SlideShare une entreprise Scribd logo
1  sur  28
FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MATEMÁTICAS Y FÍSICA  FLEXIÓN EN VIGAS  MODELADO EN ECUACIONES DIFERENCIALES  ESTUDIANTES:       JENNY CÁRDENAS   RALS LOZANO SÁNCHEZ 2008
[object Object],[object Object]
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
DEFLEXIÓN EN VIGAS  ,[object Object],[object Object],[object Object],La figura muestra una viga con perpendiculares al eje y ubicada en el plano  de simetría de la sección
 
Por lo tanto, el desplazamiento de la Superficie Neutra permite representar el desplazamiento de todo el elemento.  ,[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
De la geometría del problema tenemos
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
RELACION ENTRE CARGAS Y ESFUERZOS Si se escoge arbitrariamente  un trozo  diferencial de viga , se puede obtener: De lo que se deduce  que  es siempre un grado mayor que la carga transversal  .  Además , si  , entonces  .
[object Object],[object Object],[object Object],[object Object]
Resultando al final lo siguiente: Al integrar sucesivamente estas ecuaciones, van apareciendo constantes que deben calcular con las condiciones de borde del problema.
EJEMPLO VIGA SIMPLE Para la viga indicada en la figura, se pide determinar la ecuación de la  línea elástica, la flecha máxima  y el giro en los apoyos.  Solución:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
De  1.  De  2. De  4. De  3.  Ecuación de la Línea Elástica  de una viga simplemente apoyada con carga uniformemente repartida.
[object Object],[object Object],[object Object],[object Object]
Giro en los apoyos El Giro de la viga, con respecto a su plano horizontal, queda representado por la derivada de la ecuación de la Línea Elástica. Es decir:  Giro en al apoyo  “A” Giro en al apoyo  “B”
 
[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
Ecuación de la Línea Elástica de una viga empotrada y en voladizo con carga uniformemente repartida. Flecha Máxima:  Flecha Máxima en el Extremo Libre
[object Object],[object Object],[object Object],[object Object]
 
GRACIAS POR SU ATENCIÓ N

Contenu connexe

Tendances

Dinámica estructural - Ejercicios resueltos
Dinámica estructural - Ejercicios resueltosDinámica estructural - Ejercicios resueltos
Dinámica estructural - Ejercicios resueltos
mackfic
 
Análisis de vigas indeterminadas y marcos por el método de pendiente
Análisis de vigas indeterminadas y  marcos por el método de pendienteAnálisis de vigas indeterminadas y  marcos por el método de pendiente
Análisis de vigas indeterminadas y marcos por el método de pendiente
Michael James Chele
 
Flexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexionFlexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexion
Luismartin Rodriguez
 

Tendances (20)

Principio de los Trabajos Virtuales
Principio de los Trabajos VirtualesPrincipio de los Trabajos Virtuales
Principio de los Trabajos Virtuales
 
Dinámica estructural - Ejercicios resueltos
Dinámica estructural - Ejercicios resueltosDinámica estructural - Ejercicios resueltos
Dinámica estructural - Ejercicios resueltos
 
Formula de flexión
Formula de flexiónFormula de flexión
Formula de flexión
 
Vigas estaticamente determinadas e indeterminadas
Vigas estaticamente determinadas e indeterminadasVigas estaticamente determinadas e indeterminadas
Vigas estaticamente determinadas e indeterminadas
 
151576626 esfuerzos-cortantes-en-vigas
151576626 esfuerzos-cortantes-en-vigas151576626 esfuerzos-cortantes-en-vigas
151576626 esfuerzos-cortantes-en-vigas
 
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
 
Deformaciónes y deflexiones
Deformaciónes y deflexionesDeformaciónes y deflexiones
Deformaciónes y deflexiones
 
Vigas y todo lo relacionado
Vigas y todo lo relacionadoVigas y todo lo relacionado
Vigas y todo lo relacionado
 
Flexion de vigas
Flexion de vigasFlexion de vigas
Flexion de vigas
 
Esfuerzo y deformación
Esfuerzo y deformación Esfuerzo y deformación
Esfuerzo y deformación
 
Deflexion en vigas 2
Deflexion en vigas 2Deflexion en vigas 2
Deflexion en vigas 2
 
Inercia
InerciaInercia
Inercia
 
Solcap6
Solcap6Solcap6
Solcap6
 
Doble integracion
Doble integracionDoble integracion
Doble integracion
 
Teorema de Castigliano
Teorema de CastiglianoTeorema de Castigliano
Teorema de Castigliano
 
Análisis de vigas indeterminadas y marcos por el método de pendiente
Análisis de vigas indeterminadas y  marcos por el método de pendienteAnálisis de vigas indeterminadas y  marcos por el método de pendiente
Análisis de vigas indeterminadas y marcos por el método de pendiente
 
Relación carga fuerza cortante y momento flextor
Relación carga fuerza cortante y momento flextorRelación carga fuerza cortante y momento flextor
Relación carga fuerza cortante y momento flextor
 
Flexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexionFlexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexion
 
Esfuerzo cortante
Esfuerzo cortanteEsfuerzo cortante
Esfuerzo cortante
 
Flexión en Vigas
Flexión en VigasFlexión en Vigas
Flexión en Vigas
 

En vedette (12)

PRACTICA DE FLEXIÓN VIGAS
PRACTICA DE FLEXIÓN VIGASPRACTICA DE FLEXIÓN VIGAS
PRACTICA DE FLEXIÓN VIGAS
 
406 secciones compuestas de acero concreto (metodo lrfd)
406 secciones compuestas de acero concreto (metodo lrfd)406 secciones compuestas de acero concreto (metodo lrfd)
406 secciones compuestas de acero concreto (metodo lrfd)
 
ENSAYO DE IMPACTO
ENSAYO DE IMPACTOENSAYO DE IMPACTO
ENSAYO DE IMPACTO
 
Flexion
FlexionFlexion
Flexion
 
Estructuras de Cables
Estructuras de CablesEstructuras de Cables
Estructuras de Cables
 
Flexion en vigas
Flexion en vigasFlexion en vigas
Flexion en vigas
 
Mecanica De Materiales Ii
Mecanica De Materiales IiMecanica De Materiales Ii
Mecanica De Materiales Ii
 
Prueba de impacto
Prueba de impactoPrueba de impacto
Prueba de impacto
 
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)
Libro resistencia de materiales ii (prácticas y exámenes usmp)(1)
 
P.5 ensayo de flexion
P.5 ensayo de flexionP.5 ensayo de flexion
P.5 ensayo de flexion
 
Ensayo de flexión
Ensayo de flexiónEnsayo de flexión
Ensayo de flexión
 
EJERCICIOS RESUELTOS DE RESISTENCIA DE MATERIALES II
EJERCICIOS RESUELTOS DE RESISTENCIA DE MATERIALES IIEJERCICIOS RESUELTOS DE RESISTENCIA DE MATERIALES II
EJERCICIOS RESUELTOS DE RESISTENCIA DE MATERIALES II
 

Similaire à Flexion De Vigas

Torsion en vigas de seccion circular
Torsion en vigas de seccion circularTorsion en vigas de seccion circular
Torsion en vigas de seccion circular
rabitengel
 
Torsion en vigas de seccion circular
Torsion en vigas de seccion circularTorsion en vigas de seccion circular
Torsion en vigas de seccion circular
rabitengel
 

Similaire à Flexion De Vigas (20)

Mecanica de los solidos
Mecanica de los solidosMecanica de los solidos
Mecanica de los solidos
 
Flexión en Vigas
Flexión en VigasFlexión en Vigas
Flexión en Vigas
 
Módulo 2 y 3
Módulo 2 y 3Módulo 2 y 3
Módulo 2 y 3
 
Unidad II torsión
Unidad II torsión Unidad II torsión
Unidad II torsión
 
Torsion en vigas de seccion circular
Torsion en vigas de seccion circularTorsion en vigas de seccion circular
Torsion en vigas de seccion circular
 
Torsion en vigas de seccion circular
Torsion en vigas de seccion circularTorsion en vigas de seccion circular
Torsion en vigas de seccion circular
 
Torsion
TorsionTorsion
Torsion
 
Caculo de fuerzas.
Caculo de fuerzas.Caculo de fuerzas.
Caculo de fuerzas.
 
Torsión en vigas de sección circular
Torsión en vigas de sección circularTorsión en vigas de sección circular
Torsión en vigas de sección circular
 
VIGAS.pdf
VIGAS.pdfVIGAS.pdf
VIGAS.pdf
 
esfuerzos combinados
esfuerzos combinadosesfuerzos combinados
esfuerzos combinados
 
proyecto formativocap1.docx
proyecto formativocap1.docxproyecto formativocap1.docx
proyecto formativocap1.docx
 
SEMANA 3.pdf
SEMANA 3.pdfSEMANA 3.pdf
SEMANA 3.pdf
 
Elemento de maquina
Elemento de maquinaElemento de maquina
Elemento de maquina
 
Elemento de maquina
Elemento de maquinaElemento de maquina
Elemento de maquina
 
TORSION RESISTENCIA DE MATERIALES II
TORSION RESISTENCIA DE MATERIALES IITORSION RESISTENCIA DE MATERIALES II
TORSION RESISTENCIA DE MATERIALES II
 
Resistencia elvis luna 26396056 pdf
Resistencia elvis luna 26396056 pdfResistencia elvis luna 26396056 pdf
Resistencia elvis luna 26396056 pdf
 
TORSION
TORSION TORSION
TORSION
 
Deflexión
Deflexión Deflexión
Deflexión
 
TORSION MECANICA
TORSION MECANICATORSION MECANICA
TORSION MECANICA
 

Flexion De Vigas

  • 1. FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MATEMÁTICAS Y FÍSICA FLEXIÓN EN VIGAS MODELADO EN ECUACIONES DIFERENCIALES ESTUDIANTES: JENNY CÁRDENAS RALS LOZANO SÁNCHEZ 2008
  • 2.
  • 3.  
  • 4.
  • 5.
  • 6.  
  • 7.
  • 8.
  • 9.  
  • 10. De la geometría del problema tenemos
  • 11.
  • 12.
  • 13.
  • 14. RELACION ENTRE CARGAS Y ESFUERZOS Si se escoge arbitrariamente un trozo diferencial de viga , se puede obtener: De lo que se deduce que es siempre un grado mayor que la carga transversal . Además , si , entonces .
  • 15.
  • 16. Resultando al final lo siguiente: Al integrar sucesivamente estas ecuaciones, van apareciendo constantes que deben calcular con las condiciones de borde del problema.
  • 17. EJEMPLO VIGA SIMPLE Para la viga indicada en la figura, se pide determinar la ecuación de la línea elástica, la flecha máxima y el giro en los apoyos. Solución:
  • 18.
  • 19. De 1. De 2. De 4. De 3. Ecuación de la Línea Elástica de una viga simplemente apoyada con carga uniformemente repartida.
  • 20.
  • 21. Giro en los apoyos El Giro de la viga, con respecto a su plano horizontal, queda representado por la derivada de la ecuación de la Línea Elástica. Es decir: Giro en al apoyo “A” Giro en al apoyo “B”
  • 22.  
  • 23.
  • 24.
  • 25. Ecuación de la Línea Elástica de una viga empotrada y en voladizo con carga uniformemente repartida. Flecha Máxima: Flecha Máxima en el Extremo Libre
  • 26.
  • 27.  
  • 28. GRACIAS POR SU ATENCIÓ N