SlideShare une entreprise Scribd logo
1  sur  37
Scheduling Chapter 16
How  Scheduling  fits the Operations Management Philosophy  Operations As a Competitive  Weapon Operations Strategy Project Management Process Strategy Process Analysis Process Performance and Quality Constraint Management Process Layout Lean Systems Supply Chain Strategy Location Inventory Management Forecasting Sales and Operations Planning Resource Planning Scheduling
Scheduling ,[object Object],[object Object],[object Object],[object Object]
Performance Measures ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Gantt Charts ,[object Object],[object Object],[object Object],[object Object]
Gantt Progress Chart Gantt Progress Chart for an Auto Parts Company Plymouth Ford Pontiac Job 4/20 4/22 4/23 4/24 4/25 4/26 4/21 4/17 4/18 4/19 Current date  Scheduled activity time Actual progress Start activity Finish activity Nonproductive time
Gantt Workstation Chart  Gantt Workstation Chart for Hospital Operating Rooms
Scheduling  Customer Demand ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Scheduling Employees ,[object Object],[object Object],[object Object],[object Object]
The  Amalgamated Parcel Service  is open 7 days a week. The schedule of requirements is: The manager needs a workforce schedule that provides two consecutive days off and minimizes the amount of total slack capacity. To break ties in the selection of off days, the scheduler gives preference to Saturday and Sunday if it is one of the tied pairs. If not, she selects one of the tied pairs arbitrarily. Workforce Scheduling Example 16.1 Day M T W Th F S Su Number of employees 6 4 8 9 10 3 2 Required employees
Required employees Workforce Scheduling Example 16.1   Steps 1 & 2 Step 1 . Find all the pairs of consecutive days that exclude the maximum daily requirements. Select the unique pair that has the lowest total requirements for the 2 days. Friday contains the maximum requirements (10), and the pair S–Su has the lowest total requirements. Therefore, Employee 1 is scheduled to work Monday through Friday.  Step 2 . If a tie occurs, choose one of the tied pairs or ask the employee to make a choice. Day M T W Th F S Su Number of employees 6 4 8 9  10*  3 2 Employee 1  X X X X X
Required employees Step 3 . Subtract the requirements satisfied by the Employee 1 from the net requirements for each day the employee is to work and repeat step one. Again the pair S–Su has the lowest total requirements. Therefore, Employee 2 is scheduled to work Monday through Friday. Workforce Scheduling Example 16.1   Step 3   Day M T W Th F S Su Number of employees 6 4 8 9 10* 3 2 Employee 1 X X X X X Requirements 5 3 7 8 9* 3 2 Employee 2 X X X X X
Required employees Workforce Scheduling Example 16.1   Step 4   Step 4 .  Repeat steps 1 through 3 until all the requirements have been satisfied.  After Employees 1, 2, and 3 have reduced the requirements, the pair with the lowest requirements changes, and Employee 4 will be scheduled for Wednesday through Sunday. Day M T W Th F S Su Number of employees 6 4 8 9 10* 3 2 Employee 1 X X X X X Requirement 5 3 7 8 9* 3 2 Employee 2 X X X X X Requirement 4 2 6 7 8* 3 2 Employee 3 X X X X X Requirement 3 1 5 6 7* 3 2
Workforce Scheduling Example 16.1  Step 4   continued Day M T W Th F S Su Number of employees 6 4 8 9 10* 3 2 Employee 1 X X X X X Requirement 5 3 7 8 9* 3 2 Employee 2 X X X X X Requirement 4 2 6 7 8* 3 2 Employee 3 X X X X X Requirement 3 1 5 6 7* 3 2 Employee 4 X X X X X Requirement 3 1 4 5 6* 2 1 Employee 5 X X X X X Required employees
Workforce Scheduling Example 16.1   Step 4   continued Day M T W Th F S Su Requirement 2 0 3 4 5* 2 1 Employee 6 X X X X X Requirement 2 0 2 3 4* 1 0 Employee 7 X X X X X Requirement 1 0 1 2 3* 1 0 Employee 8 X X X X X Requirement 0 0 0 1 2* 1 0 Employee 9 X X X X X Requirement 0 0 0 0 1* 0 0 Employee 10 X X X X X Required employees
Workforce Scheduling Example 16.1   Day M T W Th F S Su Employee 1 X X X X X off off Employee 2 X X X X X off off Employee 3 X X X X X off off Employee 4 off off X X X X X Employee 5 X X X X X off off Employee 6 off off X X X X X Employee 7 X X X X X off off Employee 8 X X X X X off off Employee 9 off X X X X X off Employee 10 X X X X X off off Final Schedule
M T W Th F S Su Employee 1 X X X X X off off Employee 2 X X X X X off off Employee 3 X X X X X off off Employee 4 off off X X X X X Employee 5 X X X X X off off Employee 6 off off X X X X X Employee 7 X X X X X off off Employee 8 X X X X X off off Employee 9 off X X X X X off Employee 10 X X X X X off off Workforce Scheduling Example 16.1   Final Schedule Capacity,  C 7 8 10 10 10 3 2 50 Requirements,  R 6 4 8 9 10 3 2 42 Slack,  C  –  R 1 4 2 1 0 0 0 8 Total Final Schedule
Operations Scheduling ,[object Object],[object Object],[object Object],[object Object],[object Object]
Manufacturing Process Shipping Department Raw Materials Legend: Batch of parts Workstation
Job Shop Dispatching ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],Job Shop Dispatching
[object Object],Job Shop Dispatching S/RO = ((Due date  –  Today’s date) – Total shop time remaining)    Number of operations remaining
[object Object],[object Object],[object Object],Scheduling Jobs for  One Workstation
[object Object],[object Object],[object Object],[object Object],Example 16.2 Single-Dimension Rule Sequencing
Average hours early = 0.6 hour Example 16.2 Single-Dimension Rule  –  EDD Average job flow time = 23 hours Average hours past due = 7.2 hours Average WIP = 2.61 blocks Average total inventory = 2.68 engine blocks 8 + 14 + 17 + 32 + 44 44 Job Scheduled Actual Engine Processing Flow Customer Customer Hours Block Begin Time Time Pickup Pickup Hours Past Sequence Work (hr) (hr) Time Time Early Due Ranger 8 10 Explorer 6 12 Econoline 150 3 18 Bronco 15 20 Thunderbird 12 22 0 + = 8 10 2 17 + = 32 32 12 8 + = 14 14 2 14 + = 17 18 1 32 + = 44 44 22 Average total inventory = 10 + 14 + 18 + 32 + 44 44
Average hours early = 3.6 hour Example 16.2 Single-Dimension Rule  –  SPT Average job flow time =   20.4 hours Average hours past due = 7.6 hours Average WIP = 2.32 blocks Average total inventory = 2.73 engine blocks Econoline 150 Explorer Ranger Thunderbird Bronco 0 3 9 17 29 3 6 8 12 15 18 12 10 22 20 3 + 9 + 17 + 29 + 44 44 Job Scheduled Actual Engine Processing Flow Customer Customer Hours Block Begin Time Time Pickup Pickup Hours Past Sequence Work (hr) (hr) Time Time Early Due Ranger 8 10 Explorer 6 12 Econoline 150 3 18 Bronco 15 20 Thunderbird 12 22 0 + = 3 18 15 17 + = 29 29   7 8 + = 9 12   14 + = 17 17 3 7 29 + = 44 44   24 Average total inventory = 18 + 12 + 17 + 20 + 44 44
Comparing the  EDD and SPT Rules Using the previous example, a comparison of the EDD and SPT sequencing is shown below. ,[object Object],[object Object],[object Object],EDD SPT Average job flow time 23.00 20.40 Average hours early 0.60 3.60 Average hours past due 7.20 7.60 Average WIP 2.61 2.32 Average total inventory 2.68 2.73
Example 16.3 Multiple-Dimension Rule –  CR 1 2.3 15 10 6.1 2.46 2 10.5 10 2 7.8 1.28 3 6.2 20 12 14.5 1.38 4 15.6 8 5 10.2 .78 Operation Time Time at Remaining Number of Engine to Due Date Operations Shop Time Job Lathe (hr) (Days) Remaining Remaining CR S/RO CR   =  Time remaining to due date Shop time remaining
Example 16.3 Multiple-Dimension Rule –  S/RO 1 2.3 15 10 6.1 2.46 0.89 2 10.5 10 2 7.8 1.28 1.10 3 6.2 20 12 14.5 1.38 0.46 4 15.6 8 5 10.2 .78 – 0.44 Operation Time Time at Remaining Number of Engine to Due Date Operations Shop Time Job Lathe (hr) (Days) Remaining Remaining CR S/RO S/RO  =  Time remaining to due date  –  Shop time remaining Number of operations remaining
Comparing the  CR  and  S/RO  Rules 1 2.3 15 10 6.1 2.46 0.89 2 10.5 10 2 7.8 1.28 1.10 3 6.2 20 12 14.5 1.38 0.46 4 15.6 8 5 10.2 .78 – 0.44 Operation Time Time at Remaining Number of Engine to Due Date Operations Shop Time Job Lathe (hr) (Days) Remaining Remaining CR S/RO CR Sequence =  4  – 2 – 3 – 1 S/RO Sequence =  4  – 3 – 1 – 2 CR Sequence =
Priority Rule Summary FCFS = 1 – 2 – 3 – 4 SPT = 1 – 3 – 2 – 4 EDD = 4 – 2 – 1 – 3 CR = 4 – 2 – 3 – 1 S/RO = 4 – 3 – 1 – 2 ,[object Object],[object Object],© 2007 Pearson Education Avg Flow Time 17.175 16.100 26.175 27.150 24.025 Avg Early Time 3.425 6.050 0 0 0 Avg Past Due 7.350 8.900 12.925 13.900 10.775 Avg WIP 1.986 1.861 3.026 3.129 2.777 Avg Total Inv 2.382 2.561 3.026 3.129 2.777 Shortest Slack per Processing Earliest Critical Remaining FCFS Time Due Date Ratio Operation
Scheduling Jobs for  Multiple Workstations ,[object Object],[object Object],[object Object],[object Object],[object Object]
Johnson’s Rule ,[object Object],[object Object],[object Object],[object Object]
Example 16.5   Johnson’s Rule   at the  Morris Machine Co.   Sequence  =  M1 M2 M3 M4 M5 Eliminate M3 from consideration. The next shortest time is M2 at Workstation 1, so schedule M2 first. Eliminate M5 from consideration. The next shortest time is M1 at workstation #1, so schedule M1 next. Eliminate M1 and the only job remaining to be scheduled is M4. Time (hr) Motor Workstation 1 Workstation 2 M1 12 22 M2 4 5 M3 5 3 M4 15 16 M5 10 8 Shortest time is 3 hours at workstation 2, so schedule job M3 last.  Eliminate M2 from consideration. The next shortest time is M5 at workstation #2, so schedule M5 next to last.
The schedule minimizes the idle time of workstation 2 and gives the fastest repair time for all five motors. No other sequence will produce a lower makespan. Example 16.5   Johnson’s Rule   at the  Morris Machine Co.   Workstation M2  (4) M1  (12) M4  (15) M5  (10) M3  (5) Idle—available  for further work 0 5 10 15 20 25 30 Day 35 40 45 50 55 60 65 Idle 2 M2  (5) M1  (22) M4  (16) M5  (8) M3  (3) Idle 1 Gantt Chart for the Morris Machine Company Repair Schedule
Labor-limited Environments ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Linking Operations  Scheduling to the Supply Chain ,[object Object],[object Object],[object Object],[object Object],[object Object]

Contenu connexe

Tendances

Line balancing
Line balancingLine balancing
Line balancinggeetha_64
 
Assembly line balancing using Rank positional weight (RPW)
Assembly line balancing using Rank positional weight (RPW)Assembly line balancing using Rank positional weight (RPW)
Assembly line balancing using Rank positional weight (RPW)shady anwer
 
Operations Scheduling
Operations SchedulingOperations Scheduling
Operations SchedulingAshish Jain
 
sparepartsmanagment
sparepartsmanagmentsparepartsmanagment
sparepartsmanagmentRAKESH SINGH
 
Presentation aggregate planning
Presentation aggregate planningPresentation aggregate planning
Presentation aggregate planningLauraRLR
 
Presentation on Just in Time
Presentation on Just in TimePresentation on Just in Time
Presentation on Just in TimeMusfiqur Rahman
 
Scheduling ppt @ DOMS
Scheduling ppt @ DOMSScheduling ppt @ DOMS
Scheduling ppt @ DOMSBabasab Patil
 
World Class Manufacturing
World Class Manufacturing World Class Manufacturing
World Class Manufacturing Sushanta Meher
 
Ranked Positional Weight Method | Management
Ranked Positional Weight Method | ManagementRanked Positional Weight Method | Management
Ranked Positional Weight Method | ManagementTransweb Global Inc
 
79971255 assembly-line-balancing
79971255 assembly-line-balancing79971255 assembly-line-balancing
79971255 assembly-line-balancingJoseph Konnully
 
Assembly line balancing
Assembly line balancingAssembly line balancing
Assembly line balancingMANJUNATH N
 
Scheduling and sequencing
Scheduling and sequencingScheduling and sequencing
Scheduling and sequencingAkanksha Gupta
 

Tendances (20)

Line balancing
Line balancingLine balancing
Line balancing
 
Assembly line balancing using Rank positional weight (RPW)
Assembly line balancing using Rank positional weight (RPW)Assembly line balancing using Rank positional weight (RPW)
Assembly line balancing using Rank positional weight (RPW)
 
Operations Scheduling
Operations SchedulingOperations Scheduling
Operations Scheduling
 
Aggregate planning
Aggregate planningAggregate planning
Aggregate planning
 
sparepartsmanagment
sparepartsmanagmentsparepartsmanagment
sparepartsmanagment
 
Presentation aggregate planning
Presentation aggregate planningPresentation aggregate planning
Presentation aggregate planning
 
Presentation on Just in Time
Presentation on Just in TimePresentation on Just in Time
Presentation on Just in Time
 
Scheduling ppt @ DOMS
Scheduling ppt @ DOMSScheduling ppt @ DOMS
Scheduling ppt @ DOMS
 
Capacity planning
Capacity planningCapacity planning
Capacity planning
 
Aggregate planning
Aggregate planningAggregate planning
Aggregate planning
 
World Class Manufacturing
World Class Manufacturing World Class Manufacturing
World Class Manufacturing
 
Capacity planning
Capacity planningCapacity planning
Capacity planning
 
Ranked Positional Weight Method | Management
Ranked Positional Weight Method | ManagementRanked Positional Weight Method | Management
Ranked Positional Weight Method | Management
 
79971255 assembly-line-balancing
79971255 assembly-line-balancing79971255 assembly-line-balancing
79971255 assembly-line-balancing
 
Unit 6 inventory
Unit 6 inventoryUnit 6 inventory
Unit 6 inventory
 
Capacity Management
Capacity ManagementCapacity Management
Capacity Management
 
Assembly line balancing
Assembly line balancingAssembly line balancing
Assembly line balancing
 
Scheduling and sequencing
Scheduling and sequencingScheduling and sequencing
Scheduling and sequencing
 
Mrp ii
Mrp iiMrp ii
Mrp ii
 
Rough cut planning
Rough cut planningRough cut planning
Rough cut planning
 

En vedette

VBA API for scriptDB primer
VBA API for scriptDB primerVBA API for scriptDB primer
VBA API for scriptDB primerBruce McPherson
 
Javascript like objects and JSON processing in VBA
Javascript like objects and JSON processing in VBAJavascript like objects and JSON processing in VBA
Javascript like objects and JSON processing in VBABruce McPherson
 
GanttChart for ClearQuest 1.4 and 1.3.1
GanttChart for ClearQuest 1.4 and 1.3.1GanttChart for ClearQuest 1.4 and 1.3.1
GanttChart for ClearQuest 1.4 and 1.3.1Alexander Novichkov
 
Improve Your Business Operations and Project Success with Gordon Tredgold
Improve Your Business Operations and Project Success with Gordon TredgoldImprove Your Business Operations and Project Success with Gordon Tredgold
Improve Your Business Operations and Project Success with Gordon TredgoldQuickBase, Inc.
 
MB0038 – Management Process and Organization Behavior
 MB0038 – Management Process and Organization Behavior MB0038 – Management Process and Organization Behavior
MB0038 – Management Process and Organization Behaviorswejs
 
Energy Management by Food&Beverage Industry
Energy Management by Food&Beverage IndustryEnergy Management by Food&Beverage Industry
Energy Management by Food&Beverage IndustryAvanceon
 
Boiler MACT and Strategic Air Permitting
Boiler MACT and Strategic Air PermittingBoiler MACT and Strategic Air Permitting
Boiler MACT and Strategic Air PermittingAll4 Inc.
 
Bus 606 operations analysis project - rip curl
Bus 606   operations analysis project - rip curlBus 606   operations analysis project - rip curl
Bus 606 operations analysis project - rip curlRipCurlTeamPhotos
 
Intern operations project
Intern operations projectIntern operations project
Intern operations projectKidd Khazini
 
Project work efficiency of boilers
Project work   efficiency of boilersProject work   efficiency of boilers
Project work efficiency of boilersRodrigo Barcelos
 
Aggregat planning stevenson
Aggregat planning stevensonAggregat planning stevenson
Aggregat planning stevensonPiyush Vanjani
 

En vedette (20)

Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Scheduling
SchedulingScheduling
Scheduling
 
VBA API for scriptDB primer
VBA API for scriptDB primerVBA API for scriptDB primer
VBA API for scriptDB primer
 
Production Scheduling in a Job Shop Environment with consideration of Transpo...
Production Scheduling in a Job Shop Environment with consideration of Transpo...Production Scheduling in a Job Shop Environment with consideration of Transpo...
Production Scheduling in a Job Shop Environment with consideration of Transpo...
 
job shop 111
job shop 111job shop 111
job shop 111
 
Ch17
Ch17Ch17
Ch17
 
operations scheduling
operations schedulingoperations scheduling
operations scheduling
 
Javascript like objects and JSON processing in VBA
Javascript like objects and JSON processing in VBAJavascript like objects and JSON processing in VBA
Javascript like objects and JSON processing in VBA
 
GanttChart for ClearQuest 1.4 and 1.3.1
GanttChart for ClearQuest 1.4 and 1.3.1GanttChart for ClearQuest 1.4 and 1.3.1
GanttChart for ClearQuest 1.4 and 1.3.1
 
Improve Your Business Operations and Project Success with Gordon Tredgold
Improve Your Business Operations and Project Success with Gordon TredgoldImprove Your Business Operations and Project Success with Gordon Tredgold
Improve Your Business Operations and Project Success with Gordon Tredgold
 
BRASS MBA in a Day
BRASS MBA in a DayBRASS MBA in a Day
BRASS MBA in a Day
 
MB0038 – Management Process and Organization Behavior
 MB0038 – Management Process and Organization Behavior MB0038 – Management Process and Organization Behavior
MB0038 – Management Process and Organization Behavior
 
Energy Management by Food&Beverage Industry
Energy Management by Food&Beverage IndustryEnergy Management by Food&Beverage Industry
Energy Management by Food&Beverage Industry
 
Boiler MACT and Strategic Air Permitting
Boiler MACT and Strategic Air PermittingBoiler MACT and Strategic Air Permitting
Boiler MACT and Strategic Air Permitting
 
Bus 606 operations analysis project - rip curl
Bus 606   operations analysis project - rip curlBus 606   operations analysis project - rip curl
Bus 606 operations analysis project - rip curl
 
Intern operations project
Intern operations projectIntern operations project
Intern operations project
 
Commercial Condensing Boiler Optimizaiton
Commercial Condensing Boiler OptimizaitonCommercial Condensing Boiler Optimizaiton
Commercial Condensing Boiler Optimizaiton
 
Project work efficiency of boilers
Project work   efficiency of boilersProject work   efficiency of boilers
Project work efficiency of boilers
 
Aggregat planning stevenson
Aggregat planning stevensonAggregat planning stevenson
Aggregat planning stevenson
 
Jit
JitJit
Jit
 

Similaire à Scheduling

Capacity-Planning-Report - Measurement of Capacity
Capacity-Planning-Report - Measurement of CapacityCapacity-Planning-Report - Measurement of Capacity
Capacity-Planning-Report - Measurement of CapacityJoanRachelCalansingi
 
Chap017 Scheduling Edit
Chap017 Scheduling EditChap017 Scheduling Edit
Chap017 Scheduling EditRicky Muchtar
 
Production And Operation Materials
Production And Operation MaterialsProduction And Operation Materials
Production And Operation Materialspikuoec
 
Production And Operation Materials
Production And Operation MaterialsProduction And Operation Materials
Production And Operation Materialspikuoec
 
SCHEDULING.pptdjdgjgjdjgajdjasdjadasgdgdduaa
SCHEDULING.pptdjdgjgjdjgajdjasdjadasgdgdduaaSCHEDULING.pptdjdgjgjdjgajdjasdjadasgdgdduaa
SCHEDULING.pptdjdgjgjdjgajdjasdjadasgdgdduaainfinitepestcontrol
 
scheduling-sequencing-rules.pptx
scheduling-sequencing-rules.pptxscheduling-sequencing-rules.pptx
scheduling-sequencing-rules.pptxMowazzemHossain1
 
Operation engine ii session iv operations scheduling
Operation engine  ii session iv  operations schedulingOperation engine  ii session iv  operations scheduling
Operation engine ii session iv operations schedulingFatima Aliza
 
Track Software -- Shell presentation
Track Software -- Shell presentationTrack Software -- Shell presentation
Track Software -- Shell presentationtracksoftware
 
Operation scheduling
Operation schedulingOperation scheduling
Operation schedulingsai precious
 
SIMULATION AND COMPARISON ANALYSIS OF DUE DATE ASSIGNMENT METHODS USING SCHED...
SIMULATION AND COMPARISON ANALYSIS OF DUE DATE ASSIGNMENT METHODS USING SCHED...SIMULATION AND COMPARISON ANALYSIS OF DUE DATE ASSIGNMENT METHODS USING SCHED...
SIMULATION AND COMPARISON ANALYSIS OF DUE DATE ASSIGNMENT METHODS USING SCHED...IJCSES Journal
 
C0362015022
C0362015022C0362015022
C0362015022theijes
 
Topic 5 Production Sequencing and Scheduling.ppt
Topic 5 Production Sequencing and Scheduling.pptTopic 5 Production Sequencing and Scheduling.ppt
Topic 5 Production Sequencing and Scheduling.pptHassanHani5
 
Production planning and control 2019
Production planning and control 2019Production planning and control 2019
Production planning and control 2019sserwaniko
 

Similaire à Scheduling (20)

chapter16.ppt
chapter16.pptchapter16.ppt
chapter16.ppt
 
Capacity-Planning-Report - Measurement of Capacity
Capacity-Planning-Report - Measurement of CapacityCapacity-Planning-Report - Measurement of Capacity
Capacity-Planning-Report - Measurement of Capacity
 
Chap017 Scheduling Edit
Chap017 Scheduling EditChap017 Scheduling Edit
Chap017 Scheduling Edit
 
Production And Operation Materials
Production And Operation MaterialsProduction And Operation Materials
Production And Operation Materials
 
Production And Operation Materials
Production And Operation MaterialsProduction And Operation Materials
Production And Operation Materials
 
SCHEDULING.pptdjdgjgjdjgajdjasdjadasgdgdduaa
SCHEDULING.pptdjdgjgjdjgajdjasdjadasgdgdduaaSCHEDULING.pptdjdgjgjdjgajdjasdjadasgdgdduaa
SCHEDULING.pptdjdgjgjdjgajdjasdjadasgdgdduaa
 
Scheduling
SchedulingScheduling
Scheduling
 
scheduling-sequencing-rules.pptx
scheduling-sequencing-rules.pptxscheduling-sequencing-rules.pptx
scheduling-sequencing-rules.pptx
 
Operation engine ii session iv operations scheduling
Operation engine  ii session iv  operations schedulingOperation engine  ii session iv  operations scheduling
Operation engine ii session iv operations scheduling
 
Om chapter 14
Om chapter 14Om chapter 14
Om chapter 14
 
C8 scheduling
C8 schedulingC8 scheduling
C8 scheduling
 
Track Software -- Shell presentation
Track Software -- Shell presentationTrack Software -- Shell presentation
Track Software -- Shell presentation
 
Operation scheduling
Operation schedulingOperation scheduling
Operation scheduling
 
SIMULATION AND COMPARISON ANALYSIS OF DUE DATE ASSIGNMENT METHODS USING SCHED...
SIMULATION AND COMPARISON ANALYSIS OF DUE DATE ASSIGNMENT METHODS USING SCHED...SIMULATION AND COMPARISON ANALYSIS OF DUE DATE ASSIGNMENT METHODS USING SCHED...
SIMULATION AND COMPARISON ANALYSIS OF DUE DATE ASSIGNMENT METHODS USING SCHED...
 
C0362015022
C0362015022C0362015022
C0362015022
 
Scheduling
SchedulingScheduling
Scheduling
 
Scheduling
SchedulingScheduling
Scheduling
 
Scheduling
SchedulingScheduling
Scheduling
 
Topic 5 Production Sequencing and Scheduling.ppt
Topic 5 Production Sequencing and Scheduling.pptTopic 5 Production Sequencing and Scheduling.ppt
Topic 5 Production Sequencing and Scheduling.ppt
 
Production planning and control 2019
Production planning and control 2019Production planning and control 2019
Production planning and control 2019
 

Dernier

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 

Dernier (20)

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 

Scheduling

  • 2. How Scheduling fits the Operations Management Philosophy Operations As a Competitive Weapon Operations Strategy Project Management Process Strategy Process Analysis Process Performance and Quality Constraint Management Process Layout Lean Systems Supply Chain Strategy Location Inventory Management Forecasting Sales and Operations Planning Resource Planning Scheduling
  • 3.
  • 4.
  • 5.
  • 6. Gantt Progress Chart Gantt Progress Chart for an Auto Parts Company Plymouth Ford Pontiac Job 4/20 4/22 4/23 4/24 4/25 4/26 4/21 4/17 4/18 4/19 Current date Scheduled activity time Actual progress Start activity Finish activity Nonproductive time
  • 7. Gantt Workstation Chart Gantt Workstation Chart for Hospital Operating Rooms
  • 8.
  • 9.
  • 10. The Amalgamated Parcel Service is open 7 days a week. The schedule of requirements is: The manager needs a workforce schedule that provides two consecutive days off and minimizes the amount of total slack capacity. To break ties in the selection of off days, the scheduler gives preference to Saturday and Sunday if it is one of the tied pairs. If not, she selects one of the tied pairs arbitrarily. Workforce Scheduling Example 16.1 Day M T W Th F S Su Number of employees 6 4 8 9 10 3 2 Required employees
  • 11. Required employees Workforce Scheduling Example 16.1 Steps 1 & 2 Step 1 . Find all the pairs of consecutive days that exclude the maximum daily requirements. Select the unique pair that has the lowest total requirements for the 2 days. Friday contains the maximum requirements (10), and the pair S–Su has the lowest total requirements. Therefore, Employee 1 is scheduled to work Monday through Friday. Step 2 . If a tie occurs, choose one of the tied pairs or ask the employee to make a choice. Day M T W Th F S Su Number of employees 6 4 8 9 10* 3 2 Employee 1 X X X X X
  • 12. Required employees Step 3 . Subtract the requirements satisfied by the Employee 1 from the net requirements for each day the employee is to work and repeat step one. Again the pair S–Su has the lowest total requirements. Therefore, Employee 2 is scheduled to work Monday through Friday. Workforce Scheduling Example 16.1 Step 3 Day M T W Th F S Su Number of employees 6 4 8 9 10* 3 2 Employee 1 X X X X X Requirements 5 3 7 8 9* 3 2 Employee 2 X X X X X
  • 13. Required employees Workforce Scheduling Example 16.1 Step 4 Step 4 . Repeat steps 1 through 3 until all the requirements have been satisfied. After Employees 1, 2, and 3 have reduced the requirements, the pair with the lowest requirements changes, and Employee 4 will be scheduled for Wednesday through Sunday. Day M T W Th F S Su Number of employees 6 4 8 9 10* 3 2 Employee 1 X X X X X Requirement 5 3 7 8 9* 3 2 Employee 2 X X X X X Requirement 4 2 6 7 8* 3 2 Employee 3 X X X X X Requirement 3 1 5 6 7* 3 2
  • 14. Workforce Scheduling Example 16.1 Step 4 continued Day M T W Th F S Su Number of employees 6 4 8 9 10* 3 2 Employee 1 X X X X X Requirement 5 3 7 8 9* 3 2 Employee 2 X X X X X Requirement 4 2 6 7 8* 3 2 Employee 3 X X X X X Requirement 3 1 5 6 7* 3 2 Employee 4 X X X X X Requirement 3 1 4 5 6* 2 1 Employee 5 X X X X X Required employees
  • 15. Workforce Scheduling Example 16.1 Step 4 continued Day M T W Th F S Su Requirement 2 0 3 4 5* 2 1 Employee 6 X X X X X Requirement 2 0 2 3 4* 1 0 Employee 7 X X X X X Requirement 1 0 1 2 3* 1 0 Employee 8 X X X X X Requirement 0 0 0 1 2* 1 0 Employee 9 X X X X X Requirement 0 0 0 0 1* 0 0 Employee 10 X X X X X Required employees
  • 16. Workforce Scheduling Example 16.1 Day M T W Th F S Su Employee 1 X X X X X off off Employee 2 X X X X X off off Employee 3 X X X X X off off Employee 4 off off X X X X X Employee 5 X X X X X off off Employee 6 off off X X X X X Employee 7 X X X X X off off Employee 8 X X X X X off off Employee 9 off X X X X X off Employee 10 X X X X X off off Final Schedule
  • 17. M T W Th F S Su Employee 1 X X X X X off off Employee 2 X X X X X off off Employee 3 X X X X X off off Employee 4 off off X X X X X Employee 5 X X X X X off off Employee 6 off off X X X X X Employee 7 X X X X X off off Employee 8 X X X X X off off Employee 9 off X X X X X off Employee 10 X X X X X off off Workforce Scheduling Example 16.1 Final Schedule Capacity, C 7 8 10 10 10 3 2 50 Requirements, R 6 4 8 9 10 3 2 42 Slack, C – R 1 4 2 1 0 0 0 8 Total Final Schedule
  • 18.
  • 19. Manufacturing Process Shipping Department Raw Materials Legend: Batch of parts Workstation
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25. Average hours early = 0.6 hour Example 16.2 Single-Dimension Rule – EDD Average job flow time = 23 hours Average hours past due = 7.2 hours Average WIP = 2.61 blocks Average total inventory = 2.68 engine blocks 8 + 14 + 17 + 32 + 44 44 Job Scheduled Actual Engine Processing Flow Customer Customer Hours Block Begin Time Time Pickup Pickup Hours Past Sequence Work (hr) (hr) Time Time Early Due Ranger 8 10 Explorer 6 12 Econoline 150 3 18 Bronco 15 20 Thunderbird 12 22 0 + = 8 10 2 17 + = 32 32 12 8 + = 14 14 2 14 + = 17 18 1 32 + = 44 44 22 Average total inventory = 10 + 14 + 18 + 32 + 44 44
  • 26. Average hours early = 3.6 hour Example 16.2 Single-Dimension Rule – SPT Average job flow time = 20.4 hours Average hours past due = 7.6 hours Average WIP = 2.32 blocks Average total inventory = 2.73 engine blocks Econoline 150 Explorer Ranger Thunderbird Bronco 0 3 9 17 29 3 6 8 12 15 18 12 10 22 20 3 + 9 + 17 + 29 + 44 44 Job Scheduled Actual Engine Processing Flow Customer Customer Hours Block Begin Time Time Pickup Pickup Hours Past Sequence Work (hr) (hr) Time Time Early Due Ranger 8 10 Explorer 6 12 Econoline 150 3 18 Bronco 15 20 Thunderbird 12 22 0 + = 3 18 15 17 + = 29 29 7 8 + = 9 12 14 + = 17 17 3 7 29 + = 44 44 24 Average total inventory = 18 + 12 + 17 + 20 + 44 44
  • 27.
  • 28. Example 16.3 Multiple-Dimension Rule – CR 1 2.3 15 10 6.1 2.46 2 10.5 10 2 7.8 1.28 3 6.2 20 12 14.5 1.38 4 15.6 8 5 10.2 .78 Operation Time Time at Remaining Number of Engine to Due Date Operations Shop Time Job Lathe (hr) (Days) Remaining Remaining CR S/RO CR = Time remaining to due date Shop time remaining
  • 29. Example 16.3 Multiple-Dimension Rule – S/RO 1 2.3 15 10 6.1 2.46 0.89 2 10.5 10 2 7.8 1.28 1.10 3 6.2 20 12 14.5 1.38 0.46 4 15.6 8 5 10.2 .78 – 0.44 Operation Time Time at Remaining Number of Engine to Due Date Operations Shop Time Job Lathe (hr) (Days) Remaining Remaining CR S/RO S/RO = Time remaining to due date – Shop time remaining Number of operations remaining
  • 30. Comparing the CR and S/RO Rules 1 2.3 15 10 6.1 2.46 0.89 2 10.5 10 2 7.8 1.28 1.10 3 6.2 20 12 14.5 1.38 0.46 4 15.6 8 5 10.2 .78 – 0.44 Operation Time Time at Remaining Number of Engine to Due Date Operations Shop Time Job Lathe (hr) (Days) Remaining Remaining CR S/RO CR Sequence = 4 – 2 – 3 – 1 S/RO Sequence = 4 – 3 – 1 – 2 CR Sequence =
  • 31.
  • 32.
  • 33.
  • 34. Example 16.5 Johnson’s Rule at the Morris Machine Co. Sequence = M1 M2 M3 M4 M5 Eliminate M3 from consideration. The next shortest time is M2 at Workstation 1, so schedule M2 first. Eliminate M5 from consideration. The next shortest time is M1 at workstation #1, so schedule M1 next. Eliminate M1 and the only job remaining to be scheduled is M4. Time (hr) Motor Workstation 1 Workstation 2 M1 12 22 M2 4 5 M3 5 3 M4 15 16 M5 10 8 Shortest time is 3 hours at workstation 2, so schedule job M3 last. Eliminate M2 from consideration. The next shortest time is M5 at workstation #2, so schedule M5 next to last.
  • 35. The schedule minimizes the idle time of workstation 2 and gives the fastest repair time for all five motors. No other sequence will produce a lower makespan. Example 16.5 Johnson’s Rule at the Morris Machine Co. Workstation M2 (4) M1 (12) M4 (15) M5 (10) M3 (5) Idle—available for further work 0 5 10 15 20 25 30 Day 35 40 45 50 55 60 65 Idle 2 M2 (5) M1 (22) M4 (16) M5 (8) M3 (3) Idle 1 Gantt Chart for the Morris Machine Company Repair Schedule
  • 36.
  • 37.

Notes de l'éditeur

  1. 1
  2. 6
  3. 10
  4. 90
  5. 91
  6. 93
  7. 97
  8. 100
  9. 106
  10. 107
  11. 107
  12. 2
  13. 12
  14. 12
  15. 34
  16. 34
  17. 34
  18. 61
  19. 88