SlideShare une entreprise Scribd logo
1  sur  30
Télécharger pour lire hors ligne
Estimation of divergence times in Asparagales in the
presence of hybridization
Kate L. Hertweck, Michael R. McKain
Monocots V
Blog:
k8hert.blogspot.com
Twitter @k8hert
Google+ k8hertweck@gmail.com
Slides available:
http://www.slideshare.net/katehertweck
Plantzafrica.comErica Wheeler
Objectives
1) Describing lynchpins of monocot evolution
2) Informing Asparagales divergence times with lessons from
monocots
3) Applications of dating estimates
What are the most important considerations in determining
the context of diversification in monocots?
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Kate L. Hertweck, Michael S. Kinney, Sarah Mathews, Mark W. Chase,
M. A. Gandolfo, J. Chris Pires
Divergence time estimation in monocots
●
Improved Chase et al. (2006) dataset with 8 genes (11459 bp)
●
1 mt, 4 cp, 2 nrDNA, 1 LCNG (PHYC)
●
151 total taxa (27 outgroup, including 10 eudicots)
●
MUSCLE, RAxML/MrBayes (partitioned, GTRGAMMA)
●
r8s (13 fossil constraints), PL (TN) with cross validation, BEAST
●
Does a dataset representing all three genomic partitions accurately
reconstruct evolutionary relationships?
●
Can we improve divergence time estimations in monocots using
comprehensive taxon sampling?
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Fossil calibrations for Asparagales
constraint Age (Ma) taxon
1 CG angiosperms 110.4 (Early-Middle Albian) Carpestella lacunata
2 SL Nymphaeales 110.4 (Early-Middle Albian) Microvictoria svitkoana
3 SL Schisandraceae 89.3 (Cenomanian-Turonian) Illiciospermum pusillum
4 SL Chloranthaceae 130 (Hauterivian, Helez Fm.) Clavatipollenites minutus
5 SL Magnoliales 112 (Late Aptian) Endressinia brasiliana
6 SL Calycanthaceae 118.5 (Late Barremian-Early Aptian) Jerseyanthus calycanthoides
7 SL Lactoridaceae 70.6 (Early Turonian-Campanian) Lactoripollenites africanus
8 CG eudicots 99.6 (Late Albian) Spanomera marylandensis
9 SL Araceae 118.5 (Late Barremain-Early Aptian) Cobbania corrugata
10 CG Pandanales 89.3 (Turonian) Mabelia, Nuhliantha
11 SL Arecales 70.6 (Campanian) Sabalites magothiensis,
Palmoxylon cliffwoodensis
12 SL Zingiberales 72.5 (Campanian, absolute age) Tricostatocarpon silvapinedae,
Striatornata sanantoniensis
13 SL Poaceae 65.5 (Maastrichtian) phytoliths
(Gandolfo, pers. comm.)
K. Hertweck, NESCent, Asparagales divergence 1. Challenges 2. Data 3. Applications
Monocot timetree
Single data partitions fail to
reconstruct deep relationships
Combined dataset yields high
confidence at most nodes
(except commelinids)
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Monocot timetree: Maxage of angiosperms at 170 Ma
Outgroups constrained for
proper fossil placement
Confidence intervals:
Maxage of angiosperms=
200 and 150 Ma
CG monocots:
153 Ma (134-127)
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Lynchpins in monocot divergence time estimation
● Taxonomic sampling
● Even sampling across lineages
● Represent early diverging taxa in each lineage
● Sample lineages which are both species rich and poor
● Select optimal lineages for fossil calibrations
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Lynchpins in monocot divergence time estimation
● Taxonomic sampling
● Even sampling across lineages
● Represent early diverging taxa in each lineage
● Sample lineages which are both species rich and poor
● Select optimal lineages for fossil calibrations
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Lynchpins in monocot divergence time estimation
● Taxonomic sampling
● Molecular sequence sampling
● Combining data partitions more reliably estimates
phylogeny, although constraining topology may still be
necessary
● Variation in life history may affect rates of molecular
evolution
● Multiple independent data partitions may smooth rate
variation in individual genes
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Lynchpins in monocot divergence time estimation
● Taxonomic sampling
● Molecular sequence sampling
● Fossil calibrations
● Incongruence between molecular and fossil dates for
divergence
● Most variation in divergence time estimation comes
from implementation of fossil calibrations
● Calibrations at shallow nodes can be influential
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Lynchpins in monocot divergence time estimation
● Taxonomic sampling
● Molecular sequence sampling
● Fossil calibrations
● Some lynchpins are exacerbated in Asparagales
● What lessons learned from dating monocots can assist in
improving divergence time estimates in Asparagales?
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Objectives
1) Describing lynchpins of monocot evolution
2) Informing Asparagales divergence times with lessons from
monocots
3) Applications of dating estimates
How can studies in monocots improve divergence time
estimates in Asparagales?
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Basic Asparagales divergence times
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Monocot 8 gene dataset
(Hertweck et al., unpub.)
CG Asparagales: 113 Ma (125-105)
CG “Core” Asparagales: 61 Ma (67-58)
CG Asparagaceae: 52 Ma (58-49)
CG Amaryllidaceae: 50 Ma (55-47)
CG Xanthorrhoeaceae: 47 Ma (52-44)
Broad taxonomic divergence
time analyses
(Janssen and Bremer 2004,
Magallon and Castillo 2009,
Bell et al. 2010)
CG Asparagales: 92-127 my
Datasets:
Chen et al. 2013: many taxa,
4 cpDNA loci
Seberg et al. 2013: many taxa,
3 cpDNA and 2 mtDNA loci
* McKain plastome: some
taxa, complete plastomes
* McKain orthologs: fewer
taxa, 19 nuclear orthologs
Lynchpin 1: Taxonomic sampling in Asparagales
Chen S, Kim D-K, Chase MW, Kim J-H (2013) Networks
in a Large-Scale Phylogenetic Analysis: Reconstructing
Evolutionary History of Asparagales (Lilianae) Based on
Four Plastid Genes. PLoS ONE 8(3): e59472.
doi:10.1371/journal.pone.0059472
http://www.plosone.org/article/info:doi/10.1371/journal.p
one.0059472
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
●
Chen et al. 2013:
●
253 species, 201 genera, all families in Asparagales
●
29 species from monocot outgroups
●
Three calibrations: CG Asparagales and two outgroups
Effect of many taxa
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Monocot 8 gene Chen BEAST
CG Asparagales 113 Ma (125-105) 93 Ma (101-93)
CG “Core” Asparagales 61 Ma (67-58) 63 Ma (75-53)
CG Asparagaceae 52 Ma (58-49) 56 Ma (65-48)
CG Amaryllidaceae 50 Ma (55-47) 51 Ma (62-42)
CG Xanthorrhoeaceae 47 Ma (52-44) 56 Ma (66-48)
More taxa increases accuracy of dating estimates?
• Variation in genome size
• Karyotype (chromosome structure, bimodality)
• Polyploidy (auto-, allo-, aneu- ploidy)
• Hybridization (and other historically confounding
evolutionary events)
How do these genomic phenomena affect our ability
to reconstruct phylogeny and other evolutionary
patterns?
Lynchpin 2: Molecular sequence sampling
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Application of nuclear data to divergence time estimates
• ITS
• Low copy nuclear genes
• Transcriptomes
• PHYTOCHROME C (PHYC)
– Well characterized; red/far red light sensing
– Single copy in almost all groups studied; orthology established
– Phylogenetically informative
– Degenerate primers in exon 1 of PHYC (Mathews et al., 1995)
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
PHYC reconstructs relationships between families
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Intrafamilial relationships from PHYC are messy
Androstephium (Brodiaeoideae)
Brodiaea (Brodiaeoideae)
Drimia (Scilloideae)
Dianella (Hemerocallidoideae)
Geitonoplesium (Hemerocallidoideae)
Arthropodium (Laxmanniaceae)
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Intrafamilial relationships from PHYC are messy
Androstephium (Brodiaeoideae)
Brodiaea (Brodiaeoideae)
Drimia (Scilloideae)
Dianella (Hemerocallidoideae)
Geitonoplesium (Hemerocallidoideae)
Arthropodium (Laxmanniaceae)
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
• Hybridization and other types of reticulate networks may require a different
approach to divergence time estimation
• No methods explicitly incorporating networks for divergence times
Lynchpin 3: Fossil calibrations
constraint Age (Ma) taxon
CG Orchidaceae 15 (Early-Middle Miocene) Meliorchis caribea
CG Agavoideae 12 (Middle Miocene) Protoyucca
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
● Most botanists aren't paleobotanists
● Applying secondary calibrations might be problematic
● Evidence for additional fossil calibrations in Asparagales lineages
● Emerging support for both deep and shallow fossil calibrations across
the phylogeny (except this requires representative taxon sampling)
Ramirez et al. 2007
Secondary calibrations can have unexpected results!
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Monocot 8 gene McKain 19 single
copy nuclear genes
(two applicable
fossils)
McKain 19 single
copy nuclear genes
CG Asparagales 113 Ma (125-105) 87 Ma (102-72) 113 Ma (fixed age)
CG “Core”
Asparagales
61 Ma (67-58) 63 Ma (75-53) 78 Ma (74-81)
CG Asparagaceae 52 Ma (58-49) 52 Ma (62-43) 63 Ma (60-66)
CG Amaryllidaceae 50 Ma (55-47) 48 Ma (57-40) 59 Ma (56-61)
CG Xanthorrhoeaceae 47 Ma (52-44) 56 Ma (66-46) 69 Ma (66-71)
Recommendations for dating estimates in Asparagales
● Can any of uncertainty in three lynchpins be accommodated by
analytical techniques?
– Easier to make comparisons with r8s (or other non-Bayesian
algorithms)
– *BEAST: explicitly incorporates coalescent to infer “species” tree,
divergence times, population sizes
– Different approach to prior assignment of fossils (exponential
distribution, Chen et al. 2013)
– Uncertainty better managed by Bayesian methods, but this benefit
nullified by priors which are too complex!
– Congruification (Eastman 2013): an alternative to running
complete analysis
– Look at relative diversification rather than absolute
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Objectives
1) Describing lynchpins of monocot evolution
2) Informing Asparagales divergence times with lessons from
monocots
3) Applications of dating estimates
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Where do we go from here?
Genomic changes occur repeatedly in Asparagales phylogeny
Hertweck,
Genome, 2013
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Dating transposable element proliferation
Hertweck,
Genome, 2013
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Black: copia
White: gypsy
Rectangles: total repeats
Divergence times provide the context for inferring evolutionary patterns
● From monocot 8 gene dataset:
● SymmeTREE (Chan et al. 2005): tree topology and tree-wide
species diversity
● One significant and one marginally significant shift in diversification,
both in subfamily Agavoideae
● Other methods
● Incorporating divergence times
● Exploring relationships with morphological or life history traits
● Compounding uncertainty
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Summary
●
My personally favored estimate for CG Asparagales:
113 Ma (125-105)
●
Problems with dating in monocots are exacerbated in
Asparagales
●
Taxonomic sampling
●
Molecular sequence sampling
●
Fossil calibrations
●
Can any of these problems be accommodated by analytical
techniques?
●
Careful balance between appropriate sampling and
possibly compounding problems
●
Think creatively, and try multiple approaches
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Basic Asparagales divergence times
K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
Monocot 8 gene dataset
CG Asparagales: 113 Ma (125-105)
CG “Core” Asparagales: 61 Ma (67-58)
CG Asparagaceae: 52 Ma (58-49)
CG Amaryllidaceae: 50 Ma (55-47)
CG Xanthorrhoeaceae: 47 Ma (52-44)
Acknowledgements
• J. Chris Pires and lab (U of Missouri)
• Victoria Docktor
• NESCent science and bioinformatics folks
• Fossil consultation
• S. Magallon
• E. Friis
• M. Beilstein
• N. Nagalingum
• Matt Dorrance
K. Hertweck, NESCent, Asparagales divergence
Repetitive elements in Asparagales:
Poster 46!
Blog:
k8hert.blogspot.com
Twitter @k8hert
Google+ k8hertweck@gmail.com
Slides available:
http://www.slideshare.net/katehertweck

Contenu connexe

Tendances

MS thesis presentation_FINAL
MS thesis presentation_FINALMS thesis presentation_FINAL
MS thesis presentation_FINAL
Tom Hajek
 
1-s2.0-S0531556514002551-main(1)
1-s2.0-S0531556514002551-main(1)1-s2.0-S0531556514002551-main(1)
1-s2.0-S0531556514002551-main(1)
Xavier Manière
 
2014 whitney-research
2014 whitney-research2014 whitney-research
2014 whitney-research
c.titus.brown
 
Sigma xi presentation final1
Sigma xi presentation   final1Sigma xi presentation   final1
Sigma xi presentation final1
mukta936
 
Sigma xi presentation mukta asnani
Sigma xi presentation   mukta asnaniSigma xi presentation   mukta asnani
Sigma xi presentation mukta asnani
mukta936
 
Hamster pinworm poster FINAL
Hamster pinworm poster FINALHamster pinworm poster FINAL
Hamster pinworm poster FINAL
David Chu
 
PNAS-2013-Barr-10771-6
PNAS-2013-Barr-10771-6PNAS-2013-Barr-10771-6
PNAS-2013-Barr-10771-6
Rita Auro
 
C. Elegans Primary Literature
C. Elegans Primary LiteratureC. Elegans Primary Literature
C. Elegans Primary Literature
Shiva Mozaffarian
 
The genomes of four tapeworm species reveal adaptations to parasitism
The genomes of four tapeworm species reveal adaptations to parasitismThe genomes of four tapeworm species reveal adaptations to parasitism
The genomes of four tapeworm species reveal adaptations to parasitism
João Soares
 
FINAL EXAM Poster
FINAL EXAM PosterFINAL EXAM Poster
FINAL EXAM Poster
Nicole Urh
 

Tendances (19)

MS thesis presentation_FINAL
MS thesis presentation_FINALMS thesis presentation_FINAL
MS thesis presentation_FINAL
 
1-s2.0-S0531556514002551-main(1)
1-s2.0-S0531556514002551-main(1)1-s2.0-S0531556514002551-main(1)
1-s2.0-S0531556514002551-main(1)
 
2014 whitney-research
2014 whitney-research2014 whitney-research
2014 whitney-research
 
(Artigo 4) mol biol evol 2011-wägele-699-706
(Artigo 4) mol biol evol 2011-wägele-699-706(Artigo 4) mol biol evol 2011-wägele-699-706
(Artigo 4) mol biol evol 2011-wägele-699-706
 
Sigma xi presentation final1
Sigma xi presentation   final1Sigma xi presentation   final1
Sigma xi presentation final1
 
Sigma xi presentation mukta asnani
Sigma xi presentation   mukta asnaniSigma xi presentation   mukta asnani
Sigma xi presentation mukta asnani
 
Microbial Metagenomics and Human Health
Microbial Metagenomics and Human HealthMicrobial Metagenomics and Human Health
Microbial Metagenomics and Human Health
 
Hamster pinworm poster FINAL
Hamster pinworm poster FINALHamster pinworm poster FINAL
Hamster pinworm poster FINAL
 
PNAS-2013-Barr-10771-6
PNAS-2013-Barr-10771-6PNAS-2013-Barr-10771-6
PNAS-2013-Barr-10771-6
 
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
 
Gutell 095.imb.2005.14.625
Gutell 095.imb.2005.14.625Gutell 095.imb.2005.14.625
Gutell 095.imb.2005.14.625
 
Synthetic Gene Drive System
Synthetic Gene Drive SystemSynthetic Gene Drive System
Synthetic Gene Drive System
 
GRC poster
GRC posterGRC poster
GRC poster
 
C. Elegans Primary Literature
C. Elegans Primary LiteratureC. Elegans Primary Literature
C. Elegans Primary Literature
 
The genomes of four tapeworm species reveal adaptations to parasitism
The genomes of four tapeworm species reveal adaptations to parasitismThe genomes of four tapeworm species reveal adaptations to parasitism
The genomes of four tapeworm species reveal adaptations to parasitism
 
CRISPR as a potential tool for malaria eradication
CRISPR as a potential tool for malaria eradicationCRISPR as a potential tool for malaria eradication
CRISPR as a potential tool for malaria eradication
 
Exploring the role of Campylobacter. coli GT-42 enzymes on LOS biosynthesis
Exploring the role of Campylobacter. coli GT-42 enzymes on LOS biosynthesisExploring the role of Campylobacter. coli GT-42 enzymes on LOS biosynthesis
Exploring the role of Campylobacter. coli GT-42 enzymes on LOS biosynthesis
 
FINAL EXAM Poster
FINAL EXAM PosterFINAL EXAM Poster
FINAL EXAM Poster
 
WGHA Discovery Series: Robert Sinden
WGHA Discovery Series: Robert SindenWGHA Discovery Series: Robert Sinden
WGHA Discovery Series: Robert Sinden
 

Similaire à Hertweck Monocots V Presentation

Neural crest cell migration-Cell tracing techniques.
Neural crest cell migration-Cell tracing techniques.Neural crest cell migration-Cell tracing techniques.
Neural crest cell migration-Cell tracing techniques.
sanjeev jain
 
10 rapid molecular evolution in a living fossil
10 rapid molecular evolution in a living fossil10 rapid molecular evolution in a living fossil
10 rapid molecular evolution in a living fossil
João Soares
 
Taxonomy and classification Implications for avian identification
Taxonomy and classification Implications for avian identificationTaxonomy and classification Implications for avian identification
Taxonomy and classification Implications for avian identification
Nicola snow
 
TanMP et al 2015
TanMP et al 2015TanMP et al 2015
TanMP et al 2015
Min Pau Tan
 
Cvnoheader
CvnoheaderCvnoheader
Cvnoheader
Hon Chau
 

Similaire à Hertweck Monocots V Presentation (20)

Neural crest cell migration-Cell tracing techniques.
Neural crest cell migration-Cell tracing techniques.Neural crest cell migration-Cell tracing techniques.
Neural crest cell migration-Cell tracing techniques.
 
10 rapid molecular evolution in a living fossil
10 rapid molecular evolution in a living fossil10 rapid molecular evolution in a living fossil
10 rapid molecular evolution in a living fossil
 
Effects of density on spacing patterns and habitat associations of a Neotropi...
Effects of density on spacing patterns and habitat associations of a Neotropi...Effects of density on spacing patterns and habitat associations of a Neotropi...
Effects of density on spacing patterns and habitat associations of a Neotropi...
 
Automated sorting of parasitic worms using sine-wave channels
Automated sorting of parasitic worms using sine-wave channelsAutomated sorting of parasitic worms using sine-wave channels
Automated sorting of parasitic worms using sine-wave channels
 
Taras Oleksyk at #ICG12: Innovative assembly strategy contributes to the unde...
Taras Oleksyk at #ICG12: Innovative assembly strategy contributes to the unde...Taras Oleksyk at #ICG12: Innovative assembly strategy contributes to the unde...
Taras Oleksyk at #ICG12: Innovative assembly strategy contributes to the unde...
 
Hertweck uva2012
Hertweck uva2012Hertweck uva2012
Hertweck uva2012
 
eg.poster
eg.postereg.poster
eg.poster
 
Clase 2 - Genoma Humano proyecto conicet.pdf
Clase 2 - Genoma Humano proyecto conicet.pdfClase 2 - Genoma Humano proyecto conicet.pdf
Clase 2 - Genoma Humano proyecto conicet.pdf
 
Taxonomy and classification Implications for avian identification
Taxonomy and classification Implications for avian identificationTaxonomy and classification Implications for avian identification
Taxonomy and classification Implications for avian identification
 
2000 JME (51)278-285
2000 JME (51)278-2852000 JME (51)278-285
2000 JME (51)278-285
 
Final Draft
Final DraftFinal Draft
Final Draft
 
Paper to Upload, MOLECULAR PHYLOGENY OF CATFISHES.pdf
Paper to Upload, MOLECULAR PHYLOGENY OF CATFISHES.pdfPaper to Upload, MOLECULAR PHYLOGENY OF CATFISHES.pdf
Paper to Upload, MOLECULAR PHYLOGENY OF CATFISHES.pdf
 
CESAB-ACTIAS-sfe2018
CESAB-ACTIAS-sfe2018CESAB-ACTIAS-sfe2018
CESAB-ACTIAS-sfe2018
 
Transposable elements of Agavoideae
Transposable elements of AgavoideaeTransposable elements of Agavoideae
Transposable elements of Agavoideae
 
Bioinformatica 24-11-2011-t6-phylogenetics
Bioinformatica 24-11-2011-t6-phylogeneticsBioinformatica 24-11-2011-t6-phylogenetics
Bioinformatica 24-11-2011-t6-phylogenetics
 
Characterizing the Effect of Static Magnetic Fields on C. elegans Using Micro...
Characterizing the Effect of Static Magnetic Fields on C. elegans Using Micro...Characterizing the Effect of Static Magnetic Fields on C. elegans Using Micro...
Characterizing the Effect of Static Magnetic Fields on C. elegans Using Micro...
 
Utility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogeneticUtility of transcriptome sequencing for phylogenetic
Utility of transcriptome sequencing for phylogenetic
 
TanMP et al 2015
TanMP et al 2015TanMP et al 2015
TanMP et al 2015
 
Cvnoheader
CvnoheaderCvnoheader
Cvnoheader
 
Molecular Cytogenetics - HYM Mohan Ram Heslop-Harrison Delhi
Molecular Cytogenetics - HYM Mohan Ram Heslop-Harrison DelhiMolecular Cytogenetics - HYM Mohan Ram Heslop-Harrison Delhi
Molecular Cytogenetics - HYM Mohan Ram Heslop-Harrison Delhi
 

Plus de Kate Hertweck

Hertweck Evolution 2017
Hertweck Evolution 2017Hertweck Evolution 2017
Hertweck Evolution 2017
Kate Hertweck
 
Hertweck Evolution 2014
Hertweck Evolution 2014Hertweck Evolution 2014
Hertweck Evolution 2014
Kate Hertweck
 

Plus de Kate Hertweck (14)

Opening science to interdisciplinarity: balancing trade-offs while creating, ...
Opening science to interdisciplinarity: balancing trade-offs while creating, ...Opening science to interdisciplinarity: balancing trade-offs while creating, ...
Opening science to interdisciplinarity: balancing trade-offs while creating, ...
 
Archives of a Future Commons: Seeds and/as Data
Archives of a Future Commons:  Seeds and/as DataArchives of a Future Commons:  Seeds and/as Data
Archives of a Future Commons: Seeds and/as Data
 
Hertweck Evolution 2017
Hertweck Evolution 2017Hertweck Evolution 2017
Hertweck Evolution 2017
 
Hertweck AB3ACBS presentation
Hertweck AB3ACBS presentationHertweck AB3ACBS presentation
Hertweck AB3ACBS presentation
 
Careers in Botany
Careers in BotanyCareers in Botany
Careers in Botany
 
Developing an undergraduate bioinformatics course
Developing an undergraduate bioinformatics courseDeveloping an undergraduate bioinformatics course
Developing an undergraduate bioinformatics course
 
Evolution of transposons, genomes, and organisms (Hertweck Fall 2014)
Evolution of transposons, genomes, and organisms (Hertweck Fall 2014)Evolution of transposons, genomes, and organisms (Hertweck Fall 2014)
Evolution of transposons, genomes, and organisms (Hertweck Fall 2014)
 
Hertweck Evolution 2014
Hertweck Evolution 2014Hertweck Evolution 2014
Hertweck Evolution 2014
 
Phylolecture
PhylolecturePhylolecture
Phylolecture
 
Hertweck Asparagales 2013
Hertweck Asparagales  2013Hertweck Asparagales  2013
Hertweck Asparagales 2013
 
Hertweck bbl2012
Hertweck bbl2012Hertweck bbl2012
Hertweck bbl2012
 
iEvoBio Hertweck abstract 2012
iEvoBio Hertweck abstract 2012iEvoBio Hertweck abstract 2012
iEvoBio Hertweck abstract 2012
 
iEvoBio Hertweck presentation 2012
iEvoBio Hertweck presentation 2012iEvoBio Hertweck presentation 2012
iEvoBio Hertweck presentation 2012
 
Evolution 2012
Evolution 2012Evolution 2012
Evolution 2012
 

Dernier

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Dernier (20)

A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 

Hertweck Monocots V Presentation

  • 1. Estimation of divergence times in Asparagales in the presence of hybridization Kate L. Hertweck, Michael R. McKain Monocots V Blog: k8hert.blogspot.com Twitter @k8hert Google+ k8hertweck@gmail.com Slides available: http://www.slideshare.net/katehertweck Plantzafrica.comErica Wheeler
  • 2. Objectives 1) Describing lynchpins of monocot evolution 2) Informing Asparagales divergence times with lessons from monocots 3) Applications of dating estimates What are the most important considerations in determining the context of diversification in monocots? K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 3. Kate L. Hertweck, Michael S. Kinney, Sarah Mathews, Mark W. Chase, M. A. Gandolfo, J. Chris Pires Divergence time estimation in monocots ● Improved Chase et al. (2006) dataset with 8 genes (11459 bp) ● 1 mt, 4 cp, 2 nrDNA, 1 LCNG (PHYC) ● 151 total taxa (27 outgroup, including 10 eudicots) ● MUSCLE, RAxML/MrBayes (partitioned, GTRGAMMA) ● r8s (13 fossil constraints), PL (TN) with cross validation, BEAST ● Does a dataset representing all three genomic partitions accurately reconstruct evolutionary relationships? ● Can we improve divergence time estimations in monocots using comprehensive taxon sampling? K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 4. Fossil calibrations for Asparagales constraint Age (Ma) taxon 1 CG angiosperms 110.4 (Early-Middle Albian) Carpestella lacunata 2 SL Nymphaeales 110.4 (Early-Middle Albian) Microvictoria svitkoana 3 SL Schisandraceae 89.3 (Cenomanian-Turonian) Illiciospermum pusillum 4 SL Chloranthaceae 130 (Hauterivian, Helez Fm.) Clavatipollenites minutus 5 SL Magnoliales 112 (Late Aptian) Endressinia brasiliana 6 SL Calycanthaceae 118.5 (Late Barremian-Early Aptian) Jerseyanthus calycanthoides 7 SL Lactoridaceae 70.6 (Early Turonian-Campanian) Lactoripollenites africanus 8 CG eudicots 99.6 (Late Albian) Spanomera marylandensis 9 SL Araceae 118.5 (Late Barremain-Early Aptian) Cobbania corrugata 10 CG Pandanales 89.3 (Turonian) Mabelia, Nuhliantha 11 SL Arecales 70.6 (Campanian) Sabalites magothiensis, Palmoxylon cliffwoodensis 12 SL Zingiberales 72.5 (Campanian, absolute age) Tricostatocarpon silvapinedae, Striatornata sanantoniensis 13 SL Poaceae 65.5 (Maastrichtian) phytoliths (Gandolfo, pers. comm.) K. Hertweck, NESCent, Asparagales divergence 1. Challenges 2. Data 3. Applications
  • 5. Monocot timetree Single data partitions fail to reconstruct deep relationships Combined dataset yields high confidence at most nodes (except commelinids) K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 6. Monocot timetree: Maxage of angiosperms at 170 Ma Outgroups constrained for proper fossil placement Confidence intervals: Maxage of angiosperms= 200 and 150 Ma CG monocots: 153 Ma (134-127) K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 7. Lynchpins in monocot divergence time estimation ● Taxonomic sampling ● Even sampling across lineages ● Represent early diverging taxa in each lineage ● Sample lineages which are both species rich and poor ● Select optimal lineages for fossil calibrations K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 8. Lynchpins in monocot divergence time estimation ● Taxonomic sampling ● Even sampling across lineages ● Represent early diverging taxa in each lineage ● Sample lineages which are both species rich and poor ● Select optimal lineages for fossil calibrations K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 9. Lynchpins in monocot divergence time estimation ● Taxonomic sampling ● Molecular sequence sampling ● Combining data partitions more reliably estimates phylogeny, although constraining topology may still be necessary ● Variation in life history may affect rates of molecular evolution ● Multiple independent data partitions may smooth rate variation in individual genes K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 10. Lynchpins in monocot divergence time estimation ● Taxonomic sampling ● Molecular sequence sampling ● Fossil calibrations ● Incongruence between molecular and fossil dates for divergence ● Most variation in divergence time estimation comes from implementation of fossil calibrations ● Calibrations at shallow nodes can be influential K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 11. Lynchpins in monocot divergence time estimation ● Taxonomic sampling ● Molecular sequence sampling ● Fossil calibrations ● Some lynchpins are exacerbated in Asparagales ● What lessons learned from dating monocots can assist in improving divergence time estimates in Asparagales? K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 12. Objectives 1) Describing lynchpins of monocot evolution 2) Informing Asparagales divergence times with lessons from monocots 3) Applications of dating estimates How can studies in monocots improve divergence time estimates in Asparagales? K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 13. Basic Asparagales divergence times K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications Monocot 8 gene dataset (Hertweck et al., unpub.) CG Asparagales: 113 Ma (125-105) CG “Core” Asparagales: 61 Ma (67-58) CG Asparagaceae: 52 Ma (58-49) CG Amaryllidaceae: 50 Ma (55-47) CG Xanthorrhoeaceae: 47 Ma (52-44) Broad taxonomic divergence time analyses (Janssen and Bremer 2004, Magallon and Castillo 2009, Bell et al. 2010) CG Asparagales: 92-127 my Datasets: Chen et al. 2013: many taxa, 4 cpDNA loci Seberg et al. 2013: many taxa, 3 cpDNA and 2 mtDNA loci * McKain plastome: some taxa, complete plastomes * McKain orthologs: fewer taxa, 19 nuclear orthologs
  • 14. Lynchpin 1: Taxonomic sampling in Asparagales Chen S, Kim D-K, Chase MW, Kim J-H (2013) Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes. PLoS ONE 8(3): e59472. doi:10.1371/journal.pone.0059472 http://www.plosone.org/article/info:doi/10.1371/journal.p one.0059472 K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 15. ● Chen et al. 2013: ● 253 species, 201 genera, all families in Asparagales ● 29 species from monocot outgroups ● Three calibrations: CG Asparagales and two outgroups Effect of many taxa K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications Monocot 8 gene Chen BEAST CG Asparagales 113 Ma (125-105) 93 Ma (101-93) CG “Core” Asparagales 61 Ma (67-58) 63 Ma (75-53) CG Asparagaceae 52 Ma (58-49) 56 Ma (65-48) CG Amaryllidaceae 50 Ma (55-47) 51 Ma (62-42) CG Xanthorrhoeaceae 47 Ma (52-44) 56 Ma (66-48) More taxa increases accuracy of dating estimates?
  • 16. • Variation in genome size • Karyotype (chromosome structure, bimodality) • Polyploidy (auto-, allo-, aneu- ploidy) • Hybridization (and other historically confounding evolutionary events) How do these genomic phenomena affect our ability to reconstruct phylogeny and other evolutionary patterns? Lynchpin 2: Molecular sequence sampling K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 17. Application of nuclear data to divergence time estimates • ITS • Low copy nuclear genes • Transcriptomes • PHYTOCHROME C (PHYC) – Well characterized; red/far red light sensing – Single copy in almost all groups studied; orthology established – Phylogenetically informative – Degenerate primers in exon 1 of PHYC (Mathews et al., 1995) K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 18. PHYC reconstructs relationships between families K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 19. Intrafamilial relationships from PHYC are messy Androstephium (Brodiaeoideae) Brodiaea (Brodiaeoideae) Drimia (Scilloideae) Dianella (Hemerocallidoideae) Geitonoplesium (Hemerocallidoideae) Arthropodium (Laxmanniaceae) K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 20. Intrafamilial relationships from PHYC are messy Androstephium (Brodiaeoideae) Brodiaea (Brodiaeoideae) Drimia (Scilloideae) Dianella (Hemerocallidoideae) Geitonoplesium (Hemerocallidoideae) Arthropodium (Laxmanniaceae) K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications • Hybridization and other types of reticulate networks may require a different approach to divergence time estimation • No methods explicitly incorporating networks for divergence times
  • 21. Lynchpin 3: Fossil calibrations constraint Age (Ma) taxon CG Orchidaceae 15 (Early-Middle Miocene) Meliorchis caribea CG Agavoideae 12 (Middle Miocene) Protoyucca K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications ● Most botanists aren't paleobotanists ● Applying secondary calibrations might be problematic ● Evidence for additional fossil calibrations in Asparagales lineages ● Emerging support for both deep and shallow fossil calibrations across the phylogeny (except this requires representative taxon sampling) Ramirez et al. 2007
  • 22. Secondary calibrations can have unexpected results! K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications Monocot 8 gene McKain 19 single copy nuclear genes (two applicable fossils) McKain 19 single copy nuclear genes CG Asparagales 113 Ma (125-105) 87 Ma (102-72) 113 Ma (fixed age) CG “Core” Asparagales 61 Ma (67-58) 63 Ma (75-53) 78 Ma (74-81) CG Asparagaceae 52 Ma (58-49) 52 Ma (62-43) 63 Ma (60-66) CG Amaryllidaceae 50 Ma (55-47) 48 Ma (57-40) 59 Ma (56-61) CG Xanthorrhoeaceae 47 Ma (52-44) 56 Ma (66-46) 69 Ma (66-71)
  • 23. Recommendations for dating estimates in Asparagales ● Can any of uncertainty in three lynchpins be accommodated by analytical techniques? – Easier to make comparisons with r8s (or other non-Bayesian algorithms) – *BEAST: explicitly incorporates coalescent to infer “species” tree, divergence times, population sizes – Different approach to prior assignment of fossils (exponential distribution, Chen et al. 2013) – Uncertainty better managed by Bayesian methods, but this benefit nullified by priors which are too complex! – Congruification (Eastman 2013): an alternative to running complete analysis – Look at relative diversification rather than absolute K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 24. Objectives 1) Describing lynchpins of monocot evolution 2) Informing Asparagales divergence times with lessons from monocots 3) Applications of dating estimates K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications Where do we go from here?
  • 25. Genomic changes occur repeatedly in Asparagales phylogeny Hertweck, Genome, 2013 K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 26. Dating transposable element proliferation Hertweck, Genome, 2013 K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications Black: copia White: gypsy Rectangles: total repeats
  • 27. Divergence times provide the context for inferring evolutionary patterns ● From monocot 8 gene dataset: ● SymmeTREE (Chan et al. 2005): tree topology and tree-wide species diversity ● One significant and one marginally significant shift in diversification, both in subfamily Agavoideae ● Other methods ● Incorporating divergence times ● Exploring relationships with morphological or life history traits ● Compounding uncertainty K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 28. Summary ● My personally favored estimate for CG Asparagales: 113 Ma (125-105) ● Problems with dating in monocots are exacerbated in Asparagales ● Taxonomic sampling ● Molecular sequence sampling ● Fossil calibrations ● Can any of these problems be accommodated by analytical techniques? ● Careful balance between appropriate sampling and possibly compounding problems ● Think creatively, and try multiple approaches K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications
  • 29. Basic Asparagales divergence times K. Hertweck, NESCent, Asparagales divergence 1. Monocots 2. Asparagales 3. Applications Monocot 8 gene dataset CG Asparagales: 113 Ma (125-105) CG “Core” Asparagales: 61 Ma (67-58) CG Asparagaceae: 52 Ma (58-49) CG Amaryllidaceae: 50 Ma (55-47) CG Xanthorrhoeaceae: 47 Ma (52-44)
  • 30. Acknowledgements • J. Chris Pires and lab (U of Missouri) • Victoria Docktor • NESCent science and bioinformatics folks • Fossil consultation • S. Magallon • E. Friis • M. Beilstein • N. Nagalingum • Matt Dorrance K. Hertweck, NESCent, Asparagales divergence Repetitive elements in Asparagales: Poster 46! Blog: k8hert.blogspot.com Twitter @k8hert Google+ k8hertweck@gmail.com Slides available: http://www.slideshare.net/katehertweck