SlideShare une entreprise Scribd logo
1  sur  23
Télécharger pour lire hors ligne
AGO
Fluxgate
Data
Extracting value from an
imperfect time series
Kevin	
  Urban,	
  NJIT,	
  2015-­‐Mar-­‐02	
  
This presentation is NOT about “Perfect Data”
Perfect	
  Data	
  
Evenly	
  sampled:	
  	
  No	
  need	
  for	
  downsampling	
  to	
  use	
  FFT	
  techniques;	
  no	
  
need	
  to	
  use	
  more	
  sophis9cated	
  non-­‐FFT	
  techniques.	
  
	
  
ConEnuously	
  sampled:	
  No	
  missing	
  data;	
  no	
  need	
  to	
  interpolate	
  or	
  
downsample.	
  
	
  
Properly	
  calibrated:	
  the	
  9me	
  series	
  values	
  are	
  exact	
  to	
  a	
  specified	
  
uncertainty	
  (this	
  is	
  in	
  contrast	
  to	
  those	
  9me	
  series	
  that	
  have	
  an	
  inexact	
  
constant	
  offset,	
  but	
  an	
  exact	
  deriva9ve).	
  
	
  
No	
  noise	
  contaminaEon:	
  the	
  spectra	
  are	
  resolved	
  all	
  the	
  way	
  through	
  to	
  
the	
  high	
  frequency	
  end	
  of	
  the	
  spectrum	
  (in	
  contrast	
  to	
  noisy	
  9me	
  series	
  
which	
  have	
  a	
  “noise	
  floor”	
  in	
  the	
  spectral	
  domain	
  which	
  tends	
  to	
  flaHen	
  
out	
  and	
  dominate	
  the	
  high-­‐frequency	
  end	
  of	
  the	
  spectrum).	
  
This presentation is about “Imperfect Data”
Imperfect,	
  Evenly	
  Sampled	
  Data	
  	
  
Improperly	
   calibrated:	
   the	
   9me	
   series	
   values	
   are	
   not	
   exact:	
   in	
   addi9on	
   to	
   a	
  
constant	
   offset,	
   there	
   exists	
   an	
   improper	
   scaling,	
   which	
   slowly	
   changes	
   over	
  
intervals	
  much	
  longer	
  than	
  scales	
  of	
  interest	
  (e.g.,	
  over	
  months	
  or	
  years	
  when	
  
we	
  care	
  about	
  periods	
  of	
  3	
  –	
  20	
  mins).	
  
	
  
Noise	
  contaminaEon:	
  the	
  high	
  frequency	
  end	
  of	
  the	
  spectrum	
  is	
  dominated	
  by	
  a	
  
noise	
  floor,	
  which	
  affects	
  how	
  one	
  can	
  analyze	
  and	
  transform	
  the	
  data.	
  	
  
	
  
Reserved	
  for	
  future	
  talks	
  
Data	
   gaps:	
   Some	
   missing	
   data,	
   presumed	
   small	
   rela9ve	
   to	
   scales	
   of	
   interest	
  
(e.g.,	
  3	
  con9guous	
  seconds	
  when	
  we	
  care	
  about	
  periods	
  of	
  3	
  mins	
  or	
  greater)	
  or	
  
moderately-­‐sized	
  (e.g.,	
  1	
  min	
  data	
  gap	
  when	
  we	
  care	
  about	
  periods	
  3-­‐10	
  mins);	
  
need	
  to	
  interpolate	
  or	
  downsample.	
  
	
  
Unevenly	
  sampled	
  data	
  
To	
   use	
   FFT	
   techniques,	
   one	
   needs	
   evenly	
   sampled	
   data	
   and	
   so	
   one	
   must	
  
downsample	
  to	
  an	
  evenly	
  sampled	
  9me	
  series	
  or	
  one	
  may	
  resort	
  to	
  alterna9ve	
  
techniques	
  (e.g.,	
  Lomb-­‐Scargle).	
  
	
  
Inexact	
  values	
  up	
  to	
  a	
  constant	
  offset:	
  	
  exact	
  deriva4ve	
  
•  Absolute:	
  Some	
  people	
  care	
  about	
  the	
  absolute	
  value	
  of	
  the	
  geomagne9c	
  field;	
  
these	
  people	
  are	
  usually	
  geologists	
  of	
  some	
  variety	
  	
  
	
  
•  Variometer:	
  Magnetosphere/ionosphere	
  scien9sts	
  are	
  oWen	
  less	
  stringent,	
  caring	
  
mostly	
  about	
  the	
  field’s	
  deriva9ve,	
  or	
  rela9ve	
  varia9ons.	
  	
  
-­‐-­‐	
  i.e.,	
  the	
  data’s	
  mean	
  offset	
  from	
  zero	
  is	
  trivial	
  -­‐-­‐-­‐	
  so	
  one	
  might	
  as	
  well	
  
standardize	
  the	
  mean	
  offset	
  to	
  zero	
  (Zero	
  Mean	
  Sequence),	
  which	
  is	
  necessary	
  
fully	
  benefit	
  from	
  many	
  spectral	
  techniques	
  (e.g.,	
  windowing).	
  
Absolute	
  
Magnetometer	
  
Data	
  
	
  
Variometer-­‐
Quality	
  Data	
  
45015	
  
	
  
45010	
  
	
  
45005	
  
	
  
45000	
  
	
  
44995	
  
	
  
44990	
  
nT	
  
15	
  
	
  
10	
  
	
  
5	
  
	
  
0	
  
	
  
-­‐5	
  
	
  
-­‐10	
  
nT	
  
Eme	
  
Variometer Data
Spectrally,	
  the	
  only	
  difference	
  between	
  the	
  two	
  data	
  types	
  is	
  in	
  the	
  “DC	
  offset”	
  –	
  or,	
  “zero	
  
frequency”	
  power	
  contribu9on:	
  	
  the	
  non-­‐varying,	
  constant	
  background	
  component.	
  
	
  
•  This	
  is	
  just	
  ONE	
  SPECTRAL	
  VALUE	
  
	
  
Geologists	
  care	
  about	
  this	
  term	
  immensely	
  in	
  order	
  to	
  study	
  the	
  gradual	
  decay	
  and/or	
  growth	
  
of	
  the	
  main	
  field	
  over	
  years,	
  centuries,	
  etc.	
  However,	
  this	
  term	
  is	
  largely	
  irrelevant	
  to	
  many	
  
magnetosphere-­‐ionosphere	
  studies	
  where	
  we	
  are	
  interested	
  in	
  changes	
  in	
  the	
  field	
  on	
  the	
  
order	
  of	
  hours,	
  minutes,	
  seconds,	
  and	
  shorter!	
  
In	
  the	
  spectral	
  domain,	
  there	
  is	
  a	
  trivial	
  difference	
  between	
  “absolute”	
  and	
  
“variometer”	
  data	
  
Absolute	
  
Magnetometer	
  
Data	
  
	
  
Variometer-­‐
Quality	
  Data	
  
Every	
  spectral	
  
component	
  except	
  the	
  
first	
  is	
  idenEcal!	
  
	
  
Variometer Data
Example: Calibration Issue 
What	
  if	
  the	
  variometer’s	
  calibra9on	
  between	
  registered	
  voltages	
  and	
  actual	
  field	
  
values	
  is	
  off	
  by	
  a	
  constant	
  factor?	
  	
  
Spectrally	
  we	
  get	
  the	
  same	
  informaEon	
  
concerning	
   peaks.	
   However,	
   the	
  
exac9tude	
   of	
   the	
   actual	
   values	
   may	
   no	
  
longer	
  be	
  absolutely	
  trustworthy.	
  
Black:	
  data	
  	
  	
  	
  	
  	
  	
  Red:	
  0.85*data	
  
The	
  detrended	
  versions	
  of	
  these	
  power	
  
spectra	
  are	
  iden9cal	
  when	
  one	
  uses	
  a	
  robust	
  
detrending	
  scheme	
  (shown	
  later).	
  	
  
Inexact	
  values;	
  	
  inexact	
  deriva4ve	
  up	
  to	
  scale	
  factor	
  
Scaled Variometer Data
Example: Evolving Calibration Issue 
What	
  if	
  the	
  variometer	
  is	
  inaccessible	
  (e.g.,	
  lost	
  10	
  feet	
  under	
  ice,	
  but	
  s9ll	
  recording)	
  
and	
  one	
  no9ces	
  the	
  mean	
  spectral	
  amplitudes	
  are	
  unnaturally	
  decaying	
  over	
  9me?	
  	
  
Possible	
  causes	
  (fluxgate	
  magnetometer	
  under	
  ice	
  in	
  Antarc9ca):	
  
•  Calibra9on	
  sensors	
  degrading	
  in	
  quality	
  
•  Slow	
  rota9on	
  of	
  magnetometer	
  out	
  of	
  ini9al	
  coordinate	
  system	
  due	
  to	
  slow	
  ice	
  flow	
  
•  Slow	
  rota9on	
  of	
  the	
  Earth’s	
  main	
  field,	
  effec9vely	
  rota9ng	
  magnetometer	
  out	
  of	
  its	
  
presumed	
  coordinate	
  system	
  
Black:	
  PSD(data)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Orange:	
  
PSD(0.333*data)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Blue:	
  PSD(0.11*data)	
  
	
  
Black:	
  data	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Orange:	
  0.333*data	
  
Blue:	
  0.11*data	
  
	
  
NOTHING	
  TO	
  FEAR:	
  	
  One	
  can	
  s9ll	
  extract	
  value	
  from	
  such	
  data.	
  The	
  detrended	
  versions	
  of	
  these	
  
power	
  spectra	
  are	
  iden9cal	
  when	
  one	
  uses	
  a	
  robust	
  detrending	
  scheme	
  (next	
  few	
  slides).	
  	
  
Scaled Variometer Data
Extracting value from “Imperfect Data”
	
  
Given	
  we	
  have	
  slowly	
  evolving,	
  
improperly	
  scaled	
  variometer	
  data,	
  
exactly	
  what	
  value	
  can	
  we	
  sEll	
  
extract	
  from	
  it,	
  and	
  how?	
  
	
  
The	
  Background	
  Power	
  Law	
  [BPL]	
  
	
  
Geomagne9c	
  power	
  spectra	
  oWen	
  appear	
  to	
  fluctuate	
  about	
  a	
  background	
  power	
  
law.	
  
	
  
*	
  Note	
  the	
  two	
  uses	
  of	
  “power”	
  here:	
  	
  	
  
(1)	
  “Power	
  spectra”	
  refers	
  to	
  signal	
  “energy”	
  (or	
  signal	
  variance)	
  decomposed	
  
by	
  frequency.	
  	
  
(2)	
  “Power	
  law”	
  refers	
  to	
  an	
  exponent	
  (e.g.,	
  inverse	
  square	
  root,	
  quadraEc,	
  etc)	
  
	
  
	
  
The	
  Detrended	
  PSD	
  
Some9mes	
   called	
   a	
   Rela9ve	
   PSD,	
   Residual	
   PSD,	
   or	
   Whitened	
   PSD.	
   One	
   may	
   even	
   call	
   it	
   a	
  
“decorrelated	
  spectrum.”	
  
	
  
“RelaEve”	
  makes	
  sense	
  in	
  regular-­‐regular	
  domain	
  since	
  PSD{f}	
  	
  =	
  DPSD{f}*BPL{f},	
  	
  	
  
-­‐-­‐	
  detrended	
  spectra	
  are	
  enhancements/depleEons	
  relaEve	
  to	
  the	
  BPL	
  
	
  
“Residual”	
  makes	
  sense	
  in	
  the	
  log-­‐log	
  domain	
  since:	
  	
  	
  Log{PSD}	
  =	
  Log(DPSD)	
  +	
  Log(BPL)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
-­‐-­‐	
  detrended	
  spectra	
  are	
  the	
  residuals	
  of	
  the	
  log(BPL)-­‐subtracted	
  log(PSD)	
  
	
  
“Whitened”	
  because	
  a	
  *properly*	
  detrended	
  colored	
  noise	
  spectrum	
  is	
  a	
  white	
  noise	
  spectrum.	
  
	
  
“Decorrelated”	
  because	
  detrended	
  spectral	
  values	
  are	
  uncorrelated	
  	
  
	
  
BPL	
  =	
  
“Background	
  
Power	
  Law”	
  
	
  
PSD	
  =	
  
“Power	
  Spectral	
  
Density”	
  
The	
  Detrended	
  PSD	
  	
  	
  (conEnued)	
  
“Detrended	
  PSD”	
  is	
  appropriate	
  in	
  both	
  the	
  regular-­‐regular	
  and	
  log-­‐log	
  domains:	
  removal	
  of	
  
the	
   background	
   power	
   law	
   amounts	
   to	
   addi9ve	
   detrending	
   in	
   the	
   log	
   domain	
   and	
  
mul9plica9ve	
  detrending	
  in	
  the	
  regular	
  domain.	
  
	
  
IMHO,	
   “Detrended	
   PSD”	
   is	
   unambiguous	
   (its	
   meaning	
   is	
   fairly	
   straighLorward	
   and	
   easily	
  
communicated)	
  and	
  unassuming	
  (it	
  states	
  only	
  that	
  you’ve	
  detrended	
  a	
  power	
  spectrum,	
  not	
  
that	
  you	
  did	
  it	
  correctly).	
  	
  
	
  
The	
  terms	
  	
  “whitened	
  spectrum”	
  and	
  “decorrelated	
  spectrum”	
  both	
  presume	
  you’ve	
  properly	
  
whitened	
  your	
  spectrum,	
  which	
  is	
  not	
  always	
  the	
  case	
  (next	
  few	
  slides!).	
  
GOAL:	
  we	
  want	
  a	
  “detrended	
  PSD”	
  that	
  is	
  
robust	
  against	
  the	
  aforemen9oned	
  
calibra9on	
  errors	
  and	
  also	
  properly	
  
docorrelates/whitens	
  our	
  power	
  spectra.	
  
How	
  to	
  NOT	
  detrend:	
  First	
  Differencing	
  (“Pre-­‐Whitening”	
  )	
  
Pro:	
   The	
   peaks	
   and	
   rela9ve	
   differences	
   (spectral	
  
morphology)	
  remain	
  unchanged	
  
Con:	
   The	
   unaware	
   data	
   analyst	
   might	
   assume	
   one	
  
loca9on	
  had	
  greater	
  power	
  fluctua9ons	
  than	
  another	
  (in	
  
the	
  case	
  of	
  one	
  properly-­‐	
  and	
  one	
  improperly-­‐calibrated	
  
magnetometers)	
  
Con:	
   Detrending	
   the	
   spectrum	
  
via	
   “pre-­‐whitening”	
   (first-­‐
differencing	
   the	
   9me	
   series)	
   is	
  
not	
   fully	
   robust	
   against	
   the	
  
aforemen9oned	
   calibra9on	
  
issues.	
  	
  
C o n :	
   s p e c t r a	
   a r e	
   N O T	
  
decorrelated,	
   i.e.,	
   the	
   spectra	
  
are	
   typically	
   not	
   whitened,	
  
despite	
   the	
   name	
   “pre-­‐
whitening.”	
  
Where	
  “Pre-­‐Whitening”	
  Goes	
  Wrong	
  	
  
In	
  prac9ce	
  most	
  people	
  use	
  first	
  differencing	
  to	
  
pre-­‐whiten	
  a	
  discrete-­‐9me	
  sequence.	
  However,	
  
one	
   may	
   choose	
   any	
   numerical	
   deriva9ve	
  
without	
   avoiding	
   the	
   shortcomings	
   of	
   this	
  
method.	
  	
  
	
  
If	
   you	
   work	
   out	
   the	
   math	
   in	
   the	
   con9nuous-­‐
9me	
   senng	
   using	
   the	
   normal	
   deriva9ve,	
   you	
  
will	
   find	
   that	
   the	
   method	
   of	
   pre-­‐whitening	
  
assumes	
  your	
  spectra	
  have	
  a	
  BPL	
  with	
  spectral	
  
index	
  of	
  2,	
  i.e.,	
  a	
  Brownian	
  MoEon	
  spectrum	
  
	
   -­‐-­‐	
   the	
   spectral	
   index	
   of	
   geomagne9c	
   9me	
  
series	
   varies	
   between	
   1.5	
   and	
   2.5	
   all	
  
throughout	
   the	
   day,	
   by	
   la9tude,	
   and	
   by	
  
geomagne9c	
  ac9vity	
  
How	
  to	
  NOT	
  detrend	
  a	
  PSD:	
  	
  
	
  	
  	
  	
  Least-­‐Squares	
  Log-­‐Linear	
  Fit	
  over	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  EnEre	
  Spectrum	
  
Pro:	
   As	
   with	
   “pre-­‐whitening,”	
   the	
   peaks	
   and	
   rela9ve	
  
differences	
  (spectral	
  morphology)	
  remain	
  unchanged.	
  
	
  
Pro:	
   Unlike	
   pre-­‐whitening,	
   this	
   method	
   at	
   least	
   is	
   robust	
  
against	
  calibra9on	
  issues:	
  the	
  3	
  spectra	
  are	
  iden9cal	
  
This	
  is	
  because	
  no	
  assumpEon	
  is	
  made	
  about	
  the	
  logarithmic	
  
slope	
  and	
  offset:	
  they	
  are	
  esEmated,	
  not	
  prescribed.	
  
	
  
Con:	
   The	
   unaware	
   data	
   analyst	
   might	
   assume	
   the	
   lower	
  
frequency	
   band	
   have	
   much	
   greater	
   power	
   fluctua9ons	
  
than	
  higher	
  frequency	
  bands.	
  
	
  
Con:	
  Like	
  pre-­‐whitening,	
  the	
  spectra	
  are	
  typically	
  not	
  fully	
  
whitened/decorrelated	
  using	
  this	
  method.	
  
	
  
Where	
  the	
  Least-­‐Square	
  Log-­‐Linear	
  Fit	
  over	
  the	
  EnEre	
  
Spectrum	
  Goes	
  Wrong!	
  
Theore9cally,	
   this	
   should	
   work,	
   but	
   in	
   prac9ce	
   a	
  
magnetometer	
  has	
  a	
  “noise	
  floor”	
  -­‐-­‐-­‐	
  NEXT	
  SLIDE!	
  
PSD	
  Noise	
  Floor	
  
In	
  most	
  geomagne9c	
  power	
  spectra	
  obtained	
  via	
  fluxgate	
  magnetometers,	
  one	
  encounters	
  a	
  
“noise	
  floor”	
  in	
  the	
  high-­‐frequency	
  range	
  of	
  the	
  PSD.	
  The	
  noise	
  floor	
  is	
  the	
  high-­‐frequency	
  
region	
  of	
  the	
  spectra	
  dominated	
  by	
  white	
  noise	
  power	
  rather	
  than	
  signal	
  power.	
  A	
  noise	
  
floor	
  is	
  very	
  easy	
  to	
  see	
  in	
  the	
  log-­‐log	
  domain.	
  
The	
  noise	
  floor	
  limits	
  what	
  frequency	
  bands	
  are	
  amenable	
  to	
  es9ma9on	
  of	
  geophysical	
  signal	
  
power.	
  For	
  example,	
  magnetometers	
  that	
  measure	
  the	
  geomagne9c	
  field	
  at	
  1-­‐Hz	
  correspond	
  to	
  
a	
  Nyquist	
  period	
  of	
  2-­‐sec,	
  which	
  means	
  that	
  we	
  should	
  be	
  able	
  to	
  resolve	
  the	
  spectral	
  power	
  of	
  
periodici9es	
  as	
  short	
  as	
  ~2	
  seconds.	
  However,	
  in	
  many	
  magnetometer	
  9me	
  series	
  I’ve	
  worked	
  
with,	
  geomagne9c	
  PSD	
  es9mates	
  cannot	
  be	
  resolved	
  un9l	
  about	
  30-­‐45	
  second	
  periodici9es	
  (top	
  
half	
  of	
  Pc3	
  band)	
  
How	
  to	
  More	
  Reliably	
  Detrend	
  the	
  PSD	
  
Least-­‐Squares	
  Log-­‐Linear	
  over	
  the	
  first	
  5%	
  of	
  the	
  lower	
  
frequencies	
  
-­‐-­‐	
  this	
  way	
  has	
  more	
  pros	
  than	
  last	
  two	
  methods	
  
-­‐-­‐	
  however,	
  there	
  exist	
  yet	
  more	
  sophis9cated	
  ways	
  that	
  some	
  argue	
  are	
  much	
  beHer	
  
	
  
Why	
  just	
  5%?	
  
(i)  In	
  many	
  types	
  of	
  9me	
  series	
  of	
  measurements	
  (not	
  just	
  magnetometers)	
  there	
  exists	
  a	
  
point	
  in	
  the	
  higher	
  frequencies	
  where	
  the	
  signal	
  power	
  is	
  no	
  longer	
  stronger	
  than	
  the	
  
white	
  noise	
  power.	
  As	
  demonstrated,	
  an	
  undetected	
  high-­‐frequency	
  noise	
  floor	
  will	
  kill	
  
your	
  fit	
  if	
  fit	
  is	
  over	
  the	
  whole	
  spectrum	
  
(ii)  Even	
  without	
  a	
  noise	
  floor,	
  any	
  rela9ve	
  enhancement	
  or	
  deple9on	
  across	
  a	
  high-­‐
frequency	
  band	
  will	
  severely	
  bias	
  the	
  logarithmic	
  slope	
  and	
  offset.	
  (Bands	
  are	
  defined	
  
logarithmically,	
  white	
  the	
  DFT	
  frequencies	
  are	
  spaced	
  linearly.)	
  
EXAMPLE:	
  in	
  a	
  1-­‐hour	
  window	
  of	
  a	
  1-­‐Hz	
  9me	
  series,	
  the	
  Pc4-­‐Pc6	
  bands	
  cons9tute	
  ~4.4%	
  of	
  all	
  
the	
   frequencies,	
   while	
   the	
   Pc3	
   band	
   makes	
   up	
   ~15.6%.	
   The	
   rest	
   is	
   usually	
   the	
   noise	
   floor	
  
(~80%	
  of	
  the	
  DFT	
  frequencies!).	
  Should	
  one	
  fit	
  over	
  the	
  Pc3-­‐Pc6	
  band?	
  	
  (HINT:	
  No.)	
  
	
  
Any	
  power	
  bump	
  or	
  lull	
  across	
  the	
  Pc3	
  band	
  will	
  strongly	
  dominate	
  the	
  fit.	
  Even	
  if	
  one	
  fits	
  
over	
  the	
  lowest	
  quarter	
  of	
  the	
  Pc3	
  band,	
  that	
  is	
  ~70	
  Pc3	
  frequences,	
  which	
  is	
  almost	
  the	
  
amount	
  of	
  frequencies	
  in	
  Pc4-­‐6.	
  	
  
	
  
For	
  geomagneEc	
  fluxgate	
  data:	
  Just	
  fit	
  over	
  the	
  Pc4-­‐Pc6	
  bands,	
  which	
  cons9tutes	
  
just	
  under	
  the	
  first	
  5%	
  of	
  low	
  frequencies	
  in	
  the	
  spectrum.	
  This	
  is	
  in	
  line	
  with	
  what	
  
many	
  sta9s9cians	
  recommend	
  and	
  is	
  comparable	
  to	
  maximum-­‐likelihood	
  
parameter	
  es9ma9on	
  (which	
  I	
  have	
  not	
  tried).	
  One	
  may	
  even	
  include	
  the	
  low	
  
~10%	
  of	
  the	
  Pc3	
  band	
  (~28	
  frequencies	
  for	
  a	
  1-­‐Hr	
  window	
  of	
  a	
  1-­‐Hz	
  9me	
  series).	
  
Least-­‐Squares	
  Log-­‐Linear	
  over	
  the	
  first	
  5%	
  of	
  the	
  lower	
  
frequencies	
  
Another	
  bit	
  about	
  the	
  Noise	
  Floor	
  
The	
  noise	
  floor	
  can	
  actually	
  be	
  used	
  to	
  recalibrate	
  the	
  data	
  from	
  a	
  magnetometer.	
  We	
  
showed	
  that	
  the	
  mis-­‐calibra9on	
  results	
  in	
  a	
  logarithmic	
  offset,	
  and	
  nothing	
  more.	
  If	
  one	
  
has	
   data	
   from	
   the	
   magnetometer	
   during	
   a	
   9me	
   when	
   it	
   was	
   known	
   to	
   be	
   properly	
  
calibrated,	
  then	
  one	
  can	
  shiW	
  the	
  spectra	
  by	
  the	
  appropriate	
  logarithmic	
  offset	
  during	
  
dates	
  when	
  the	
  magnetometer	
  was	
  mis-­‐calibrated.	
  	
  
	
  
For	
  the	
  AGOs,	
  the	
  magnetometers	
  were	
  properly	
  calibrated	
  in	
  the	
  last	
  1990s.	
  If	
  absolute	
  
power	
  data	
  is	
  desired,	
  we	
  can	
  likely	
  develop	
  a	
  scheme	
  for	
  adjus9ng	
  data	
  in	
  later	
  years.	
  
(The	
  magnetometers	
  are	
  no	
  longer	
  accessible	
  to	
  calibrate	
  -­‐-­‐-­‐	
  they	
  are	
  deep	
  down	
  inside	
  
the	
  ice.)	
  
Black:	
  PSD(data)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Orange:	
  PSD(0.333*data)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Blue:	
  PSD(0.11*data)	
  
	
  
Black:	
  data	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Orange:	
  0.333*data	
  
Blue:	
  0.11*data	
  
	
  
See	
  Slide	
  5	
  again	
  for	
  context.	
  
The	
  Detrended	
  PSD:	
  not	
  just	
  good	
  for	
  imperfect	
  data	
  
The	
   raw	
   geomagne9c	
   power	
  
spectra	
   are	
   strongly	
   correlated	
  
over	
   9me,	
   e.g.,	
   when	
   a	
   CME	
  
strikes	
  the	
  Earth,	
  the	
  geomagne9c	
  
noise	
   power	
   (i.e.,	
   the	
   BPL)	
  
increases	
   across	
   the	
   spectrum.	
  
Strong	
   correla9ons	
   found	
  
between	
  power	
  is	
  separate	
  bands	
  
during,	
   say,	
   solar	
   wind	
   ac9vity,	
  
then,	
  is	
  fairly	
  trivial.	
  	
  
The	
  detrended	
  spectrum,	
  however,	
  shows	
  us	
  informa9on	
  about	
  strong,	
  
coherent	
  waves	
  (enhancements	
  above	
  the	
  noise)	
  and	
  evidence	
  of	
  band-­‐
filtering	
  (significant	
  deple9ons	
  below	
  the	
  noise	
  spectrum).	
  If	
  these	
  were	
  
real	
  spectra,	
  we	
  would	
  no9ce	
  that	
  the	
  wave	
  ac9vity,	
  although	
  enhanced	
  
by	
  the	
  solar	
  wind	
  along	
  with	
  the	
  BPL,	
  is	
  actually	
  fairly	
  independent	
  of	
  it.	
  
Let’s	
  assume	
  our	
  magnetometer	
  is	
  perfectly	
  calibrated	
  and	
  pretend	
  t1	
  is	
  a	
  spectrum	
  computed	
  
on	
  a	
  geomagne9cally	
  quiet	
  day,	
  and	
  that	
  t2	
  is	
  a	
  spectrum	
  computed	
  during	
  the	
  passage	
  of	
  a	
  
coronal	
  mass	
  ejec9on	
  [CME].	
  
Log(PSD)	
  
Log(Frequency)	
  
t1	
  
Detrended	
   Detrended	
  
Log(PSD)	
  
t2	
  
Log(Frequency)	
  
Two	
   of	
   these	
   spectra	
   have	
   about	
   the	
   same	
  
logarithmic	
   slope	
   (aka	
   “spectral	
   index”),	
   but	
   vastly	
  
logarithmic	
  offsets.	
  	
  	
  
	
  
Two	
  of	
  them	
  have	
  the	
  same	
  logarithmic	
  offset,	
  but	
  
vastly	
  different	
  spectral	
  indices.	
  
	
  
However,	
  if	
  one	
  properly	
  detrendeds	
  the	
  spectrum,	
  
the	
   detrended	
   spectrum	
   is	
   the	
   same	
   for	
   both.	
   We	
  
just	
  said	
  this	
  was	
  a	
  good	
  thing!	
  But	
  it	
  is	
  not	
  always	
  a	
  
good	
  thing.	
  
LimitaEons	
  of	
  the	
  Detrended	
  PSD	
  in	
  isolaEon	
  
However,	
  we	
  do	
  not	
  look	
  at	
  just	
  the	
  DPSD.	
  When	
  
compu9ng	
  the	
  linear	
  fits,	
  we	
  need	
  not	
  throw	
  out	
  this	
  
addi9onal	
  informa9on.	
  	
  
	
  
Even	
  with	
  poorly	
  calibrated	
  data,	
  the	
  spectral	
  index	
  is	
  leW	
  
unharmed.	
  The	
  offset	
  will	
  differ,	
  but	
  only	
  between	
  
magnetometers,	
  for	
  example.	
  It	
  is	
  s9ll	
  very	
  useful	
  for	
  a	
  
given	
  magnetometer	
  to	
  gauge	
  how	
  the	
  total	
  power	
  is	
  
varying	
  over	
  9me.	
  
DATA	
  QUALITY	
  RECAP	
  
THE	
  MOST	
  IMPORTANT	
  TAKE	
  AWAY:	
  
Quality	
  issues	
  in	
  the	
  9me	
  domain	
  do	
  not	
  necessarily	
  map	
  to	
  the	
  frequency	
  domain,	
  and	
  those	
  
that	
  do	
  can	
  be	
  controlled	
  and	
  mi9gated.	
  
	
  
•  Absolute	
  field	
  data	
  and	
  variometer-­‐quality	
  data	
  essen9ally	
  have	
  the	
  same	
  power	
  spectrum	
  
	
  
•  Spectral	
  morphology	
  (shape	
  and	
  log	
  slope)	
  is	
  “invariant	
  under	
  calibra9on	
  error.”	
  I.e.,	
  a	
  
poorly-­‐calibrated	
  magnetometer	
  s9ll	
  gives	
  us	
  a	
  lot	
  of	
  relevant	
  informa9on.	
  	
  
	
  
•  If	
  necessary,	
  one	
  can	
  re-­‐adjust	
  the	
  poorly-­‐calibrated	
  data	
  to	
  approximately	
  absolute	
  values	
  if	
  
one	
  knows	
  the	
  what	
  the	
  noise	
  floor	
  is	
  supposed	
  to	
  be.	
  
	
  
•  However,	
  magnetometers	
  of	
  varying	
  calibra9on	
  quality	
  can	
  always	
  be	
  compared	
  using	
  
detrended	
  power	
  spectra,	
  which	
  when	
  done	
  properly	
  is	
  “invariant	
  under	
  calibra9on	
  error.”	
  
	
  
•  Although	
  there	
  are	
  many	
  ways	
  to	
  detrend	
  spectra,	
  all	
  detrending	
  schemes	
  are	
  not	
  created	
  
equal:	
  one	
  should	
  choose	
  a	
  scheme	
  that	
  will	
  live	
  up	
  to	
  the	
  synonyms	
  of	
  detrended	
  spectra:	
  
whitened,	
  decorrelated	
  
	
  
•  Detrended	
  power	
  spectra	
  are	
  great	
  for	
  telling	
  you	
  about	
  which	
  bands	
  hold	
  coherent	
  wave	
  
energy	
  and	
  which	
  bands	
  have	
  been	
  filtered	
  (somehow).	
  However,	
  they	
  hold	
  no	
  informa9on	
  
concerning	
  the	
  background	
  geomagne9c	
  noise	
  (logarithmic	
  slope	
  and	
  offset	
  /	
  absolute	
  
values).	
  
Conclusion	
  
You	
  can	
  trust	
  my	
  spectral	
  data	
  and	
  data	
  products	
  
derived	
  from	
  the	
  spectral	
  data.	
  	
  	
  

Contenu connexe

Tendances

Analysis and Compression of Reflectance Data Using An Evolved Spectral Correl...
Analysis and Compression of Reflectance Data Using An Evolved Spectral Correl...Analysis and Compression of Reflectance Data Using An Evolved Spectral Correl...
Analysis and Compression of Reflectance Data Using An Evolved Spectral Correl...
Peter Morovic
 
2015-04 PhD defense
2015-04 PhD defense2015-04 PhD defense
2015-04 PhD defense
Nil Garcia
 

Tendances (20)

TURBO EQUALIZER
TURBO EQUALIZERTURBO EQUALIZER
TURBO EQUALIZER
 
Department of Avionics Engineering The Superior University, Lahore Lab Manual...
Department of Avionics Engineering The Superior University, Lahore Lab Manual...Department of Avionics Engineering The Superior University, Lahore Lab Manual...
Department of Avionics Engineering The Superior University, Lahore Lab Manual...
 
Birch
BirchBirch
Birch
 
Birch1
Birch1Birch1
Birch1
 
PWL Denver: Copysets
PWL Denver: CopysetsPWL Denver: Copysets
PWL Denver: Copysets
 
NON PARAMETRIC METHOD
NON PARAMETRIC METHODNON PARAMETRIC METHOD
NON PARAMETRIC METHOD
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using Spark
 
Paper description of "Reformer"
Paper description of "Reformer"Paper description of "Reformer"
Paper description of "Reformer"
 
Db Scan
Db ScanDb Scan
Db Scan
 
Analysis and Compression of Reflectance Data Using An Evolved Spectral Correl...
Analysis and Compression of Reflectance Data Using An Evolved Spectral Correl...Analysis and Compression of Reflectance Data Using An Evolved Spectral Correl...
Analysis and Compression of Reflectance Data Using An Evolved Spectral Correl...
 
PR-183: MixNet: Mixed Depthwise Convolutional Kernels
PR-183: MixNet: Mixed Depthwise Convolutional KernelsPR-183: MixNet: Mixed Depthwise Convolutional Kernels
PR-183: MixNet: Mixed Depthwise Convolutional Kernels
 
Clustering: Large Databases in data mining
Clustering: Large Databases in data miningClustering: Large Databases in data mining
Clustering: Large Databases in data mining
 
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
 
Density Based Clustering
Density Based ClusteringDensity Based Clustering
Density Based Clustering
 
Three Element Beam forming Algorithm with Reduced Interference Effect in Sign...
Three Element Beam forming Algorithm with Reduced Interference Effect in Sign...Three Element Beam forming Algorithm with Reduced Interference Effect in Sign...
Three Element Beam forming Algorithm with Reduced Interference Effect in Sign...
 
ShuffleNet - PR054
ShuffleNet - PR054ShuffleNet - PR054
ShuffleNet - PR054
 
201907 AutoML and Neural Architecture Search
201907 AutoML and Neural Architecture Search201907 AutoML and Neural Architecture Search
201907 AutoML and Neural Architecture Search
 
2015-04 PhD defense
2015-04 PhD defense2015-04 PhD defense
2015-04 PhD defense
 
Performance Analysis of Rake Receivers in IR–UWB System
Performance Analysis of Rake Receivers in IR–UWB System Performance Analysis of Rake Receivers in IR–UWB System
Performance Analysis of Rake Receivers in IR–UWB System
 
Efficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter SharingEfficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter Sharing
 

En vedette (12)

Smart Metering Products and Solutions.
Smart Metering Products and Solutions.Smart Metering Products and Solutions.
Smart Metering Products and Solutions.
 
فصل سوم کتاب هچ
فصل سوم کتاب هچفصل سوم کتاب هچ
فصل سوم کتاب هچ
 
Assim mix qc_pf
Assim mix qc_pfAssim mix qc_pf
Assim mix qc_pf
 
Nscs february 2014 meeting
Nscs february 2014 meetingNscs february 2014 meeting
Nscs february 2014 meeting
 
A rádiós és televíziós műsorszórás kialakulása, fejlődése
A rádiós és televíziós műsorszórás kialakulása, fejlődése A rádiós és televíziós műsorszórás kialakulása, fejlődése
A rádiós és televíziós műsorszórás kialakulása, fejlődése
 
Bab 9 percobaan pidana
Bab 9   percobaan pidanaBab 9   percobaan pidana
Bab 9 percobaan pidana
 
Anatomie: organul vestibulocohlear
Anatomie: organul vestibulocohlearAnatomie: organul vestibulocohlear
Anatomie: organul vestibulocohlear
 
Patogenia Bolii Celiace
Patogenia Bolii CeliacePatogenia Bolii Celiace
Patogenia Bolii Celiace
 
Nscs november meeting minutes
Nscs november meeting minutesNscs november meeting minutes
Nscs november meeting minutes
 
ijc 29918
ijc 29918ijc 29918
ijc 29918
 
Salesforce Spring 14 Release Developer Overview
Salesforce Spring 14 Release Developer OverviewSalesforce Spring 14 Release Developer Overview
Salesforce Spring 14 Release Developer Overview
 
Kecakapan top
Kecakapan topKecakapan top
Kecakapan top
 

Similaire à 2015-Mar-02: AGO Fluxgate Data: Extracting value from an imperfect time series

ENGR543_FinalReport_TungNguyen
ENGR543_FinalReport_TungNguyenENGR543_FinalReport_TungNguyen
ENGR543_FinalReport_TungNguyen
Tung Nguyen
 
Intro tosignalprocessing
 Intro tosignalprocessing Intro tosignalprocessing
Intro tosignalprocessing
JuanJTovarP
 
Thesis_powerpoint
Thesis_powerpointThesis_powerpoint
Thesis_powerpoint
Tim Costa
 
NASA Fundamental of FSO.pdf
NASA Fundamental of FSO.pdfNASA Fundamental of FSO.pdf
NASA Fundamental of FSO.pdf
zoohir
 
Denoising of image using wavelet
Denoising of image using waveletDenoising of image using wavelet
Denoising of image using wavelet
Asim Qureshi
 

Similaire à 2015-Mar-02: AGO Fluxgate Data: Extracting value from an imperfect time series (20)

ENGR543_FinalReport_TungNguyen
ENGR543_FinalReport_TungNguyenENGR543_FinalReport_TungNguyen
ENGR543_FinalReport_TungNguyen
 
sub topics of NMR.pptx
sub topics of NMR.pptxsub topics of NMR.pptx
sub topics of NMR.pptx
 
Digital signal transmission in ofc
Digital signal transmission in ofcDigital signal transmission in ofc
Digital signal transmission in ofc
 
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
 
Path inclination
Path inclinationPath inclination
Path inclination
 
120_SEM_Special_Topics.ppt
120_SEM_Special_Topics.ppt120_SEM_Special_Topics.ppt
120_SEM_Special_Topics.ppt
 
Sparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
Sparsity based Joint Direction-of-Arrival and Offset Frequency EstimatorSparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
Sparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
 
Intro tosignalprocessing
 Intro tosignalprocessing Intro tosignalprocessing
Intro tosignalprocessing
 
Bp wireless-network-perf
Bp wireless-network-perfBp wireless-network-perf
Bp wireless-network-perf
 
3d resistivity imaging technique
3d resistivity imaging technique3d resistivity imaging technique
3d resistivity imaging technique
 
Thesis_powerpoint
Thesis_powerpointThesis_powerpoint
Thesis_powerpoint
 
40520130101002
4052013010100240520130101002
40520130101002
 
Bessel Companding Transform for reducing PAPR, OBI and BER in OFDM Systems
Bessel Companding Transform for reducing PAPR, OBI and BER in OFDM SystemsBessel Companding Transform for reducing PAPR, OBI and BER in OFDM Systems
Bessel Companding Transform for reducing PAPR, OBI and BER in OFDM Systems
 
NASA Fundamental of FSO.pdf
NASA Fundamental of FSO.pdfNASA Fundamental of FSO.pdf
NASA Fundamental of FSO.pdf
 
Ophir FluxGage - How is it used?
Ophir FluxGage - How is it used?Ophir FluxGage - How is it used?
Ophir FluxGage - How is it used?
 
Development of fpga based system for neutron flux monitoring in fast breeder ...
Development of fpga based system for neutron flux monitoring in fast breeder ...Development of fpga based system for neutron flux monitoring in fast breeder ...
Development of fpga based system for neutron flux monitoring in fast breeder ...
 
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSKSimulation Study and Performance Comparison of OFDM System with QPSK and BPSK
Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK
 
Denoising of image using wavelet
Denoising of image using waveletDenoising of image using wavelet
Denoising of image using wavelet
 
Design of rectangular patch antenna array using advanced design methodology
Design of rectangular patch antenna array using advanced design methodologyDesign of rectangular patch antenna array using advanced design methodology
Design of rectangular patch antenna array using advanced design methodology
 
Iisrt 3-design of rectangular patch antenna array using advanced design metho...
Iisrt 3-design of rectangular patch antenna array using advanced design metho...Iisrt 3-design of rectangular patch antenna array using advanced design metho...
Iisrt 3-design of rectangular patch antenna array using advanced design metho...
 

Dernier

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
RohitNehra6
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 

Dernier (20)

SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 

2015-Mar-02: AGO Fluxgate Data: Extracting value from an imperfect time series

  • 1. AGO Fluxgate Data Extracting value from an imperfect time series Kevin  Urban,  NJIT,  2015-­‐Mar-­‐02  
  • 2. This presentation is NOT about “Perfect Data” Perfect  Data   Evenly  sampled:    No  need  for  downsampling  to  use  FFT  techniques;  no   need  to  use  more  sophis9cated  non-­‐FFT  techniques.     ConEnuously  sampled:  No  missing  data;  no  need  to  interpolate  or   downsample.     Properly  calibrated:  the  9me  series  values  are  exact  to  a  specified   uncertainty  (this  is  in  contrast  to  those  9me  series  that  have  an  inexact   constant  offset,  but  an  exact  deriva9ve).     No  noise  contaminaEon:  the  spectra  are  resolved  all  the  way  through  to   the  high  frequency  end  of  the  spectrum  (in  contrast  to  noisy  9me  series   which  have  a  “noise  floor”  in  the  spectral  domain  which  tends  to  flaHen   out  and  dominate  the  high-­‐frequency  end  of  the  spectrum).  
  • 3. This presentation is about “Imperfect Data” Imperfect,  Evenly  Sampled  Data     Improperly   calibrated:   the   9me   series   values   are   not   exact:   in   addi9on   to   a   constant   offset,   there   exists   an   improper   scaling,   which   slowly   changes   over   intervals  much  longer  than  scales  of  interest  (e.g.,  over  months  or  years  when   we  care  about  periods  of  3  –  20  mins).     Noise  contaminaEon:  the  high  frequency  end  of  the  spectrum  is  dominated  by  a   noise  floor,  which  affects  how  one  can  analyze  and  transform  the  data.       Reserved  for  future  talks   Data   gaps:   Some   missing   data,   presumed   small   rela9ve   to   scales   of   interest   (e.g.,  3  con9guous  seconds  when  we  care  about  periods  of  3  mins  or  greater)  or   moderately-­‐sized  (e.g.,  1  min  data  gap  when  we  care  about  periods  3-­‐10  mins);   need  to  interpolate  or  downsample.     Unevenly  sampled  data   To   use   FFT   techniques,   one   needs   evenly   sampled   data   and   so   one   must   downsample  to  an  evenly  sampled  9me  series  or  one  may  resort  to  alterna9ve   techniques  (e.g.,  Lomb-­‐Scargle).    
  • 4. Inexact  values  up  to  a  constant  offset:    exact  deriva4ve   •  Absolute:  Some  people  care  about  the  absolute  value  of  the  geomagne9c  field;   these  people  are  usually  geologists  of  some  variety       •  Variometer:  Magnetosphere/ionosphere  scien9sts  are  oWen  less  stringent,  caring   mostly  about  the  field’s  deriva9ve,  or  rela9ve  varia9ons.     -­‐-­‐  i.e.,  the  data’s  mean  offset  from  zero  is  trivial  -­‐-­‐-­‐  so  one  might  as  well   standardize  the  mean  offset  to  zero  (Zero  Mean  Sequence),  which  is  necessary   fully  benefit  from  many  spectral  techniques  (e.g.,  windowing).   Absolute   Magnetometer   Data     Variometer-­‐ Quality  Data   45015     45010     45005     45000     44995     44990   nT   15     10     5     0     -­‐5     -­‐10   nT   Eme   Variometer Data
  • 5. Spectrally,  the  only  difference  between  the  two  data  types  is  in  the  “DC  offset”  –  or,  “zero   frequency”  power  contribu9on:    the  non-­‐varying,  constant  background  component.     •  This  is  just  ONE  SPECTRAL  VALUE     Geologists  care  about  this  term  immensely  in  order  to  study  the  gradual  decay  and/or  growth   of  the  main  field  over  years,  centuries,  etc.  However,  this  term  is  largely  irrelevant  to  many   magnetosphere-­‐ionosphere  studies  where  we  are  interested  in  changes  in  the  field  on  the   order  of  hours,  minutes,  seconds,  and  shorter!   In  the  spectral  domain,  there  is  a  trivial  difference  between  “absolute”  and   “variometer”  data   Absolute   Magnetometer   Data     Variometer-­‐ Quality  Data   Every  spectral   component  except  the   first  is  idenEcal!     Variometer Data
  • 6. Example: Calibration Issue What  if  the  variometer’s  calibra9on  between  registered  voltages  and  actual  field   values  is  off  by  a  constant  factor?     Spectrally  we  get  the  same  informaEon   concerning   peaks.   However,   the   exac9tude   of   the   actual   values   may   no   longer  be  absolutely  trustworthy.   Black:  data              Red:  0.85*data   The  detrended  versions  of  these  power   spectra  are  iden9cal  when  one  uses  a  robust   detrending  scheme  (shown  later).     Inexact  values;    inexact  deriva4ve  up  to  scale  factor   Scaled Variometer Data
  • 7. Example: Evolving Calibration Issue What  if  the  variometer  is  inaccessible  (e.g.,  lost  10  feet  under  ice,  but  s9ll  recording)   and  one  no9ces  the  mean  spectral  amplitudes  are  unnaturally  decaying  over  9me?     Possible  causes  (fluxgate  magnetometer  under  ice  in  Antarc9ca):   •  Calibra9on  sensors  degrading  in  quality   •  Slow  rota9on  of  magnetometer  out  of  ini9al  coordinate  system  due  to  slow  ice  flow   •  Slow  rota9on  of  the  Earth’s  main  field,  effec9vely  rota9ng  magnetometer  out  of  its   presumed  coordinate  system   Black:  PSD(data)                         Orange:   PSD(0.333*data)                     Blue:  PSD(0.11*data)     Black:  data                         Orange:  0.333*data   Blue:  0.11*data     NOTHING  TO  FEAR:    One  can  s9ll  extract  value  from  such  data.  The  detrended  versions  of  these   power  spectra  are  iden9cal  when  one  uses  a  robust  detrending  scheme  (next  few  slides).     Scaled Variometer Data
  • 8. Extracting value from “Imperfect Data”   Given  we  have  slowly  evolving,   improperly  scaled  variometer  data,   exactly  what  value  can  we  sEll   extract  from  it,  and  how?    
  • 9. The  Background  Power  Law  [BPL]     Geomagne9c  power  spectra  oWen  appear  to  fluctuate  about  a  background  power   law.     *  Note  the  two  uses  of  “power”  here:       (1)  “Power  spectra”  refers  to  signal  “energy”  (or  signal  variance)  decomposed   by  frequency.     (2)  “Power  law”  refers  to  an  exponent  (e.g.,  inverse  square  root,  quadraEc,  etc)      
  • 10. The  Detrended  PSD   Some9mes   called   a   Rela9ve   PSD,   Residual   PSD,   or   Whitened   PSD.   One   may   even   call   it   a   “decorrelated  spectrum.”     “RelaEve”  makes  sense  in  regular-­‐regular  domain  since  PSD{f}    =  DPSD{f}*BPL{f},       -­‐-­‐  detrended  spectra  are  enhancements/depleEons  relaEve  to  the  BPL     “Residual”  makes  sense  in  the  log-­‐log  domain  since:      Log{PSD}  =  Log(DPSD)  +  Log(BPL)                       -­‐-­‐  detrended  spectra  are  the  residuals  of  the  log(BPL)-­‐subtracted  log(PSD)     “Whitened”  because  a  *properly*  detrended  colored  noise  spectrum  is  a  white  noise  spectrum.     “Decorrelated”  because  detrended  spectral  values  are  uncorrelated       BPL  =   “Background   Power  Law”     PSD  =   “Power  Spectral   Density”  
  • 11. The  Detrended  PSD      (conEnued)   “Detrended  PSD”  is  appropriate  in  both  the  regular-­‐regular  and  log-­‐log  domains:  removal  of   the   background   power   law   amounts   to   addi9ve   detrending   in   the   log   domain   and   mul9plica9ve  detrending  in  the  regular  domain.     IMHO,   “Detrended   PSD”   is   unambiguous   (its   meaning   is   fairly   straighLorward   and   easily   communicated)  and  unassuming  (it  states  only  that  you’ve  detrended  a  power  spectrum,  not   that  you  did  it  correctly).       The  terms    “whitened  spectrum”  and  “decorrelated  spectrum”  both  presume  you’ve  properly   whitened  your  spectrum,  which  is  not  always  the  case  (next  few  slides!).   GOAL:  we  want  a  “detrended  PSD”  that  is   robust  against  the  aforemen9oned   calibra9on  errors  and  also  properly   docorrelates/whitens  our  power  spectra.  
  • 12. How  to  NOT  detrend:  First  Differencing  (“Pre-­‐Whitening”  )   Pro:   The   peaks   and   rela9ve   differences   (spectral   morphology)  remain  unchanged   Con:   The   unaware   data   analyst   might   assume   one   loca9on  had  greater  power  fluctua9ons  than  another  (in   the  case  of  one  properly-­‐  and  one  improperly-­‐calibrated   magnetometers)   Con:   Detrending   the   spectrum   via   “pre-­‐whitening”   (first-­‐ differencing   the   9me   series)   is   not   fully   robust   against   the   aforemen9oned   calibra9on   issues.     C o n :   s p e c t r a   a r e   N O T   decorrelated,   i.e.,   the   spectra   are   typically   not   whitened,   despite   the   name   “pre-­‐ whitening.”  
  • 13. Where  “Pre-­‐Whitening”  Goes  Wrong     In  prac9ce  most  people  use  first  differencing  to   pre-­‐whiten  a  discrete-­‐9me  sequence.  However,   one   may   choose   any   numerical   deriva9ve   without   avoiding   the   shortcomings   of   this   method.       If   you   work   out   the   math   in   the   con9nuous-­‐ 9me   senng   using   the   normal   deriva9ve,   you   will   find   that   the   method   of   pre-­‐whitening   assumes  your  spectra  have  a  BPL  with  spectral   index  of  2,  i.e.,  a  Brownian  MoEon  spectrum     -­‐-­‐   the   spectral   index   of   geomagne9c   9me   series   varies   between   1.5   and   2.5   all   throughout   the   day,   by   la9tude,   and   by   geomagne9c  ac9vity  
  • 14. How  to  NOT  detrend  a  PSD:            Least-­‐Squares  Log-­‐Linear  Fit  over                    EnEre  Spectrum   Pro:   As   with   “pre-­‐whitening,”   the   peaks   and   rela9ve   differences  (spectral  morphology)  remain  unchanged.     Pro:   Unlike   pre-­‐whitening,   this   method   at   least   is   robust   against  calibra9on  issues:  the  3  spectra  are  iden9cal   This  is  because  no  assumpEon  is  made  about  the  logarithmic   slope  and  offset:  they  are  esEmated,  not  prescribed.     Con:   The   unaware   data   analyst   might   assume   the   lower   frequency   band   have   much   greater   power   fluctua9ons   than  higher  frequency  bands.     Con:  Like  pre-­‐whitening,  the  spectra  are  typically  not  fully   whitened/decorrelated  using  this  method.    
  • 15. Where  the  Least-­‐Square  Log-­‐Linear  Fit  over  the  EnEre   Spectrum  Goes  Wrong!   Theore9cally,   this   should   work,   but   in   prac9ce   a   magnetometer  has  a  “noise  floor”  -­‐-­‐-­‐  NEXT  SLIDE!  
  • 16. PSD  Noise  Floor   In  most  geomagne9c  power  spectra  obtained  via  fluxgate  magnetometers,  one  encounters  a   “noise  floor”  in  the  high-­‐frequency  range  of  the  PSD.  The  noise  floor  is  the  high-­‐frequency   region  of  the  spectra  dominated  by  white  noise  power  rather  than  signal  power.  A  noise   floor  is  very  easy  to  see  in  the  log-­‐log  domain.   The  noise  floor  limits  what  frequency  bands  are  amenable  to  es9ma9on  of  geophysical  signal   power.  For  example,  magnetometers  that  measure  the  geomagne9c  field  at  1-­‐Hz  correspond  to   a  Nyquist  period  of  2-­‐sec,  which  means  that  we  should  be  able  to  resolve  the  spectral  power  of   periodici9es  as  short  as  ~2  seconds.  However,  in  many  magnetometer  9me  series  I’ve  worked   with,  geomagne9c  PSD  es9mates  cannot  be  resolved  un9l  about  30-­‐45  second  periodici9es  (top   half  of  Pc3  band)  
  • 17. How  to  More  Reliably  Detrend  the  PSD   Least-­‐Squares  Log-­‐Linear  over  the  first  5%  of  the  lower   frequencies   -­‐-­‐  this  way  has  more  pros  than  last  two  methods   -­‐-­‐  however,  there  exist  yet  more  sophis9cated  ways  that  some  argue  are  much  beHer     Why  just  5%?   (i)  In  many  types  of  9me  series  of  measurements  (not  just  magnetometers)  there  exists  a   point  in  the  higher  frequencies  where  the  signal  power  is  no  longer  stronger  than  the   white  noise  power.  As  demonstrated,  an  undetected  high-­‐frequency  noise  floor  will  kill   your  fit  if  fit  is  over  the  whole  spectrum   (ii)  Even  without  a  noise  floor,  any  rela9ve  enhancement  or  deple9on  across  a  high-­‐ frequency  band  will  severely  bias  the  logarithmic  slope  and  offset.  (Bands  are  defined   logarithmically,  white  the  DFT  frequencies  are  spaced  linearly.)   EXAMPLE:  in  a  1-­‐hour  window  of  a  1-­‐Hz  9me  series,  the  Pc4-­‐Pc6  bands  cons9tute  ~4.4%  of  all   the   frequencies,   while   the   Pc3   band   makes   up   ~15.6%.   The   rest   is   usually   the   noise   floor   (~80%  of  the  DFT  frequencies!).  Should  one  fit  over  the  Pc3-­‐Pc6  band?    (HINT:  No.)     Any  power  bump  or  lull  across  the  Pc3  band  will  strongly  dominate  the  fit.  Even  if  one  fits   over  the  lowest  quarter  of  the  Pc3  band,  that  is  ~70  Pc3  frequences,  which  is  almost  the   amount  of  frequencies  in  Pc4-­‐6.      
  • 18. For  geomagneEc  fluxgate  data:  Just  fit  over  the  Pc4-­‐Pc6  bands,  which  cons9tutes   just  under  the  first  5%  of  low  frequencies  in  the  spectrum.  This  is  in  line  with  what   many  sta9s9cians  recommend  and  is  comparable  to  maximum-­‐likelihood   parameter  es9ma9on  (which  I  have  not  tried).  One  may  even  include  the  low   ~10%  of  the  Pc3  band  (~28  frequencies  for  a  1-­‐Hr  window  of  a  1-­‐Hz  9me  series).   Least-­‐Squares  Log-­‐Linear  over  the  first  5%  of  the  lower   frequencies  
  • 19. Another  bit  about  the  Noise  Floor   The  noise  floor  can  actually  be  used  to  recalibrate  the  data  from  a  magnetometer.  We   showed  that  the  mis-­‐calibra9on  results  in  a  logarithmic  offset,  and  nothing  more.  If  one   has   data   from   the   magnetometer   during   a   9me   when   it   was   known   to   be   properly   calibrated,  then  one  can  shiW  the  spectra  by  the  appropriate  logarithmic  offset  during   dates  when  the  magnetometer  was  mis-­‐calibrated.       For  the  AGOs,  the  magnetometers  were  properly  calibrated  in  the  last  1990s.  If  absolute   power  data  is  desired,  we  can  likely  develop  a  scheme  for  adjus9ng  data  in  later  years.   (The  magnetometers  are  no  longer  accessible  to  calibrate  -­‐-­‐-­‐  they  are  deep  down  inside   the  ice.)   Black:  PSD(data)                         Orange:  PSD(0.333*data)                     Blue:  PSD(0.11*data)     Black:  data                         Orange:  0.333*data   Blue:  0.11*data     See  Slide  5  again  for  context.  
  • 20. The  Detrended  PSD:  not  just  good  for  imperfect  data   The   raw   geomagne9c   power   spectra   are   strongly   correlated   over   9me,   e.g.,   when   a   CME   strikes  the  Earth,  the  geomagne9c   noise   power   (i.e.,   the   BPL)   increases   across   the   spectrum.   Strong   correla9ons   found   between  power  is  separate  bands   during,   say,   solar   wind   ac9vity,   then,  is  fairly  trivial.     The  detrended  spectrum,  however,  shows  us  informa9on  about  strong,   coherent  waves  (enhancements  above  the  noise)  and  evidence  of  band-­‐ filtering  (significant  deple9ons  below  the  noise  spectrum).  If  these  were   real  spectra,  we  would  no9ce  that  the  wave  ac9vity,  although  enhanced   by  the  solar  wind  along  with  the  BPL,  is  actually  fairly  independent  of  it.   Let’s  assume  our  magnetometer  is  perfectly  calibrated  and  pretend  t1  is  a  spectrum  computed   on  a  geomagne9cally  quiet  day,  and  that  t2  is  a  spectrum  computed  during  the  passage  of  a   coronal  mass  ejec9on  [CME].   Log(PSD)   Log(Frequency)   t1   Detrended   Detrended   Log(PSD)   t2   Log(Frequency)  
  • 21. Two   of   these   spectra   have   about   the   same   logarithmic   slope   (aka   “spectral   index”),   but   vastly   logarithmic  offsets.         Two  of  them  have  the  same  logarithmic  offset,  but   vastly  different  spectral  indices.     However,  if  one  properly  detrendeds  the  spectrum,   the   detrended   spectrum   is   the   same   for   both.   We   just  said  this  was  a  good  thing!  But  it  is  not  always  a   good  thing.   LimitaEons  of  the  Detrended  PSD  in  isolaEon   However,  we  do  not  look  at  just  the  DPSD.  When   compu9ng  the  linear  fits,  we  need  not  throw  out  this   addi9onal  informa9on.       Even  with  poorly  calibrated  data,  the  spectral  index  is  leW   unharmed.  The  offset  will  differ,  but  only  between   magnetometers,  for  example.  It  is  s9ll  very  useful  for  a   given  magnetometer  to  gauge  how  the  total  power  is   varying  over  9me.  
  • 22. DATA  QUALITY  RECAP   THE  MOST  IMPORTANT  TAKE  AWAY:   Quality  issues  in  the  9me  domain  do  not  necessarily  map  to  the  frequency  domain,  and  those   that  do  can  be  controlled  and  mi9gated.     •  Absolute  field  data  and  variometer-­‐quality  data  essen9ally  have  the  same  power  spectrum     •  Spectral  morphology  (shape  and  log  slope)  is  “invariant  under  calibra9on  error.”  I.e.,  a   poorly-­‐calibrated  magnetometer  s9ll  gives  us  a  lot  of  relevant  informa9on.       •  If  necessary,  one  can  re-­‐adjust  the  poorly-­‐calibrated  data  to  approximately  absolute  values  if   one  knows  the  what  the  noise  floor  is  supposed  to  be.     •  However,  magnetometers  of  varying  calibra9on  quality  can  always  be  compared  using   detrended  power  spectra,  which  when  done  properly  is  “invariant  under  calibra9on  error.”     •  Although  there  are  many  ways  to  detrend  spectra,  all  detrending  schemes  are  not  created   equal:  one  should  choose  a  scheme  that  will  live  up  to  the  synonyms  of  detrended  spectra:   whitened,  decorrelated     •  Detrended  power  spectra  are  great  for  telling  you  about  which  bands  hold  coherent  wave   energy  and  which  bands  have  been  filtered  (somehow).  However,  they  hold  no  informa9on   concerning  the  background  geomagne9c  noise  (logarithmic  slope  and  offset  /  absolute   values).  
  • 23. Conclusion   You  can  trust  my  spectral  data  and  data  products   derived  from  the  spectral  data.