Introduction final

155 vues

Publié le

0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
155
Sur SlideShare
0
Issues des intégrations
0
Intégrations
4
Actions
Partages
0
Téléchargements
2
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Introduction final

  1. 1. Introduction Les membranes de tensio-actifs sont des systèmes qui entrent en jeu dans des do- maines aussi divers que l’industrie cosmétique (émulsions), pharmaceutique, ou la fonctionnalisation de surfaces (biocapteurs, catalyse...). D’un point de vue fonda- mental, les membranes lipidiques constituent pour le biologiste ou le biophysicien l’élément de base de la parois cellulaire [1, 2]. Quant au physicien, les membranes constituent pour lui des systèmes souples, à quasi-deux dimensions, qui sont soumis à l’agitation thermique du solvant, et qui possédant donc des propriétés physiques remarquables mettant en jeu une gamme d’échelles spatiales très large. Elle s’étend de l’échelle moléculaire nanométrique pour l’épaisseur de la membrane, jusqu’au centimètre pour les membranes supportées, en passant par la taille des vésicules qui peut aller de la centaine de nanomètres à une dizaine micron. Notons que les membranes de tensio-actifs qui nous intéressent, ici, sont rencontrées dans divers sys- tèmes, tels que les phases lamellaires [3], les vésicules [4], les membranes supportées [5], etc. De nombreuses études ont porté sur leur caractérisation structurale, essentielle- 1
  2. 2. Introduction. 2 ment par diffusion de rayons X ou de neutrons. A ce propos une très bonne revue des études structurales, concernant les membranes phospholipidiques, a été effectuée par J.F. Nagle [3]. L’étude des fluctuations thermiques des membranes a fait l’objet de nombreux travaux, tant sur le plan expérimental que théorique. D’un point de vue théorique, les travaux pionniers de Helfrich [6] ont porté essentiellement sur les membranes planes. Par la suite, d’autres auteurs s’étaient intéressés aux fluctuations des vésicules [4]. Les fluctuations des membranes sont généralement gouvernées par plusieurs paramètres. En premier lieu, on trouve le module de courbure intrinsèque de la membrane qui stabilise les fluctuations de petites longueurs d’onde. Un autre paramètre d’intérêt est la tension de surface, γ, qui, dans certains cas, domine les échelles de longueurs intermédiaires pour les membranes non isolées. Quant au potentiel d’interaction, U, avec un substrat (membrane supportée, vésicules sur une surface) ou avec une autre membrane, il contrôle les fluctuations à grandes longueurs d’onde. Dans ce travail, nous avons cherché à étudier les propriétés statistiques des mem- branes fluides, en présence d’un potentiel extérieur. Celui-ci peut être causé par une paroi plane, qui se trouve à proximité d’une membrane fluide fluctuante. Générale- ment, ce potentiel est la somme de deux contributions : Un potentiel répulsif (em- pêchement stérique) et un potentiel attractif de type van der Waals. Dans la majorité des cas, le potentiel total passe par un minimum qui confine la membrane fluide, pas loin du substrat.
  3. 3. Introduction. 3 Pour mener les calculs, nous avons choisi le potentiel d’Helfrich-van der Waals. Ce dernier répond bien à la condition de confinement. D’entrée de jeu, nous avons étudié toutes les propriétés analytiques de ce potentiel. Ensuite, nous avons calculé les propriétés statistiques de la membrane confiné dans ce potentiel, à savoir la position moyenne de la membrane et la fonction de corrélation hauteur-hauteur. De cette fonction, nous avons extrait l’amplitude des fluctuations de la membrane. Evidemment, le calcul peut s’étendre aisément au cas d’autres types de potentiels, et aussi lorsque la membrane est confinée entre deux parois parallèles. Ce mémoire s’organise comme suit. Le chapitre 1 est consacré à un rappel sur les membranes biologiques, leurs constituants, ainsi que le mécanisme de transition dont elles sont le siège. Au chapitre 2, nous rappelons quelques notions essentielles de la Mécanique Statistique des membranes. Notre contribution originale est l’objet du chapitre 3, dans lequel nous étudions analytiquement le potentiel d’interaction d’Helfrich-van der Waals. Puis, nous déterminons les propriétés statistiques de la membrane confinée. Nous retraçons nos conclusions à la fin de ce mémoire.
  4. 4. Bibliographie [1] J. Katsaras, T. Gutberlet, Lipid Bilayers, Biological Physics Series, Springer, 2000. [2] O.G. Mouritsen, O.S. Andersen, eds., In Search of a New Biomembrane Model, Biol. Skr. Dan. Vid. Selsk. 49, pp 224, (1998). [3] J.F. Nagle, S. Tristram-Nagle, Biomembranes 1469,159 (2000). [4] U. Seifert, Adv. Phys. 46, 13 (1997). [5] E. Sackmann, Science 271, 43 (1996). [6] P. Canham, J. Theor. Bio. 26, 61 (1970). 4

×