SlideShare une entreprise Scribd logo
1  sur  18
CÁLCULO 3

Departamento de Ciencias
Juan Carlos Broncano Torres
¿Qué dirección debe tomar el esquiador si quiere bajar
la montaña rápidamente?
Curva Maravillosa: Braquistócrona
Un curva braquistócrona, o curva del descenso más rápido, es la curva entre dos puntos que es
recorrida en menor tiempo, por un cuerpo que comienza en el punto inicial con velocidad cero,
y que debe desplazarse a lo largo de la curva hasta llegar al segundo punto, bajo acción de una
fuerza de gravedad constante y suponiendo que no existe fricción.

Comparación entre una trayectoria braquistócrona, y otras dos trayectorias
posibles.

Cicloide generada por una circunferencia.

En 1696 el matemático Johann
Bernoulli anunció a la comunidad
matemática la solución al problema de
la braquistocrona (curva que sigue el
descenso más rápido cuando existe
gravedad y que es objeto de estudio en
el cálculo de variaciones), mostrando
que la solución era una
cicloide. Leibniz, Newton, Jakob
Bernoulli y Guillaume de l'Hôpital,
encontraron la solución del problema
enunciado por Bernoulli.
Logros de la sesión:
Al finalizar la sesión, el estudiante resuelve problemas vinculados a
la gestión e ingeniería a partir de la derivada parcial y direccional
usando el cálculo de la gradiente, e interpretando su resultado con
las propiedades físicas que el tiene.
DERIVADAS PARCIALES
NOTACIÓN DE LAS DERIVADAS PARCIALES

Ejemplo
DERIVADAS DE ORDEN SUPERIOR
PLANO TANGENTE
Se llama plano tangente a una superficie en un punto P de la misma, al plano
que contiene todas las tangentes a las curvas trazadas sobre la superficie por el
punto P.

ECUACIÓN DEL PLANO TANGENTE
Ejemplo
Hallar la ecuación del plano tangente al paraboloide
en el punto

RECTA NORMAL
Se llama recta normal a una superficie a la recta que pasa por un punto P y es perpendicular
al plano tangente.
LA GRADIENTE
PROPIEDADES DE LA GRADIENTE

Ejemplo
Ejemplo
Determine la ecuación del plano tangente y la recta normal al hiperboloide
de dos mantos
en el punto
Solución
2
x2 y 2 1
Haciendo: F ( x, y, z ) z
tenemos que:
Fx
2x x 1
2

Fy
Fz

2y
2z z

y

2

4

6

Por tanto, la ecuación del plano tangente es:
Por otro lado, la ecuación de la recta normal es :
x 1 2t
y
2 4t
z

6

2t 6

x

2y

z 6

0
Ejemplo
Hallar el o los puntos de la esfera
en los cuales el plano
tangente es paralelo al plano
Solución
Sea
uno de estos puntos, entonces por estar en la esfera:
Por otro lado, por ser el plano tangente a la esfera en el punto
y el plano
paralelos, sus vectores normales son paralelos, es decir :
Entonces se obtiene el siguiente sistema de ecuaciones:
De donde obtenemos que los puntos que buscamos son:
Ejemplo
¿En qué punto de la superficie
?

la recta normal es paralela al vector

Solución
Sea
el punto que buscamos. Si la recta normal es paralela al vector
entonces su vector director también es paralelo a
con lo cual, si :
entonces :
;

Evaluando en

esta sobre la superficie, por lo que satisface su ecuación :

Obtenemos el siguiente sistema:

Y así, el punto buscado es:
DERIVADA DIRECCIONAL
La derivada direccional de f en la dirección dada por el vector unitario u
está dada por:
f ( x su1 , y su2 ) - f(x, y)
D f(x, y) lim
s 0
s
u
si el límite existe.
Teorema: Si f tiene sus primeras derivadas parciales continuas
entonces tiene derivada direccional en la dirección de cualquier
vector unitario u y se cumple:
D f(x, y) f x (x, y) u1
u

f y (x, y) u 2
BIBLIOGRAFÍA
#

CÓDIGO

AUTOR

TÍTULO

EDITORIAL

1

515.33
PURC

PURCELL,
EDWIN J.

Cálculo Diferencial E
Integral

Pearson
Educación

2

515
STEW/M
2002

STEWART,
JAMES

Cálculo
Multivariable

Cuarta edición,
Mexico 2001,
Edit. Thomson

Cálculo Aplicado Para
Administración,
Economía Y Ciencias
Sociales

Octava edición,
México
2007,.Mcgrawhill

3

515 HOFF/C HOFFMANN,
2006
LAURENCE D.
http://www.tecdigital.itcr.ac.cr/revistamatematica/cursoslinea/SUPERIOR/derivadadireccional/node1.html

Contenu connexe

Tendances

Semana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferencialesSemana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferenciales
nidia maldonado
 
Aplicacion de la integral
Aplicacion de la integralAplicacion de la integral
Aplicacion de la integral
RAFA Ortega
 
Ecuaciones reducibles a variables separables
Ecuaciones reducibles a variables separablesEcuaciones reducibles a variables separables
Ecuaciones reducibles a variables separables
Arkantos Flynn
 
Ejercicios Resueltos de Calculo Vectorial e Integrales de linea
Ejercicios Resueltos de Calculo Vectorial e Integrales de lineaEjercicios Resueltos de Calculo Vectorial e Integrales de linea
Ejercicios Resueltos de Calculo Vectorial e Integrales de linea
Ruddy Sanchez Campos
 
Aplicaciones de calculo de integrales dobles y triples
Aplicaciones de calculo de integrales dobles y triplesAplicaciones de calculo de integrales dobles y triples
Aplicaciones de calculo de integrales dobles y triples
walterabel03
 
Cinematica de una_particula[1] (2)
Cinematica de una_particula[1] (2)Cinematica de una_particula[1] (2)
Cinematica de una_particula[1] (2)
fredperg
 
ECUACIONES DIFERENCIALES DE VARIABLES SEPARABLES Y
ECUACIONES DIFERENCIALES DE VARIABLES SEPARABLES YECUACIONES DIFERENCIALES DE VARIABLES SEPARABLES Y
ECUACIONES DIFERENCIALES DE VARIABLES SEPARABLES Y
Samir Velasquez Quispe
 

Tendances (20)

Semana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferencialesSemana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferenciales
 
Aplicacion de la integral
Aplicacion de la integralAplicacion de la integral
Aplicacion de la integral
 
Ejercicios plano tangente
Ejercicios plano tangenteEjercicios plano tangente
Ejercicios plano tangente
 
Que es el wronskiano
Que es el wronskianoQue es el wronskiano
Que es el wronskiano
 
Derivada Parcial
Derivada ParcialDerivada Parcial
Derivada Parcial
 
Integrales triples
Integrales  triplesIntegrales  triples
Integrales triples
 
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
 
VECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMALVECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMAL
 
Derivadas de funciones paramétricas
Derivadas de funciones paramétricas Derivadas de funciones paramétricas
Derivadas de funciones paramétricas
 
Formulario de calculo vectorial
Formulario de calculo vectorialFormulario de calculo vectorial
Formulario de calculo vectorial
 
Capitulo 8 teorema de green
Capitulo 8  teorema de greenCapitulo 8  teorema de green
Capitulo 8 teorema de green
 
Ecuaciones diferenciales parciales E.D.P.
Ecuaciones diferenciales parciales E.D.P.Ecuaciones diferenciales parciales E.D.P.
Ecuaciones diferenciales parciales E.D.P.
 
Derivadas Parciales
Derivadas ParcialesDerivadas Parciales
Derivadas Parciales
 
265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)265131074 derivadas-parciales (1)
265131074 derivadas-parciales (1)
 
Ecuaciones reducibles a variables separables
Ecuaciones reducibles a variables separablesEcuaciones reducibles a variables separables
Ecuaciones reducibles a variables separables
 
Ejercicios Resueltos de Calculo Vectorial e Integrales de linea
Ejercicios Resueltos de Calculo Vectorial e Integrales de lineaEjercicios Resueltos de Calculo Vectorial e Integrales de linea
Ejercicios Resueltos de Calculo Vectorial e Integrales de linea
 
Aplicaciones de calculo de integrales dobles y triples
Aplicaciones de calculo de integrales dobles y triplesAplicaciones de calculo de integrales dobles y triples
Aplicaciones de calculo de integrales dobles y triples
 
Ejercicios resueltos edo homogéneas
Ejercicios resueltos edo homogéneasEjercicios resueltos edo homogéneas
Ejercicios resueltos edo homogéneas
 
Cinematica de una_particula[1] (2)
Cinematica de una_particula[1] (2)Cinematica de una_particula[1] (2)
Cinematica de una_particula[1] (2)
 
ECUACIONES DIFERENCIALES DE VARIABLES SEPARABLES Y
ECUACIONES DIFERENCIALES DE VARIABLES SEPARABLES YECUACIONES DIFERENCIALES DE VARIABLES SEPARABLES Y
ECUACIONES DIFERENCIALES DE VARIABLES SEPARABLES Y
 

Similaire à Sesión 03,Plano tangente, derivadas parciales y derivada direccional

Introducción a las Derivadas Parciales,Plano tangente y Gradiente MA-III c...
Introducción  a las Derivadas Parciales,Plano tangente y Gradiente  MA-III  c...Introducción  a las Derivadas Parciales,Plano tangente y Gradiente  MA-III  c...
Introducción a las Derivadas Parciales,Plano tangente y Gradiente MA-III c...
Demetrio Ccesa Rayme
 
14.circunferencia
14.circunferencia14.circunferencia
14.circunferencia
Amigo VJ
 
Bernoulli
BernoulliBernoulli
Bernoulli
Cesar
 
Ensayo circunferencia
Ensayo circunferenciaEnsayo circunferencia
Ensayo circunferencia
Rubenblan
 
Secciones_Conicas.ppt
Secciones_Conicas.pptSecciones_Conicas.ppt
Secciones_Conicas.ppt
cochachi
 
Diversas formas de la ecuacion de la recta y circunferencias
Diversas formas de la ecuacion de la recta y circunferenciasDiversas formas de la ecuacion de la recta y circunferencias
Diversas formas de la ecuacion de la recta y circunferencias
gaby_2013
 
Presentación1.pptx
Presentación1.pptxPresentación1.pptx
Presentación1.pptx
Wenpal555
 
4. circunferencia
4. circunferencia4. circunferencia
4. circunferencia
SALINAS
 

Similaire à Sesión 03,Plano tangente, derivadas parciales y derivada direccional (20)

Introducción a las Derivadas Parciales,Plano tangente y Gradiente MA-III c...
Introducción  a las Derivadas Parciales,Plano tangente y Gradiente  MA-III  c...Introducción  a las Derivadas Parciales,Plano tangente y Gradiente  MA-III  c...
Introducción a las Derivadas Parciales,Plano tangente y Gradiente MA-III c...
 
14.circunferencia
14.circunferencia14.circunferencia
14.circunferencia
 
Bernoulli
BernoulliBernoulli
Bernoulli
 
El teorema del punto fijo de brouwer
El teorema del punto fijo de brouwerEl teorema del punto fijo de brouwer
El teorema del punto fijo de brouwer
 
Ensayo circunferencia
Ensayo circunferenciaEnsayo circunferencia
Ensayo circunferencia
 
Crónicas, ecuaciones paramétricas y Coordenadas polares
Crónicas, ecuaciones paramétricas y Coordenadas polaresCrónicas, ecuaciones paramétricas y Coordenadas polares
Crónicas, ecuaciones paramétricas y Coordenadas polares
 
Secciones_Conicas.ppt
Secciones_Conicas.pptSecciones_Conicas.ppt
Secciones_Conicas.ppt
 
Aplicación de ecuaciones diferenciales en la ingeniería
Aplicación de ecuaciones diferenciales en la ingenieríaAplicación de ecuaciones diferenciales en la ingeniería
Aplicación de ecuaciones diferenciales en la ingeniería
 
Ecuacion de la circunferencia
Ecuacion de la circunferenciaEcuacion de la circunferencia
Ecuacion de la circunferencia
 
Linea del tiempo
Linea del tiempoLinea del tiempo
Linea del tiempo
 
Transformacion de coordenadas
Transformacion de coordenadasTransformacion de coordenadas
Transformacion de coordenadas
 
Diversas formas de la ecuacion de la recta y circunferencias
Diversas formas de la ecuacion de la recta y circunferenciasDiversas formas de la ecuacion de la recta y circunferencias
Diversas formas de la ecuacion de la recta y circunferencias
 
Circunferencia parabola resueltos
Circunferencia parabola resueltosCircunferencia parabola resueltos
Circunferencia parabola resueltos
 
Calse modelo
Calse modeloCalse modelo
Calse modelo
 
Geoman
GeomanGeoman
Geoman
 
Lady bravo geometria
Lady bravo geometriaLady bravo geometria
Lady bravo geometria
 
Capítulo 1. Cónicas
Capítulo 1. CónicasCapítulo 1. Cónicas
Capítulo 1. Cónicas
 
Conicas
ConicasConicas
Conicas
 
Presentación1.pptx
Presentación1.pptxPresentación1.pptx
Presentación1.pptx
 
4. circunferencia
4. circunferencia4. circunferencia
4. circunferencia
 

Plus de Juan Carlos Broncanotorres

Plus de Juan Carlos Broncanotorres (20)

S053-Limite.pptx
S053-Limite.pptxS053-Limite.pptx
S053-Limite.pptx
 
funciones parte 01
funciones parte 01funciones parte 01
funciones parte 01
 
numeros complejos
numeros complejosnumeros complejos
numeros complejos
 
Criptofgrafia sobre curvas elípticas
Criptofgrafia sobre curvas elípticasCriptofgrafia sobre curvas elípticas
Criptofgrafia sobre curvas elípticas
 
criptosistema Rabin, Merkle-Hellman
criptosistema Rabin, Merkle-Hellmancriptosistema Rabin, Merkle-Hellman
criptosistema Rabin, Merkle-Hellman
 
criptosistema ELGAMAL
criptosistema ELGAMALcriptosistema ELGAMAL
criptosistema ELGAMAL
 
CRISPTOSISTEMA RSA MEJORADO
CRISPTOSISTEMA RSA MEJORADOCRISPTOSISTEMA RSA MEJORADO
CRISPTOSISTEMA RSA MEJORADO
 
Critografia Asimetrica el RSA
Critografia Asimetrica el RSACritografia Asimetrica el RSA
Critografia Asimetrica el RSA
 
Fundamentos matematicos para la criptografia asimetrica
Fundamentos matematicos para la criptografia asimetricaFundamentos matematicos para la criptografia asimetrica
Fundamentos matematicos para la criptografia asimetrica
 
primera practica calificada de criptografía
primera practica calificada de criptografíaprimera practica calificada de criptografía
primera practica calificada de criptografía
 
PRIMERA PRACTICA CALIFICADA MET MATEMATICOS DE TELECOMUNIACIONES II
PRIMERA PRACTICA CALIFICADA MET MATEMATICOS DE TELECOMUNIACIONES IIPRIMERA PRACTICA CALIFICADA MET MATEMATICOS DE TELECOMUNIACIONES II
PRIMERA PRACTICA CALIFICADA MET MATEMATICOS DE TELECOMUNIACIONES II
 
Metodos mat de tele ii 1 -
Metodos mat  de tele ii  1 -Metodos mat  de tele ii  1 -
Metodos mat de tele ii 1 -
 
Cuidades Inteligentes
Cuidades InteligentesCuidades Inteligentes
Cuidades Inteligentes
 
Historia de la Criptografía II
Historia de la Criptografía IIHistoria de la Criptografía II
Historia de la Criptografía II
 
Teoria de Numeros
Teoria de Numeros Teoria de Numeros
Teoria de Numeros
 
Problemas sobre propabilidad Condicionada y Teorema de Bayes
Problemas sobre propabilidad Condicionada y Teorema de BayesProblemas sobre propabilidad Condicionada y Teorema de Bayes
Problemas sobre propabilidad Condicionada y Teorema de Bayes
 
Criptosistemas
CriptosistemasCriptosistemas
Criptosistemas
 
Historia de la Criptografia 3
Historia de la Criptografia 3Historia de la Criptografia 3
Historia de la Criptografia 3
 
Ejercicios Probabilidades
Ejercicios ProbabilidadesEjercicios Probabilidades
Ejercicios Probabilidades
 
Probabilidad Condicional
Probabilidad CondicionalProbabilidad Condicional
Probabilidad Condicional
 

Dernier

Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
NancyLoaa
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
zulyvero07
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 

Dernier (20)

AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptx
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 

Sesión 03,Plano tangente, derivadas parciales y derivada direccional

  • 1. CÁLCULO 3 Departamento de Ciencias Juan Carlos Broncano Torres
  • 2. ¿Qué dirección debe tomar el esquiador si quiere bajar la montaña rápidamente?
  • 3. Curva Maravillosa: Braquistócrona Un curva braquistócrona, o curva del descenso más rápido, es la curva entre dos puntos que es recorrida en menor tiempo, por un cuerpo que comienza en el punto inicial con velocidad cero, y que debe desplazarse a lo largo de la curva hasta llegar al segundo punto, bajo acción de una fuerza de gravedad constante y suponiendo que no existe fricción. Comparación entre una trayectoria braquistócrona, y otras dos trayectorias posibles. Cicloide generada por una circunferencia. En 1696 el matemático Johann Bernoulli anunció a la comunidad matemática la solución al problema de la braquistocrona (curva que sigue el descenso más rápido cuando existe gravedad y que es objeto de estudio en el cálculo de variaciones), mostrando que la solución era una cicloide. Leibniz, Newton, Jakob Bernoulli y Guillaume de l'Hôpital, encontraron la solución del problema enunciado por Bernoulli.
  • 4. Logros de la sesión: Al finalizar la sesión, el estudiante resuelve problemas vinculados a la gestión e ingeniería a partir de la derivada parcial y direccional usando el cálculo de la gradiente, e interpretando su resultado con las propiedades físicas que el tiene.
  • 6. NOTACIÓN DE LAS DERIVADAS PARCIALES Ejemplo
  • 8. PLANO TANGENTE Se llama plano tangente a una superficie en un punto P de la misma, al plano que contiene todas las tangentes a las curvas trazadas sobre la superficie por el punto P. ECUACIÓN DEL PLANO TANGENTE
  • 9. Ejemplo Hallar la ecuación del plano tangente al paraboloide en el punto RECTA NORMAL Se llama recta normal a una superficie a la recta que pasa por un punto P y es perpendicular al plano tangente.
  • 11. PROPIEDADES DE LA GRADIENTE Ejemplo
  • 12. Ejemplo Determine la ecuación del plano tangente y la recta normal al hiperboloide de dos mantos en el punto Solución 2 x2 y 2 1 Haciendo: F ( x, y, z ) z tenemos que: Fx 2x x 1 2 Fy Fz 2y 2z z y 2 4 6 Por tanto, la ecuación del plano tangente es: Por otro lado, la ecuación de la recta normal es : x 1 2t y 2 4t z 6 2t 6 x 2y z 6 0
  • 13. Ejemplo Hallar el o los puntos de la esfera en los cuales el plano tangente es paralelo al plano Solución Sea uno de estos puntos, entonces por estar en la esfera: Por otro lado, por ser el plano tangente a la esfera en el punto y el plano paralelos, sus vectores normales son paralelos, es decir : Entonces se obtiene el siguiente sistema de ecuaciones: De donde obtenemos que los puntos que buscamos son:
  • 14. Ejemplo ¿En qué punto de la superficie ? la recta normal es paralela al vector Solución Sea el punto que buscamos. Si la recta normal es paralela al vector entonces su vector director también es paralelo a con lo cual, si : entonces : ; Evaluando en esta sobre la superficie, por lo que satisface su ecuación : Obtenemos el siguiente sistema: Y así, el punto buscado es:
  • 15. DERIVADA DIRECCIONAL La derivada direccional de f en la dirección dada por el vector unitario u está dada por: f ( x su1 , y su2 ) - f(x, y) D f(x, y) lim s 0 s u si el límite existe.
  • 16. Teorema: Si f tiene sus primeras derivadas parciales continuas entonces tiene derivada direccional en la dirección de cualquier vector unitario u y se cumple: D f(x, y) f x (x, y) u1 u f y (x, y) u 2
  • 17. BIBLIOGRAFÍA # CÓDIGO AUTOR TÍTULO EDITORIAL 1 515.33 PURC PURCELL, EDWIN J. Cálculo Diferencial E Integral Pearson Educación 2 515 STEW/M 2002 STEWART, JAMES Cálculo Multivariable Cuarta edición, Mexico 2001, Edit. Thomson Cálculo Aplicado Para Administración, Economía Y Ciencias Sociales Octava edición, México 2007,.Mcgrawhill 3 515 HOFF/C HOFFMANN, 2006 LAURENCE D.