February - 2014 || PP-21-27

Some Integral Properties of Aleph Function, General Class of
Polynomials Associated With Feynman Integrals
1,

Yashmeen Khan, and 2, Pallavi Sharma

1,

2,

Department of Mathematics, Government College, Kota, Rajasthan
Department of Mathematics, Kautilya Institute of Technology and Engineering, Jaipur, Rajasthan

ABSTRACT: The aim of the present paper is to discuss certain integral properties of Aleph function and
general class of polynomials. The exact partition of a Gaussian model in statistical mechanics and several other
functions as its particular cases. During the course of finding, we establish certain new double integral
relations pertaining to a product involving a general class of polynomials and the Aleph function.

KEY WORDS AND PHRASES: Feynman integrals, Aleph function, General Class of Polynomials, Hermite
Polynomials, Laguerre Polynomials.

I.

INTRODUCTION

The conventional formulation may fail pertaining to the domain of quantum cosmology but Feynman
path integrals apply interesting by Feynman path integrals are reformulation of quantum mechanics on more
fundamental than the conventional formulation in term of operator. Feynman integral are useful in the study and
development of simple and multiple variable hypergeometric series which in turn are useful in statistics
mechanics.
The Aleph ()-functions, introduced by Südland et al.[9], however the notation and complete definition
is presented here in the following manner in terms of the Mellin-Barnes type integrals
  z]  



1
2 

m, n
y   r
i i



L

 z]  

m, n

x , y   r
i i i

  s) z

x  y   r
i i i


z



m, n

For all z  0 where  

(s)

(a  A 
   a  A 
j
j 1, n i
ji
ji n  1, x  r
i
(b  B 
   b  B 
j
j 1, m i
ji
ji m  1, y  r
i

…(1)

ds

 1 and
m

n




m, n
x  y   r
i i i

 s) 

b

j1
x

r










i 1



1  a

j1

i

a

j n  1

the integration path L  L

j

y



i

j

 B s)

i 

ji

R

 A

ji

 A s
j

…(2)

i



s

j

1  b

j m  1

ji

 B

ji

s

extends from   i  to   i   and is such that the poles, assumed

to be simple, of   1  a  A s), j = 1,…,n do not coincide with the pole of   b  B s), j= 1,…,m the
j

j

j

j

parameter xi, yi are non-negative integers satisfying:
0  n  x 1  m  y  
i

i

The parameters A  B  A
j

j

ji

B

ji

i

 0 for i  1,..., r

 0 and a  b  a
j

j

ji

b

ji

 C. The empty product in (2) is interpreted

as unity. The existence conditions for the defining integral (1) are given below
  0   arg (z) | 



2





  1 r

www.ijmsi.org

…(3)

21 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…


  0   arg (z) | 


 and R {    1  0


2

…(4)



where
n










B   
j
 


m

A



j

j1


j1

x

y





A

j n  1

j







B

x
 y

  b  a     b   a

j
j

j
j
j1
j1
j n  1
 j m  1
For detailed account of the Aleph ()-function see (9) and (10).
The general class of polynomial introduced by Srivastava (9)
m

n

  n)

[n/m]

S

m



 p] 

n

mk

B

k!

k0

n, k

p

k

j

j m  1






…(5)

 1
   x  y    1 r


 2


…(6)

n  0,1,2,...

Main Results:
We shall establish the following results:
(A)
1

1

0 0
 n/m]





 1 p


q 


 1  pq


  n)

mk

B

k!

k0

. 



i 1

y

i 1

 
 m
1  pq
 
S

(1  p)(1  q)  n
 

  r
i

 1 p
 m, n
wq  

x  y   r
i i i
 1  pq


 1 q

w  dp dq

 1  pq


k

k    w

n, k

m, n  1
x



 1 q


 1  pq

  1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r

 b B 
   b  B 
  1  k      1
 j j 1, m i ji ji m  1, y i  r i



w 



…(2.1)

provided that
T

Re[     b     0   arg w | 
j

j

2

m is an arbitrary positive integer and the coefficient B

 n, k  0) are arbitrary constant, real or complex.

n, k

Proof. We have
m

S

n

 1 p

wq  

1  pq



m, n
x

i

 y  r
i i

m



2 

L

b

j1
x

r





i 1

i



(-n)

mk

B

k !

k0

n, k

 1 p


wq 


1  pq



k

n


1

[n/m]

 1 q

w  dp dq 

1  pq



j

 B s
j

y

i


j n  1

1  a

j1

a

ji

 A

ji

s

j

 A s
j

i



1  b

j m  1

ji

 B

ji

s

 1 q


w 


 1  pq


s

ds

…(2.2)

Multiplying both sides of (2.2) by




 1 p
  1 q  

1  pq
w 

 
 and integrating with respect to p and q between 0 and 1 for both
1  pq
1  pq   (1  p)(1  q) 

 
the variable and we get the result

www.ijmsi.org

22 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…



(B) 

0



 1

f(   w  

0

 n/m]





  n)


mk

B

k!

k0

. 

i 1

y

i 1

  

n

m, n
x  y  r
i i i

 w] d  dw

k   

  1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r

 b B 
   b  B 
   1  k   1 
 j j 1, m i ji ji m  1, y i  r i


m, n  1
x

S

    k 1

f(   

0

n, k

m

 1

w

  r
i


  d



…(2.3)

provided that
Re(     b     0  m is an arbitrary positive integer and coefficients B
j

i

n, k

 n, k  0) are arbitrary

constants, real or complex.
Proof. We have
m

S

n

 

  n)

[n/m]

m, n



 w) 

x  y  r
i i i

mk

B

k!

k0

m

n




1
2 

  b  B s)
j

j1

L

x

r



k



n, k



i 1



j

j1
y

a

j n  1

 A

ji

Multiplying both side (2.4) by f(   w  

 1

s

  1  a  A s  (w)

i



i

j

 1  b

j m  1

 1

w

…(2.4)

ds
i



s)

ji

j

 B s)

ji

ji

and integrating with respect to  and w between 0 and 

for both side the variable and get the result (2.3).
1

 n/m]





1

0 0

(C)

   w  1  w 

  n)

1   

 1

w

m



S

1
mk

B

k!

k0

 1

n, k

k    

f(   1   

n

m, n

 w(1    

k     1

x  y  r
i i i

1  w  d  dw

d

0

  1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r

…(2.5)

1  

x
y
  r  b  B 
   b  B 
   1  k      1 
i 1 i 1 i 
j
j 1, m
i
ji
ji m  1, y  r i

i


provided that Re() >0, Re() >0, m is an arbitrary positive integer and coefficient Bn,k (n,k ≥ 0) are arbitrary
constant, real or complex.
Proof. We have
m, n  1

m

S

n

 w  1    

 n/m]

m, n
x  y  r
i i i

1  w  



  n)

2 

L

  b  B s)
j

j1
x

r


i 1



i

n, k

k

w

1   

k

n




B

k!

k0

m

1

mk

j





j

q

i

j n  1

  1  a  A s)

j1

a

ji

 A

ji

s)

j

1  w 

s

ds

…(2.6)

i



 1  b

j m  1

www.ijmsi.org

ji

 B s)
ji

23 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…
Multiplying both side of (2.6) by    w  1   

 1

1  w 

 1



w

and integrating with respect to  and w

between 0 and 1 for both the variable and get the result.
1

0 0

(D)

 n/m]





 q(1  p) 


 (1  pq) 

1

  n)

mk

. 

i 1

y



1

 q(1  p)  m, n
 wq(1  p) 

  x  y  r 
 dp dq
i i i 
(1  pq) 
1  pq



m

S

 1  p)

n

  k  z        1

n, k

  1  k     1 ), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r

 b B 
   b  B 
   1  k       1 
 j j 1, m i ji ji m  1, y i  r i


m, n
x

 1 q 


 1  pq 

k  z       1

B

k!

k0



i 1

  r
i

T

provided that Re(       b     0   arg w | 
j

i


w 



…(2.7)

  m is an arbitrary integer and the coefficient B n,k

2

(n,k ≥ 0) are arbitrary constant, real or complex.
Proof. We have
m

S

n

 q(1  p)  m, n
 wq(1  p) 

  x  y  r 

i i i   1  pq)
1  pq 



 n/m]



2 

L

  b  B s)
j

j1
x

r





i 1

i

B

n, k

 q(1  p) 


 1  pq 

k

n




mk

k!

k0

m

1

  n)

j



j

y

i



  1  a  A s)

j1

a

j n  1

ji

 A

ji

i



s)

j

 1  b

j m  1

ji

 B s)

 wq(1  p) 


  1  pq) 

s

ds

ji

…(2.8)




  q(1  p) 

 1 q 
1
 and integrating with respect to p and q
Multiplying both side by  



  1  pq 
 1  pq   1  p) 


between 0 and 1for both the variable and get the result (2.7).
3. Particular Cases
By applying our result given in (2.1), (2.3), (2.5), (2.7) to the case of Hermite polynomial (8) and (11)
and by setting

 1

n
n
2 p

In which case m = 2, Bn,k = (1)k.
2

S  p]  p

1

(A)

1

0 0

. 

n/2

H



 1 p
  1 q

q 

 
 1  pq   1  pq

m, n
x  y  r
i i i












 1 p

qw 

(1  p)(1  q)  1  pq


 1 q

w  dp dq H

 1  pq


 1  pq)

n






2


n/2




1

 1 p 


 wq 


 1  pq 


www.ijmsi.org

24 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…
 n/2]

  n)





2k

  1

k

k

w

k   

k!

k0

m, n  1
x  1 y  1  r
i
i
i

 1   1   a  A 
   a A 

j
j 1, n i
ji
ji n  1, x  r
i
. w
(b  B 
   b  B 
   1  k     1 
j
j 1, m
i
ji
ji m  1, y  r i

i

valid under the same conditions as obtained from (A).



(B)

0

  n)



. 

  1

k

  1  n/2

i 1

y

i 1

f(   

0

m, n  1
x




2k

k!

k0

p 1

f(   w  w

0

 n/2]





  r
i






H

n






 1  m, n

  x  y   r  w  dw d 
i i i
2 n 

    k 1

d k   

 1   1   a  A 
    a  A 
j
j 1, n
i
ji
ji n  1, x  r
i
(b  B 
   b  B 
   1  k   1 
j
j 1, m
i
ji
ji m  1, y  r i
i


 



valid under the same conditions as required for (B).
1

(C)

1

   w  1   

0 0
. H

 n/2]

  n)





n

. 

 1

w

  n/2

1
2k

k

  1   k    

m, n  1
x

1  w 

1   

n/2


 m, n
1

  x , y   r 1  w  dw d 
i i i
 2 w 1    

k!

k0

 1

i 1

y

i 1

  r
i

    1   

k     1

0

  1   1   a j  A j 1, n    i  a ji  A ji  n  1, x i  r

 b B 
   b  B 
   1  k     1 
 j j 1, m i ji ji n  1, y i  r i



1  



valid under the same condition as required for (C).
(D)
1

1

0 0

 q(1  p) 


 1  pq 

H

 n/2]





  n)

2k

n







2



 1 q


 1  pq





1

q(1  p) 

1  pq 

k

  1     1 

k!

k0






1
1 n  2

 1  p)

m, n
x  y  r
i i i

q

x

i 1

y

 1  pq)

 wq(1  p)


 1  pq

m, n  1
i 1

  r
i

n/2
n/2


 dp dq



  1  k     1   a j  A j 1, n   i  a ji  A ji  n  1, x i  r
w

(b  B 
   b  B 
   1  k     1 
 j j 1, m i ji ji m  1, y i  r i







valid under the same conditions as obtained from (D).
For

the

B

n  r
1




 n   r  1)

n, k

Laguerre

polynomials

([8]and

[11])

setting

'

r

n

n

S  x)  L  x) in

which

case

the result (A), (B),(C) and D reduced to the following formulae
k

www.ijmsi.org

25 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…
(1)
1



 1 p
  1 q

q 

 
 1  pq   1  pq

1

0 0
 n/2]

  n)





n  r
1




 n   r  1)

k

k!

k0




 r  1 p
 m, n
 1 q

 1  pq)

L 

wq  
w  dp dq

 n


x  y  r
i i i  1  pq
 (1  p)(1  q) 
 1  pq



k

w

k  

k

 1   1   a  A 
    a  A 
j
j 1, n
i
ji
ji n  1, x  r
i



(b



m, n  1

. 






x  1 y  1   r
i
i
i

j

B 
   b  B 
   1  k     1 
j 1, m
i
ji
ji m  1, y  r i
i


w



valid under the same conditions as required for (A).


(2)



0

0

  n)

n





 1

f(   w  w

k

k!

k0

.



r

m, n

n

 1

x  y  r
i i i

L  

n  r
1




 n   r  1)



f(   

0

k

 w] dw d 

    k 1

k   

 1   1   a  A 
   a A 
j
j 1, n i
ji
ji n  1, x  r
i



(b



m, n  1
x  1 y  1   r
i
i
i

j

B 
   b  B 
   1  k   1 
j 1, m i
ji
ji m  1, y  r i
i






valid under the same condition as required for (B).
1

(3) 

1

  w    1   

0

0

  n)

n




. 

i 1

y

 1

w



r

L

n

 w  1    

1

k   
k'

0

f    1   

 1   1   a  A 
   a  A 
j
j 1, n i
ji
ji n  1, x  r
i

m, n  1
x

1  w 

n  r
1




 n   r  1)

k

k!

k0

 1

i 1

  r
i

m, n
x , y  r
i i i

1  w  dw d 

  k   1



 b B 
   b  B 
    1  k     1 
 j j 1, m i ji ji n  1, y i  r i







valid under the same condition as required for (C).
(4)
1



 q(1  p) 


 1  pq 

1

0 0

L
n





n

 q(1  p) 


 (1  pq 

  n)

k

k!

k0

.

r

 1 q


 1  pq

i 1

y



1
 1  p)

m, n
x  y  r
i i i

n  r
1




 n   r  1)

 wq(1  p)


 1  pq


 dp dq



  1
k'

 1  k     1   a  A 
   a  A 
j
j 1, n
i
ji
ji n  1, x  r
i

m, n  1
x






i 1

  r
i



(b



j

B 
   b  B 
   1  k     1 
j 1, m
i
ji
ji m  1, y  r i
i


w



valid under the same condition as obtained for (D).

www.ijmsi.org

26 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…

II.

CONCLUSION

The results obtained here are basic in nature and are likely to find useful applications in the study of
simple and multiple variable hypergeometric series which in turn are useful in statistical mechanics, electrical
networks and probability theory. These integrals reformulation of quantum mechanics are more fundamental
than the conventional formulation in terms of operators.

REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

Fox C., The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429.
Grosche, C. and Steiner, F., Hand book of Feynman path integrals, Springer tracts in modern physics, Vol.145, Springer-Verlag,
Berlin Heidelberg, New York (1998).
Mathai.A.M. and Saxena,R.K., The H-function with applications in Statistics and other disciplines, Wiley Eastern, New Delhi,
1978.
Saxena, Ram K and Pogany, Tiber K., On fractional integration formula for Aleph functions, Vol. 218(3), 2011 Applied Math.
Comput. Ilsevier.
Saxena, R.K. and Kumar, R., A basic analogue of generalized H-function, Matematiche (Catania) 50 (1995), 263-271.
Saxena, R.K., Mathai, A.M. and Haubold, H.J., Unified fractional kinetic equation and a diffusion equation, Astrophys. Space Sci.
290 (2004), 299-310.
Srivastava, H.M., Indian J. Math. 14(1972), 1-6.
Srivastava, H.M. and N.P. Singh, The integration of certain products of the multivariable H-function with a general class of
polynomials. Rend. Circ. Mat. Palermo, 2(32), 157-187 (1983).
Südland,N., Bauman,B. and Nonnenmacher,T.F., Open problem; who know about the Aleph ()-functions? Fract. Calc. Appl. Anal.
1(4) (1998); 401-402.
Südland,B., Baumann,B. and Nonnenmacher,T.F., Fractional driftless, Fokker-Planck equation with power law diffusion
coefficients. In V.G. Gangha, E.W. Mayr, W.G. Varozhtsov, editors, Computer Algebra in Scientific Computing (CASC Konstanz
2001), Springer, Berlin (2001); 513-525.
Szego, C., Orthogonal Polynomial, Amer. Math. Soc. Colloq. Publ. 23 fourth edition, Amer. Math. Soc. Providence, Rhode Island,
1975.

www.ijmsi.org

27 | P a g e

Contenu connexe

Tendances

Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Alexander Decker
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11DAVID GIKUNJU
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Rene Kotze
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesRene Kotze
 
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...IOSR Journals
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsSolo Hermelin
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsIJERA Editor
 
B. Dragovich: On Modified Gravity and Cosmology
B. Dragovich: On Modified Gravity and CosmologyB. Dragovich: On Modified Gravity and Cosmology
B. Dragovich: On Modified Gravity and CosmologySEENET-MTP
 
On 1 d fractional supersymmetric theory
  On 1 d fractional supersymmetric theory  On 1 d fractional supersymmetric theory
On 1 d fractional supersymmetric theoryAlexander Decker
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationinventy
 
Auto Regressive Process (1) with Change Point: Bayesian Approch
Auto Regressive Process (1) with Change Point: Bayesian ApprochAuto Regressive Process (1) with Change Point: Bayesian Approch
Auto Regressive Process (1) with Change Point: Bayesian ApprochIJRESJOURNAL
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrdfoxtrot jp R
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...ijrap
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelTomonari Masada
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Fuad Anwar
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZoe Zontou
 

Tendances (18)

Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
 
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
B. Dragovich: On Modified Gravity and Cosmology
B. Dragovich: On Modified Gravity and CosmologyB. Dragovich: On Modified Gravity and Cosmology
B. Dragovich: On Modified Gravity and Cosmology
 
On 1 d fractional supersymmetric theory
  On 1 d fractional supersymmetric theory  On 1 d fractional supersymmetric theory
On 1 d fractional supersymmetric theory
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
On the Zeros of Complex Polynomials
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equation
 
Auto Regressive Process (1) with Change Point: Bayesian Approch
Auto Regressive Process (1) with Change Point: Bayesian ApprochAuto Regressive Process (1) with Change Point: Bayesian Approch
Auto Regressive Process (1) with Change Point: Bayesian Approch
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
 
D0621619
D0621619D0621619
D0621619
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_Motion
 

Similaire à International Journal of Mathematics and Statistics Invention (IJMSI)

On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -FunctionsIJMER
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Poleijtsrd
 
A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...Alexander Decker
 
Analysis of variance of global experiments with repeated measurements with pr...
Analysis of variance of global experiments with repeated measurements with pr...Analysis of variance of global experiments with repeated measurements with pr...
Analysis of variance of global experiments with repeated measurements with pr...IJMCERJournal
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)inventionjournals
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withineSAT Publishing House
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsStavros Vologiannidis
 
Interpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape controlInterpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape controlijcga
 

Similaire à International Journal of Mathematics and Statistics Invention (IJMSI) (20)

On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -Functions
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
 
A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...
 
Analysis of variance of global experiments with repeated measurements with pr...
Analysis of variance of global experiments with repeated measurements with pr...Analysis of variance of global experiments with repeated measurements with pr...
Analysis of variance of global experiments with repeated measurements with pr...
 
E028047054
E028047054E028047054
E028047054
 
Solve Equations
Solve EquationsSolve Equations
Solve Equations
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
C023014030
C023014030C023014030
C023014030
 
C023014030
C023014030C023014030
C023014030
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
Interpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape controlInterpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape control
 
A02402001011
A02402001011A02402001011
A02402001011
 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
 
Función de Bessel y la función hipergeométrica
Función de Bessel y la función hipergeométricaFunción de Bessel y la función hipergeométrica
Función de Bessel y la función hipergeométrica
 
C024015024
C024015024C024015024
C024015024
 

Dernier

SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfSeasiaInfotech2
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 

Dernier (20)

SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdf
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 

International Journal of Mathematics and Statistics Invention (IJMSI)

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 || P-ISSN: 2321 - 4759 www.ijmsi.org || Volume 2 || Issue 1 || February - 2014 || PP-21-27 Some Integral Properties of Aleph Function, General Class of Polynomials Associated With Feynman Integrals 1, Yashmeen Khan, and 2, Pallavi Sharma 1, 2, Department of Mathematics, Government College, Kota, Rajasthan Department of Mathematics, Kautilya Institute of Technology and Engineering, Jaipur, Rajasthan ABSTRACT: The aim of the present paper is to discuss certain integral properties of Aleph function and general class of polynomials. The exact partition of a Gaussian model in statistical mechanics and several other functions as its particular cases. During the course of finding, we establish certain new double integral relations pertaining to a product involving a general class of polynomials and the Aleph function. KEY WORDS AND PHRASES: Feynman integrals, Aleph function, General Class of Polynomials, Hermite Polynomials, Laguerre Polynomials. I. INTRODUCTION The conventional formulation may fail pertaining to the domain of quantum cosmology but Feynman path integrals apply interesting by Feynman path integrals are reformulation of quantum mechanics on more fundamental than the conventional formulation in term of operator. Feynman integral are useful in the study and development of simple and multiple variable hypergeometric series which in turn are useful in statistics mechanics. The Aleph ()-functions, introduced by Südland et al.[9], however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integrals   z]    1 2  m, n y   r i i  L  z]   m, n x , y   r i i i   s) z x  y   r i i i  z   m, n For all z  0 where   (s) (a  A     a  A  j j 1, n i ji ji n  1, x  r i (b  B     b  B  j j 1, m i ji ji m  1, y  r i …(1) ds  1 and m n   m, n x  y   r i i i  s)  b j1 x r       i 1  1  a j1 i a j n  1 the integration path L  L j y  i j  B s) i  ji R  A ji  A s j …(2) i  s j 1  b j m  1 ji  B ji s extends from   i  to   i   and is such that the poles, assumed to be simple, of   1  a  A s), j = 1,…,n do not coincide with the pole of   b  B s), j= 1,…,m the j j j j parameter xi, yi are non-negative integers satisfying: 0  n  x 1  m  y   i i The parameters A  B  A j j ji B ji i  0 for i  1,..., r  0 and a  b  a j j ji b ji  C. The empty product in (2) is interpreted as unity. The existence conditions for the defining integral (1) are given below   0   arg (z) |    2     1 r www.ijmsi.org …(3) 21 | P a g e
  • 2. Some Integral Properties Of Aleph Function, General Class Of…    0   arg (z) |    and R {    1  0  2 …(4)  where n      B    j    m A  j j1  j1 x y   A j n  1 j    B x  y    b  a     b   a  j j  j j j1 j1 j n  1  j m  1 For detailed account of the Aleph ()-function see (9) and (10). The general class of polynomial introduced by Srivastava (9) m n   n) [n/m] S m   p]  n mk B k! k0 n, k p k j j m  1     …(5)  1    x  y    1 r    2  …(6) n  0,1,2,... Main Results: We shall establish the following results: (A) 1 1 0 0  n/m]    1 p   q     1  pq    n) mk B k! k0 .   i 1 y i 1    m 1  pq   S  (1  p)(1  q)  n     r i  1 p  m, n wq    x  y   r i i i  1  pq   1 q  w  dp dq   1  pq  k k    w n, k m, n  1 x   1 q    1  pq   1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r   b B     b  B    1  k      1  j j 1, m i ji ji m  1, y i  r i   w    …(2.1) provided that T Re[     b     0   arg w |  j j 2 m is an arbitrary positive integer and the coefficient B  n, k  0) are arbitrary constant, real or complex. n, k Proof. We have m S n  1 p  wq    1  pq   m, n x i  y  r i i m  2  L b j1 x r   i 1 i  (-n) mk B k ! k0 n, k  1 p   wq    1  pq   k n  1 [n/m]  1 q  w  dp dq   1  pq   j  B s j y i  j n  1 1  a j1 a ji  A ji s j  A s j i  1  b j m  1 ji  B ji s  1 q   w     1  pq  s ds …(2.2) Multiplying both sides of (2.2) by    1 p   1 q    1  pq w      and integrating with respect to p and q between 0 and 1 for both 1  pq 1  pq   (1  p)(1  q)     the variable and we get the result www.ijmsi.org 22 | P a g e
  • 3. Some Integral Properties Of Aleph Function, General Class Of…  (B)  0   1 f(   w   0  n/m]     n)  mk B k! k0 .  i 1 y i 1    n m, n x  y  r i i i  w] d  dw k      1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r   b B     b  B     1  k   1   j j 1, m i ji ji m  1, y i  r i  m, n  1 x S     k 1 f(    0 n, k m  1 w   r i    d   …(2.3) provided that Re(     b     0  m is an arbitrary positive integer and coefficients B j i n, k  n, k  0) are arbitrary constants, real or complex. Proof. We have m S n     n) [n/m] m, n   w)  x  y  r i i i mk B k! k0 m n   1 2    b  B s) j j1 L x r  k  n, k  i 1  j j1 y a j n  1  A ji Multiplying both side (2.4) by f(   w    1 s   1  a  A s  (w) i  i j  1  b j m  1  1 w …(2.4) ds i  s) ji j  B s) ji ji and integrating with respect to  and w between 0 and  for both side the variable and get the result (2.3). 1  n/m]   1 0 0 (C)    w  1  w    n) 1     1 w m  S 1 mk B k! k0  1 n, k k     f(   1    n m, n  w(1     k     1 x  y  r i i i 1  w  d  dw d 0   1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r  …(2.5)  1    x y   r  b  B     b  B     1  k      1  i 1 i 1 i  j j 1, m i ji ji m  1, y  r i  i   provided that Re() >0, Re() >0, m is an arbitrary positive integer and coefficient Bn,k (n,k ≥ 0) are arbitrary constant, real or complex. Proof. We have m, n  1 m S n  w  1      n/m] m, n x  y  r i i i 1  w      n) 2  L   b  B s) j j1 x r  i 1  i n, k k w 1    k n   B k! k0 m 1 mk j   j q i j n  1   1  a  A s) j1 a ji  A ji s) j 1  w  s ds …(2.6) i   1  b j m  1 www.ijmsi.org ji  B s) ji 23 | P a g e
  • 4. Some Integral Properties Of Aleph Function, General Class Of… Multiplying both side of (2.6) by    w  1     1 1  w   1  w and integrating with respect to  and w between 0 and 1 for both the variable and get the result. 1 0 0 (D)  n/m]    q(1  p)     (1  pq)  1   n) mk .  i 1 y  1  q(1  p)  m, n  wq(1  p)     x  y  r   dp dq i i i  (1  pq)  1  pq   m S  1  p) n   k  z        1 n, k   1  k     1 ), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r   b B     b  B     1  k       1   j j 1, m i ji ji m  1, y i  r i  m, n x  1 q     1  pq  k  z       1 B k! k0  i 1   r i T provided that Re(       b     0   arg w |  j i  w    …(2.7)   m is an arbitrary integer and the coefficient B n,k 2 (n,k ≥ 0) are arbitrary constant, real or complex. Proof. We have m S n  q(1  p)  m, n  wq(1  p)     x  y  r   i i i   1  pq) 1  pq     n/m]  2  L   b  B s) j j1 x r   i 1 i B n, k  q(1  p)     1  pq  k n   mk k! k0 m 1   n) j  j y i    1  a  A s) j1 a j n  1 ji  A ji i  s) j  1  b j m  1 ji  B s)  wq(1  p)      1  pq)  s ds ji …(2.8)     q(1  p)    1 q  1  and integrating with respect to p and q Multiplying both side by        1  pq   1  pq   1  p)    between 0 and 1for both the variable and get the result (2.7). 3. Particular Cases By applying our result given in (2.1), (2.3), (2.5), (2.7) to the case of Hermite polynomial (8) and (11) and by setting  1  n n 2 p  In which case m = 2, Bn,k = (1)k. 2 S  p]  p 1 (A) 1 0 0 .  n/2 H   1 p   1 q  q      1  pq   1  pq m, n x  y  r i i i           1 p  qw   (1  p)(1  q)  1  pq   1 q  w  dp dq H   1  pq   1  pq) n      2  n/2    1   1 p     wq     1  pq   www.ijmsi.org 24 | P a g e
  • 5. Some Integral Properties Of Aleph Function, General Class Of…  n/2]   n)   2k   1 k k w k    k! k0 m, n  1 x  1 y  1  r i i i  1   1   a  A     a A   j j 1, n i ji ji n  1, x  r i . w (b  B     b  B     1  k     1  j j 1, m i ji ji m  1, y  r i  i  valid under the same conditions as obtained from (A).  (B) 0   n)  .    1 k   1  n/2 i 1 y i 1 f(    0 m, n  1 x   2k k! k0 p 1 f(   w  w 0  n/2]     r i     H n      1  m, n    x  y   r  w  dw d  i i i 2 n      k 1 d k     1   1   a  A      a  A  j j 1, n i ji ji n  1, x  r i (b  B     b  B     1  k   1  j j 1, m i ji ji m  1, y  r i i      valid under the same conditions as required for (B). 1 (C) 1    w  1    0 0 . H  n/2]   n)   n .   1 w   n/2 1 2k k   1   k     m, n  1 x 1  w  1    n/2   m, n 1    x , y   r 1  w  dw d  i i i  2 w 1     k! k0  1 i 1 y i 1   r i     1    k     1 0   1   1   a j  A j 1, n    i  a ji  A ji  n  1, x i  r   b B     b  B     1  k     1   j j 1, m i ji ji n  1, y i  r i   1     valid under the same condition as required for (C). (D) 1 1 0 0  q(1  p)     1  pq  H  n/2]     n) 2k n      2    1 q    1  pq    1  q(1  p)   1  pq   k   1     1  k! k0     1 1 n  2  1  p) m, n x  y  r i i i q x i 1 y  1  pq)  wq(1  p)    1  pq m, n  1 i 1   r i n/2 n/2   dp dq     1  k     1   a j  A j 1, n   i  a ji  A ji  n  1, x i  r w  (b  B     b  B     1  k     1   j j 1, m i ji ji m  1, y i  r i      valid under the same conditions as obtained from (D). For the B n  r 1      n   r  1) n, k Laguerre polynomials ([8]and [11]) setting ' r n n S  x)  L  x) in which case the result (A), (B),(C) and D reduced to the following formulae k www.ijmsi.org 25 | P a g e
  • 6. Some Integral Properties Of Aleph Function, General Class Of… (1) 1   1 p   1 q  q      1  pq   1  pq 1 0 0  n/2]   n)   n  r 1      n   r  1) k k! k0    r  1 p  m, n  1 q   1  pq)  L   wq   w  dp dq   n   x  y  r i i i  1  pq  (1  p)(1  q)   1  pq   k w k   k  1   1   a  A      a  A  j j 1, n i ji ji n  1, x  r i   (b   m, n  1 .      x  1 y  1   r i i i j B     b  B     1  k     1  j 1, m i ji ji m  1, y  r i i  w   valid under the same conditions as required for (A).  (2)  0 0   n) n    1 f(   w  w k k! k0 .  r m, n n  1 x  y  r i i i L   n  r 1      n   r  1)  f(    0 k  w] dw d      k 1 k     1   1   a  A     a A  j j 1, n i ji ji n  1, x  r i   (b   m, n  1 x  1 y  1   r i i i j B     b  B     1  k   1  j 1, m i ji ji m  1, y  r i i     valid under the same condition as required for (B). 1 (3)  1   w    1    0 0   n) n   .  i 1 y  1 w  r L n  w  1     1 k    k' 0 f    1     1   1   a  A     a  A  j j 1, n i ji ji n  1, x  r i m, n  1 x 1  w  n  r 1      n   r  1) k k! k0  1 i 1   r i m, n x , y  r i i i 1  w  dw d    k   1    b B     b  B      1  k     1   j j 1, m i ji ji n  1, y i  r i      valid under the same condition as required for (C). (4) 1   q(1  p)     1  pq  1 0 0 L n   n  q(1  p)     (1  pq    n) k k! k0 . r  1 q    1  pq i 1 y  1  1  p) m, n x  y  r i i i n  r 1      n   r  1)  wq(1  p)    1  pq   dp dq     1 k'  1  k     1   a  A     a  A  j j 1, n i ji ji n  1, x  r i m, n  1 x     i 1   r i   (b   j B     b  B     1  k     1  j 1, m i ji ji m  1, y  r i i  w   valid under the same condition as obtained for (D). www.ijmsi.org 26 | P a g e
  • 7. Some Integral Properties Of Aleph Function, General Class Of… II. CONCLUSION The results obtained here are basic in nature and are likely to find useful applications in the study of simple and multiple variable hypergeometric series which in turn are useful in statistical mechanics, electrical networks and probability theory. These integrals reformulation of quantum mechanics are more fundamental than the conventional formulation in terms of operators. REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Fox C., The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429. Grosche, C. and Steiner, F., Hand book of Feynman path integrals, Springer tracts in modern physics, Vol.145, Springer-Verlag, Berlin Heidelberg, New York (1998). Mathai.A.M. and Saxena,R.K., The H-function with applications in Statistics and other disciplines, Wiley Eastern, New Delhi, 1978. Saxena, Ram K and Pogany, Tiber K., On fractional integration formula for Aleph functions, Vol. 218(3), 2011 Applied Math. Comput. Ilsevier. Saxena, R.K. and Kumar, R., A basic analogue of generalized H-function, Matematiche (Catania) 50 (1995), 263-271. Saxena, R.K., Mathai, A.M. and Haubold, H.J., Unified fractional kinetic equation and a diffusion equation, Astrophys. Space Sci. 290 (2004), 299-310. Srivastava, H.M., Indian J. Math. 14(1972), 1-6. Srivastava, H.M. and N.P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials. Rend. Circ. Mat. Palermo, 2(32), 157-187 (1983). Südland,N., Bauman,B. and Nonnenmacher,T.F., Open problem; who know about the Aleph ()-functions? Fract. Calc. Appl. Anal. 1(4) (1998); 401-402. Südland,B., Baumann,B. and Nonnenmacher,T.F., Fractional driftless, Fokker-Planck equation with power law diffusion coefficients. In V.G. Gangha, E.W. Mayr, W.G. Varozhtsov, editors, Computer Algebra in Scientific Computing (CASC Konstanz 2001), Springer, Berlin (2001); 513-525. Szego, C., Orthogonal Polynomial, Amer. Math. Soc. Colloq. Publ. 23 fourth edition, Amer. Math. Soc. Providence, Rhode Island, 1975. www.ijmsi.org 27 | P a g e