SlideShare une entreprise Scribd logo
1  sur  28
IEEE/RSJ International Conference on
                                                                                           Intelligent Robots and Systems
                                                                                                         October 7-12, 2012
                                                                                                 Vilamoura, Algarve, Portugal




  Identification Procedure for
  McKibben Pneumatic Artificial
  Muscle Systems
  K. Kogiso, K. Sawano, T. Itto, and K. Sugimoto
  Nara Institute of Science and Technology (NAIST), Japan




  Oct. 10, 2012 @ WedBT5, 9:30 to 9:45 am, Regular Session, Gemini 2, Tivoli Marina Vilamoura

13年1月30日水曜日
Outline

              Introduction

              Modeling of PAM system

              Identification Procedure

              Experimental Validation

              Extension

              Conclusion
                                        Active Link, Co.
                                                           2

13年1月30日水曜日
Introduction
  McKibben Pneumatic Artificial Muscle (PAM)
                                                 rubber tube                 mesh




     Advantage for application   Disadvantage for modeling & control

      high power/weight ratio     complex & nonlinear system (hydrodynamics)
      flexibility                  empirical approximation or linearization

                                                                                    3

13年1月30日水曜日
Introduction
  Motivation
     Mathematical modeling of PAM is a challenging issue.                                                           L0                         L                   l

       nonlinearities such as hysteresis, hydrodynamics, friction,...                                                      solenoid
                                                                                                                             PDC
                                                                                                                             valve
                                                                                                                            valve

       difficulty to explain validity of approximation or linearization.
       dependence on what kind of a valve you use.                                                                           air
                                                                                                                          compressure                    M
                                                                                                                                         M

     PAM system = PAM + proportional directional control (PDC) valve                                        0.3




     Mathematical modeling of PAM system w/ constant weight.                                                0.2

     [Itto, Kogiso: Hybrid modeling of McKibben pneumatic artificial muscle systems, IEEE ICIT&SSST, 2011]




                                                                                                            ε
         formulates model structure based on dynamics, but                                                  0.1

                                                                                                                                                     M = 3 [kg]
         requires complete try and errors for identifying parameters.                                                                                M = 6 [kg]
                                                                                                                                                     M = 9 [kg]
                                                                                                                0
                                                                                                                                        hysteresis loop
                                                                                                                    100     200   300    400   500    600    700
                                                                                                                             pressure     [kPa]




                                                                                                                                                                       4

13年1月30日水曜日
Introduction
  Motivation
     Mathematical modeling of PAM is a challenging issue.                                                           L0                         L                   l

       nonlinearities such as hysteresis, hydrodynamics, friction,...                                                      solenoid
                                                                                                                             PDC
                                                                                                                             valve
                                                                                                                            valve

       difficulty to explain validity of approximation or linearization.
       dependence on what kind of a valve you use.                                                                           air
                                                                                                                          compressure                    M
                                                                                                                                         M

     PAM system = PAM + proportional directional control (PDC) valve                                        0.3




     Mathematical modeling of PAM system w/ constant weight.                                                0.2

     [Itto, Kogiso: Hybrid modeling of McKibben pneumatic artificial muscle systems, IEEE ICIT&SSST, 2011]




                                                                                                            ε
         formulates model structure based on dynamics, but                                                  0.1

                                                                                                                                                     M = 3 [kg]
         requires complete try and errors for identifying parameters.                                                                                M = 6 [kg]
                                                                                                                                                     M = 9 [kg]
                                                                                                                0
                                                                                                                                        hysteresis loop

  Outcomes                                                                                                          100     200   300
                                                                                                                             pressure
                                                                                                                                         400
                                                                                                                                          [kPa]
                                                                                                                                               500    600    700




         a parameter identification procedure supported by analysis of the mathematical model,
         which contributes to reduce the cost for try and errors.
         an identified model validated by comparison with several experimental data,
         which well simulates behaviors of a practical PAM system.
         an extension to a model expressing the PAM system over a specified weight range,
         which is realized by interpolation of some dominant parameters in terms of a weight.                                                                          4

13年1月30日水曜日
Modeling
  Dynamics of PAM system
                           [Itto, Kogiso, IEEE ICIT&SSST 11]

  switched system with 64 nonlinear subsystems
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙
    y(t) = h(x(t))
                                         T
              x := [✏ ✏ P ]T y := [✏ F ]
                      ˙
     S := {x 2 <3 | (x)  0}              2 {1, 2, · · · , 64}




                                                                 5

13年1月30日水曜日
Modeling
  Dynamics of PAM system
                             [Itto, Kogiso, IEEE ICIT&SSST 11]

  switched system with 64 nonlinear subsystems
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙
    y(t) = h(x(t))
                                         T
              x := [✏ ✏ P ]T y := [✏ F ]
                      ˙
     S := {x 2 <3 | (x)  0}                2 {1, 2, · · · , 64}


   dynamic equation (w/ friction [Kikuue, IEEE TRO 06] )
             8
             > F (P, ✏, t) M g Ff (t)
             >
             <
   M L¨(t) =
      ✏             K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 ,
             >
             >
             :
               F (P, ✏, t) M g F (t),      f       otherwise,
              8
              > cv L✏(t) + cc sgn(✏(t)),
                     ˙            ˙       if ✏(t) 6= 0,
                                              ˙
              >
              >
              < c ,      if ✏(t) = 0 and Fo (t) > cc ,
                            ˙
                 c
     Ff (t) =
              > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ],
              >             ˙
              >
              :
                  cc , if ✏(t) = 0 and Fo (t) < cc ,
                            ˙

                                                                   5

13年1月30日水曜日
Modeling
  Dynamics of PAM system                                           PAM volume [Kagawa, CEP 97], [Minh, Mechatronics 10]
                             [Itto, Kogiso, IEEE ICIT&SSST 11]       V (t) = D1 ✏(t)2 + D2 ✏(t) + D3
  switched system with 64 nonlinear subsystems
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙
    y(t) = h(x(t))
                                         T
              x := [✏ ✏ P ]T y := [✏ F ]
                      ˙
     S := {x 2 <3 | (x)  0}                2 {1, 2, · · · , 64}


   dynamic equation (w/ friction [Kikuue, IEEE TRO 06] )
             8
             > F (P, ✏, t) M g Ff (t)
             >
             <
   M L¨(t) =
      ✏             K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 ,
             >
             >
             :
               F (P, ✏, t) M g F (t),      f       otherwise,
              8
              > cv L✏(t) + cc sgn(✏(t)),
                     ˙            ˙       if ✏(t) 6= 0,
                                              ˙
              >
              >
              < c ,      if ✏(t) = 0 and Fo (t) > cc ,
                            ˙
                 c
     Ff (t) =
              > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ],
              >             ˙
              >
              :
                  cc , if ✏(t) = 0 and Fo (t) < cc ,
                            ˙

                                                                                                                          5

13年1月30日水曜日
Modeling
  Dynamics of PAM system                                           PAM volume [Kagawa, CEP 97], [Minh, Mechatronics 10]
                             [Itto, Kogiso, IEEE ICIT&SSST 11]       V (t) = D1 ✏(t)2 + D2 ✏(t) + D3
  switched system with 64 nonlinear subsystems
                                                                   contraction force        [Tondu, IEEE CSM 00], [Kang, ICRA 09]
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙                                                                                      n            ⇣                    ⌘          o2
                                                                                                                  Cq2 Pg (t)
                                                                   F (P, ✏, t) = APg (t) at a        C q1 1 + e                    ✏(t)        as
    y(t) = h(x(t))
                                         T
              x := [✏ ✏ P ]T y := [✏ F ]
                      ˙
     S := {x 2 <3 | (x)  0}                2 {1, 2, · · · , 64}


   dynamic equation (w/ friction [Kikuue, IEEE TRO 06] )
             8
             > F (P, ✏, t) M g Ff (t)
             >
             <
   M L¨(t) =
      ✏             K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 ,
             >
             >
             :
               F (P, ✏, t) M g F (t),      f       otherwise,
              8
              > cv L✏(t) + cc sgn(✏(t)),
                     ˙            ˙       if ✏(t) 6= 0,
                                              ˙
              >
              >
              < c ,      if ✏(t) = 0 and Fo (t) > cc ,
                            ˙
                 c
     Ff (t) =
              > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ],
              >             ˙
              >
              :
                  cc , if ✏(t) = 0 and Fo (t) < cc ,
                            ˙

                                                                                                                                               5

13年1月30日水曜日
Modeling
  Dynamics of PAM system                                           PAM volume [Kagawa, CEP 97], [Minh, Mechatronics 10]
                             [Itto, Kogiso, IEEE ICIT&SSST 11]       V (t) = D1 ✏(t)2 + D2 ✏(t) + D3
  switched system with 64 nonlinear subsystems
                                                                   contraction force        [Tondu, IEEE CSM 00], [Kang, ICRA 09]
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙                                                                                      n            ⇣                    ⌘          o2
                                                                                                                  Cq2 Pg (t)
                                                                   F (P, ✏, t) = APg (t) at a        C q1 1 + e                    ✏(t)        as
    y(t) = h(x(t))
                                         T                         pressure change in a PAM [Richer, JDSMC 00]
              x := [✏ ✏ P ]T y := [✏ F ]
                      ˙                                                                              ˙
                                                                       ˙         RT                  V (t)
     S := {x 2 <3 | (x)  0}                2 {1, 2, · · · , 64}      P (t) = k1       m(t)
                                                                                       ˙          k2       P (t)
                                                                                 V (t)               V (t)


   dynamic equation (w/ friction [Kikuue, IEEE TRO 06] )
             8
             > F (P, ✏, t) M g Ff (t)
             >
             <
   M L¨(t) =
      ✏             K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 ,
             >
             >
             :
               F (P, ✏, t) M g F (t),      f       otherwise,
              8
              > cv L✏(t) + cc sgn(✏(t)),
                     ˙            ˙       if ✏(t) 6= 0,
                                              ˙
              >
              >
              < c ,      if ✏(t) = 0 and Fo (t) > cc ,
                            ˙
                 c
     Ff (t) =
              > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ],
              >             ˙
              >
              :
                  cc , if ✏(t) = 0 and Fo (t) < cc ,
                            ˙

                                                                                                                                               5

13年1月30日水曜日
Modeling
  Dynamics of PAM system                                           PAM volume [Kagawa, CEP 97], [Minh, Mechatronics 10]
                             [Itto, Kogiso, IEEE ICIT&SSST 11]       V (t) = D1 ✏(t)2 + D2 ✏(t) + D3
  switched system with 64 nonlinear subsystems
                                                                   contraction force            [Tondu, IEEE CSM 00], [Kang, ICRA 09]
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙                                                                                          n             ⇣                               ⌘               o2
                                                                                                                            Cq2 Pg (t)
                                                                   F (P, ✏, t) = APg (t) at a            C q1 1 + e                                ✏(t)             as
    y(t) = h(x(t))
                                         T                         pressure change in a PAM [Richer, JDSMC 00]
              x := [✏ ✏ P ]T y := [✏ F ]
                      ˙                                                                                   ˙
                                                                       ˙         RT                       V (t)
     S := {x 2 <3 | (x)  0}                2 {1, 2, · · · , 64}      P (t) = k1       m(t)
                                                                                       ˙               k2       P (t)
                                                                                 V (t)                    V (t)

                                                                   net mass flow rate of PDC valve
   dynamic equation (w/ friction [Kikuue, IEEE TRO 06] )              m(t) = ↵(t)mi (t) (1 ↵(t))mo (t)
                                                                       ˙         ˙                ˙
             8                                                                              8        r
                                                                                                         ⇣     ⌘k 1
             > F (P, ✏, t) M g Ff (t)
             >                                                                              >
                                                                                            > A Pp     k
                                                                                            > 0 tank R k+1   2
                                                                                                                k+1


             <                                                                              >
                                                                                            >
                                                                                            >
                                                                                            >
                                                                                                   T
                                                                                                                      ⇣            ⌘ kk 1
                                                                                            >
   M L¨(t) =
      ✏             K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 ,                                    >
                                                                                            >
                                                                                            <              if P (t)          2
                                                                                                                             k+1             Ptank ,
             >
             >                                                                   mi (t) =
                                                                                 ˙                                           r
             :                                                                              >
                                                                                            >
                                                                                            >
                                                                                                       q        ⇣       ⌘k
                                                                                                                         1               ⇣            ⌘ kk 1
               F (P, ✏, t) M g F (t),      f       otherwise,                               > A0 Pp
                                                                                            >
                                                                                            >
                                                                                            >
                                                                                                  tank
                                                                                                    T
                                                                                                           2k     P (t)
                                                                                                         R(k 1) Ptank            1            P (t)
                                                                                                                                             Ptank
                                                                                            >
                                                                                            >                            ⇣        ⌘ kk 1
                                                                                            >
              8                                                                             :                if P (t) >       2
                                                                                                                                             Ptank ,
              > cv L✏(t) + cc sgn(✏(t)),
                     ˙            ˙       if ✏(t) 6= 0,
                                              ˙                                             8        r
                                                                                                                             k+1

              >
              >                                                                             >           ⇣    ⌘k 1
                                                                                                              k+1

              < c ,      if ✏(t) = 0 and Fo (t) > cc ,
                            ˙
                                                                                            > A P (t) k
                                                                                            > 0p
                                                                                            >
                                                                                            >
                                                                                                           2
                                                                                                       R k+1
                 c                                                                          >
                                                                                            >
                                                                                                   T
                                                                                                                   ⇣            ⌘ kk 1
     Ff (t) =                                                                               >
                                                                                            >
                                                                                            >                            2
              > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ],
              >             ˙                                                               <             if P (t)      k+1                    Pout ,
              >
              :                                                                  mo (t) =
                                                                                 ˙
                                                                                            >          q         ⇣     ⌘1
                                                                                                                            r
                                                                                                                                     ⇣           ⌘ kk 1
                                                                                            >
                                                                                            >
                  cc , if ✏(t) = 0 and Fo (t) < cc ,
                            ˙                                                               > A0 P (t)
                                                                                            >
                                                                                            >    p         2k      Pout k
                                                                                                         R(k 1) P (t)           1        Pout
                                                                                                                                         P (t)
                                                                                            >
                                                                                            >
                                                                                                    T
                                                                                                                       ⇣        ⌘ kk 1
                                                                                            >
                                                                                            >
                                                                                            :                 if P (t)   2
                                                                                                                                         < Pout .
                                                                                                                        k+1
                                                                                                                                                                    5

13年1月30日水曜日
Analysis    
  Dominant parameters
  switched system with 64 nonlinear subsystems
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙
    y(t) = h(x(t))

         x := [✏ ✏ P ]T y := [✏ F ]T
                 ˙




                                                 6

13年1月30日水曜日
Analysis    
  Dominant parameters                               M       : mass of weight [kg]
                                                    D0      : natural diameter of PAM [m]
  switched system with 64 nonlinear subsystems
                                                    L0      : natural length of PAM [m]
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙
                                                 D1 D2 D3   : coefficients for PAM volume [m^3]
    y(t) = h(x(t))                                Ptank     : source absolute pressure [Pa]

         x := [✏ ✏ P ]T y := [✏ F ]T
                 ˙                                 Pout     : atmospheric pressure [Pa]

                                                    k       : specific heat ratio for air [-]
                                                    R       : ideal gas constant [J/kg K]
                                                    T       : absolute temperature [K]
                                                    K       : coefficient of elasticity [N/m^3]
                                                    ✓       : initial angle btw braided thread
                                                            & cylinder long axis [deg]
                                                   Cq1      : correction coefficient [-]
                                                   Cq2      : correction coefficient [1/Pa]
                                                    cc      : Coulomb friction [N]
                                                   A0       : orifice area of PDC valve [m^2]
                                                  k1 k2     : polytropic indexes [-]
                                                    cv      : viscous friction coefficient [Ns/m]
                                                                                                  6

13年1月30日水曜日
Analysis    
  Dominant parameters                                    M       : mass of weight [kg]
                                                         D0      : natural diameter of PAM [m]
  switched system with 64 nonlinear subsystems
                                                         L0      : natural length of PAM [m]
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙
                                                      D1 D2 D3   : coefficients for PAM volume [m^3]
    y(t) = h(x(t))                                     Ptank     : source absolute pressure [Pa]

         x := [✏ ✏ P ]T y := [✏ F ]T
                 ˙                                      Pout     : atmospheric pressure [Pa]

                                                         k       : specific heat ratio for air [-]
                                                         R       : ideal gas constant [J/kg K]
    Analysis result:
                                                         T       : absolute temperature [K]
     For the PAM system model,                                   : coefficient of elasticity [N/m^3]
                                                         K
     its steady-state behavior is characterized by               : initial angle btw braided thread
                                                         ✓
                                                                 & cylinder long axis [deg]
     parameters:   K      ✓     Cq1    Cq2       cc              : correction coefficient [-]
                                                        Cq1
     and its transient behavior is characterized by     Cq2      : correction coefficient [1/Pa]
                                                         cc      : Coulomb friction [N]
     parameters:   A0      k1 k2       cv
                                                        A0       : orifice area of PDC valve [m^2]
                                                       k1 k2     : polytropic indexes [-]
     Hint: as t ! 1 , then params left or not.
                                                         cv      : viscous friction coefficient [Ns/m]
                                                                                                       6

13年1月30日水曜日
Analysis    
  Dominant parameters                                    M       : mass of weight [kg]
                                                         D0      : natural diameter of PAM [m]
  switched system with 64 nonlinear subsystems
                                                         L0      : natural length of PAM [m]
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙
                                                      D1 D2 D3   : coefficients for PAM volume [m^3]
    y(t) = h(x(t))                                     Ptank     : source absolute pressure [Pa]

         x := [✏ ✏ P ]T y := [✏ F ]T
                 ˙                                      Pout     : atmospheric pressure [Pa]

                                                         k       : specific heat ratio for air [-]
                                                         R       : ideal gas constant [J/kg K]
    Analysis result:
                                                         T       : absolute temperature [K]
     For the PAM system model,                                   : coefficient of elasticity [N/m^3]
                                                         K
     its steady-state behavior is characterized by               : initial angle btw braided thread
                                                         ✓
                                                                 & cylinder long axis [deg]
     parameters:   K      ✓     Cq1    Cq2       cc              : correction coefficient [-]
                                                        Cq1
     and its transient behavior is characterized by     Cq2      : correction coefficient [1/Pa]
                                                         cc      : Coulomb friction [N]
     parameters:   A0      k1 k2       cv
                                                        A0       : orifice area of PDC valve [m^2]
                                                       k1 k2     : polytropic indexes [-]
     Hint: as t ! 1 , then params left or not.
                                                         cv      : viscous friction coefficient [Ns/m]
                                                                                                       6

13年1月30日水曜日
Analysis    
  Dominant parameters                                    M       : mass of weight [kg]
                                                         D0      : natural diameter of PAM [m]
  switched system with 64 nonlinear subsystems
                                                         L0      : natural length of PAM [m]
     x(t) = f (x(t), u(t)) if x(t) 2 S
     ˙
                                                      D1 D2 D3   : coefficients for PAM volume [m^3]
    y(t) = h(x(t))                                     Ptank     : source absolute pressure [Pa]

         x := [✏ ✏ P ]T y := [✏ F ]T
                 ˙                                      Pout     : atmospheric pressure [Pa]

                                                         k       : specific heat ratio for air [-]
                                                         R       : ideal gas constant [J/kg K]
    Analysis result:
                                                         T       : absolute temperature [K]
     For the PAM system model,                                   : coefficient of elasticity [N/m^3]
                                                         K
     its steady-state behavior is characterized by               : initial angle btw braided thread
                                                         ✓
                                                                 & cylinder long axis [deg]
     parameters:   K      ✓     Cq1    Cq2       cc              : correction coefficient [-]
                                                        Cq1
     and its transient behavior is characterized by     Cq2      : correction coefficient [1/Pa]
                                                         cc      : Coulomb friction [N]
     parameters:   A0      k1 k2       cv
                                                        A0       : orifice area of PDC valve [m^2]
                                                       k1 k2     : polytropic indexes [-]
     Hint: as t ! 1 , then params left or not.
                                                         cv      : viscous friction coefficient [Ns/m]
    Note, no couplings btwn the two param groups.
                                                                                                       6

13年1月30日水曜日
Achievement
  Identification procedure
                                                                                  -5
                                                                           x 10
                                                                       7



                                       PAM volume:




                                                          PAM volume
                                                                       6




    measurable or known in advance     V (t) =




                                                              V [m ]
                                                                3
                                                                       5



                                           D1 ✏(t)2 +                  4



   M D0 L0 D1 Ptank Pout k T R             D2 ✏(t) + D3                3



                                                                       2

                                                                                       contraction ratio
                                                                        0                  0.1      0.2    0.3
                                                                                                ε




    steady-state behavior              transient behavior
    Determines the parameters value:    Determines the parameters value:

        K     ✓    Cq1     Cq2 cc               A0        k1 k2                           cv


    until model maker satisfies.         until model maker satisfies.




                                                                                                                 7

13年1月30日水曜日
Achievement
  Identification procedure
                                                                                                -5
                                                                                         x 10
                                                                                     7



                                                     PAM volume:




                                                                        PAM volume
                                                                                     6




    measurable or known in advance                   V (t) =




                                                                            V [m ]
                                                                              3
                                                                                     5



                                                         D1 ✏(t)2 +                  4



   M D0 L0 D1 Ptank Pout k T R                           D2 ✏(t) + D3                3



                                                                                     2

                                                                                                     contraction ratio
                                                                                      0                  0.1      0.2    0.3
                                                                                                              ε




    steady-state behavior                             transient behavior
    Determines the parameters value:                   Determines the parameters value:

        K     ✓    Cq1     Cq2 cc                              A0       k1 k2                           cv


    until model maker satisfies.                        until model maker satisfies.



   When satisfied?
    Since determination of values is subjective, observe a trend by parameter variation.
                                                                                                                               7

13年1月30日水曜日
Info.  for  observing
                  Trend by parameter variation
                                                                                                                                                                                                            0.3

                   0.3                                                                                                   0.3


                                                                                                                                                                                                            0.2
                   0.2                                                                                                   0.2

                                                                   cq  increases                                                                                                                                                                   cc increases
        ε




                                                                                                        ε




                                                                                                                                                                                                ε
                                                                                                                                                           cq  increases                                   0.1
                   0.1                                                                                                   0.1
                                                                                                                                                                                                                                                               cc = 0
                                                                             cq  = 0.8                                                                               cq  = - 1/0.01 x10-6                                                                    cc = 4.875/P (oo) x105
                                                                             cq  = 0.99                                                                              cq  = - 1/0.083 x10-6                          0                                        cc = 9.75 / P (oo) x105
                        0                                                                                                  0
                                                                             cq  = 1.2                                                                               cq  = - 1/0.2 x10-6

                            100    200       300        400     500             600         700                                     100   200    300        400     500      600       700                                       100   200   300     400     500         600     700
                                                   pressure [kPa]                                                                                      pressure [kPa]                                                                         pressure [kPa]

                            param in contraction force                                                                              param in contraction force                                                            Coulomb friction coefficient

                 0.26                                                                                                    0.26                                                                                         0.26




                                                                                                                                                                                                 ε
                                                                                                        ε
ε




                 0.24                                                                                                    0.24                                                                                         0.24
                                                   k  increases     k  increases
                                                                                                                                                c v increases                                                                                   A increases

                 0.22                                                                                                    0.22                                                                                         0.22
                        0                               10                                         20                           0                            10                                 20                           0                        10                                      20




                                                                                                                                                                                                     pressure [kPa]
                                                                                                        pressure [kPa]




                                                                                                                                                                                                                      550
pressure [kPa]




                 550                                                                                                     550
                                                                                                                                                                                                                                                                                             -6
                                                                            k =     1.0, k =   1.0                                                                               c v = 10                                                                             A = 0.058 x10
                                                                                                                                                                                                                                                                                      -6
                                                                            k =     1.0, k =   1.4                                                                                                                                            A increases            A = 0.099 x10
                 500                                                        k =     1.4, k =   1.0                     500                                                       c v = 500                          500                                                             -6
                                                                                                                                                                                   c v = 1000                                                                           A = 0.176 x10
                                                                            k =     1.4, k =   1.4
                 450              k  increases      k  increases                                                       450                                                                                          450

                        0                              10                                          20                           0                            10                                 20                           0                        10                                      20
                                                     time [s]                                                                                              time [s]                                                                                 time [s]
                                   polytropic indexes                                                                                viscous friction coefficient                                                                         max orifice area                                  8

13年1月30日水曜日
Experimental  Validation
  PAM system setup for model validation




                                               proportional
                                                directional
                                               control valve


              How to validate:
              Input a step signal to the PDC valve, and
              check steady-state and transient responses of simulation and experiment.
                                                                                         9

13年1月30日水曜日
Experimental  Validation
  Comparison: steady state behavior in e vs P
                  0.30                                                 0.30

                  0.25
                         M = 4.0 [kg]                                  0.25
                                                                              M = 5.0 [kg]
                  0.20                                                 0.20

                  0.15                                                 0.15
              ε




                                                                   ε
                  0.10                                                 0.10

                  0.05                                                 0.05
                                         experiment                                           experiment
                                         model fixed at M=4                                   model fixed at M=5
                     0                                                   0
                                         model parametried by M                               model parametried by M
                     0   100   200   300 400 500 600 700                  0   100   200   300 400 500 600 700
                                     P [kPa]                                              P [kPa]


                           experiment                                  0.30     experiment
                  0.30
                           model fixed at M=7                                   model fixed at M=8
                  0.25     model parametried by M                      0.25     model parametried by M

                  0.20                                                 0.20

                  0.15                                                 0.15
                                                                   ε
              ε




                  0.10                                                 0.10

                  0.05                                                 0.05

                    0
                                       M = 7.0 [kg]                      0
                                                                                            M = 8.0 [kg]
                     0   100   200   300   400   500   600   700          0   100   200   300   400   500   600   700
                                     P [kPa]                                              P [kPa]
                                                                                                                        10

13年1月30日水曜日
Experimental  Validation
  Comparison: transient behavior in e vs t & P vs t
       M = 4.0 [kg]




                                                      11

13年1月30日水曜日
Extension  to  M-‐‑‒parameterized  Model
  Interpolation over [1, 9] in weight
                    1.15                                                                  18
                       1.1                                                                16
                    1.05                                                                  14

                              1
                                                                                          12
          Cq1 [-]




                                                                                          10




                                                                                 cc [N]
                    0.95
                                                                                           8
                       0.9
                                                                                           6
                    0.85
                                                                                           4
                       0.8            Cq1 (M ) = 0.1573 log M + 0.7974                     2            cc (M ) = 1.7353M + 0.1422
                    0.75                                                                   0
                        1               2     3   4     5      6    7    8   9              1       2     3     4      5      6   7       8    9
                                                      M [kg]                                                         M [kg]
                               x 10 7
                              8                                                            40

                              7                                                            38
                                                                   0.7915M                                                            0.2296
                                            K(M ) = 109600 exp                             36
                                                                                                              ✓(M ) = 39.984M
                              6
                                                                                           34
                              5
                    K [N/m]




                                                                                           32
                                                                                 θ [rad]



                              4
                                                                                           30
                              3
                                                                                           28
                              2                                                            26
                              1                                                            24
                              0                                                            22
                                  1     2     3   4     5      6    7    8   9                  1   2     3      4     5      6   7       8    9
                                                                                                                     M [kg]                        12
                                                      M [kg]
13年1月30日水曜日
Extension  to  M-‐‑‒parameterized  Model
  Interpolation over [1, 9] in weight
                    1.15                                                                  18
                       1.1                                                                16
                    1.05                                                                  14

                              1
                                                                                          12
          Cq1 [-]




                                                                                          10




                                                                                 cc [N]
                    0.95
                                                                                           8
                       0.9
                                                                                           6
                    0.85
                                                                                           4
                       0.8            Cq1 (M ) = 0.1573 log M + 0.7974                     2            cc (M ) = 1.7353M + 0.1422
                    0.75                                                                   0
                        1               2     3   4     5      6    7    8   9              1       2     3     4      5      6   7       8    9
                                                      M [kg]                                                         M [kg]
                               x 10 7
                              8                                                            40

                              7                                                            38
                                                                   0.7915M                                                            0.2296
                                            K(M ) = 109600 exp                             36
                                                                                                              ✓(M ) = 39.984M
                              6
                                                                                           34
                              5
                    K [N/m]




                                                                                           32
                                                                                 θ [rad]



                              4
                                                                                           30
                              3
                                                                                           28
                              2                                                            26
                              1                                                            24
                              0                                                            22
                                  1     2     3   4     5      6    7    8   9                  1   2     3      4     5      6   7       8    9
                                                                                                                     M [kg]                        12
                                                      M [kg]
13年1月30日水曜日
Extension  to  M-‐‑‒parameterized  Model
  Comparison: steady state behavior in e vs P
    0.30                                                 0.30                                                  0.30

    0.25
           M = 4.0 [kg]                                  0.25
                                                                M = 4.5 [kg]                                   0.25
                                                                                                                      M = 5.0 [kg]
    0.20                                                 0.20                                                  0.20

    0.15                                                 0.15                                                  0.15


                                                     ε
ε




                                                                                                           ε
    0.10                                                 0.10                                                  0.10

    0.05                                                 0.05                                                  0.05
                           experiment                                                                                                 experiment
                           model fixed at M=4                                     experiment                                          model fixed at M=5
       0                                                   0                      model parametried by M         0
                           model parametried by M                                                                                     model parametried by M
       0   100   200   300 400 500 600 700                  0   100   200   300    400   500   600   700          0   100   200   300 400 500 600 700
                       P [kPa]                                              P [kPa]                                               P [kPa]


             experiment                                  0.30     experiment                                   0.30     experiment
    0.30
             model fixed at M=7                                   model parametried by M                                model fixed at M=8
    0.25     model parametried by M                      0.25                                                  0.25     model parametried by M

    0.20                                                 0.20                                                  0.20

    0.15                                                 0.15                                                  0.15




                                                                                                           ε
                                                     ε
ε




    0.10                                                 0.10                                                  0.10

    0.05                                                 0.05                                                  0.05

      0
                         M = 7.0 [kg]                      0
                                                                              M = 7.5 [kg]                       0
                                                                                                                                    M = 8.0 [kg]
       0   100   200   300   400   500   600   700          0   100   200   300    400   500   600   700          0   100   200   300   400   500   600   700
                       P [kPa]                                              P [kPa]                                               P [kPa]
                                                                                                                                                                13

13年1月30日水曜日
Extension  to  M-‐‑‒parameterized  Model
  Comparison: transient behavior in e vs t & P vs t
              M = 4.5 [kg]               M = 7.5 [kg]




                                                        14

13年1月30日水曜日
Conclusion
  Summary
      a mathematical model of a PAM system (PAM + PDC valve) with a constant weight,
      which involves 11 measurable parameters and 9 need-to-be-identified parameters.
      a parameter identification procedure supported by analysis of the mathematical model,
      which contributes to reduce the cost for try and errors in finding the 9 parameter values.
      an identified model validated by comparison with several experimental data,
      which well simulates behaviors of a practical PAM system.
      a mathematical model expressing the PAM system over a specified weight range,
      which is also identifiable by using the proposed procedure plus interpolation.

  Future works
      an automatic identification procedure that appropriately determines parameter values
      based on experimental sample data.
      an antagonistic layout of PAMs as an actuator to realize position/force controls appropriate
      for applications of power-assist systems or rehabilitation/training exoskeleton systems.
      a model reduction technique in case of practical use of many PAMs.
                                                                                                     15

13年1月30日水曜日
Thank you for your kind attention.




                                                   16

13年1月30日水曜日

Contenu connexe

En vedette

Experimental Validation of McKibben Pneumatic Artificial Muscle Model
Experimental Validation of McKibben Pneumatic Artificial Muscle ModelExperimental Validation of McKibben Pneumatic Artificial Muscle Model
Experimental Validation of McKibben Pneumatic Artificial Muscle ModelKiminao Kogiso
 
Considerations on model predictive control of McKibben pneumatic artificial m...
Considerations on model predictive control of McKibben pneumatic artificial m...Considerations on model predictive control of McKibben pneumatic artificial m...
Considerations on model predictive control of McKibben pneumatic artificial m...Kiminao Kogiso
 
Report on hybird 26sep
Report on hybird  26sepReport on hybird  26sep
Report on hybird 26sepshubham saini
 
Dildar rahman report on hybrid vehicle
Dildar rahman report on hybrid vehicleDildar rahman report on hybrid vehicle
Dildar rahman report on hybrid vehicleDildar4
 
Front Wheel Steering System With Moveable Headlights
Front Wheel Steering System  With  Moveable HeadlightsFront Wheel Steering System  With  Moveable Headlights
Front Wheel Steering System With Moveable HeadlightsSuchit Moon
 
Hybrids Cars a simple Idea
Hybrids Cars a simple IdeaHybrids Cars a simple Idea
Hybrids Cars a simple IdeaPraveen Tiwari
 
Steering system project report
Steering system project reportSteering system project report
Steering system project reportDeepak kango
 
Four wheel steering system
Four wheel steering systemFour wheel steering system
Four wheel steering systemrohan131994
 
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)Brij Bhushan Singh
 
HYBRID ELECTRIC VEHICLE
HYBRID ELECTRIC VEHICLE HYBRID ELECTRIC VEHICLE
HYBRID ELECTRIC VEHICLE Sadaf Nidah
 
Four wheel steering system
Four wheel steering systemFour wheel steering system
Four wheel steering systemThakur Singh
 
Steering system in automobile
Steering system in automobileSteering system in automobile
Steering system in automobileFarhan Afzal
 
Steering system ppt
Steering system pptSteering system ppt
Steering system pptVishu Sharma
 
Four Wheel Steering System
Four  Wheel  Steering  SystemFour  Wheel  Steering  System
Four Wheel Steering SystemNirbhay Agarwal
 

En vedette (20)

Experimental Validation of McKibben Pneumatic Artificial Muscle Model
Experimental Validation of McKibben Pneumatic Artificial Muscle ModelExperimental Validation of McKibben Pneumatic Artificial Muscle Model
Experimental Validation of McKibben Pneumatic Artificial Muscle Model
 
Considerations on model predictive control of McKibben pneumatic artificial m...
Considerations on model predictive control of McKibben pneumatic artificial m...Considerations on model predictive control of McKibben pneumatic artificial m...
Considerations on model predictive control of McKibben pneumatic artificial m...
 
Robotics
RoboticsRobotics
Robotics
 
Hybrids
HybridsHybrids
Hybrids
 
Report on hybird 26sep
Report on hybird  26sepReport on hybird  26sep
Report on hybird 26sep
 
Dildar rahman report on hybrid vehicle
Dildar rahman report on hybrid vehicleDildar rahman report on hybrid vehicle
Dildar rahman report on hybrid vehicle
 
New cvt ppt
New cvt pptNew cvt ppt
New cvt ppt
 
Front Wheel Steering System With Moveable Headlights
Front Wheel Steering System  With  Moveable HeadlightsFront Wheel Steering System  With  Moveable Headlights
Front Wheel Steering System With Moveable Headlights
 
Lab pneumatic
Lab pneumatic Lab pneumatic
Lab pneumatic
 
Hybrids Cars a simple Idea
Hybrids Cars a simple IdeaHybrids Cars a simple Idea
Hybrids Cars a simple Idea
 
Steering system project report
Steering system project reportSteering system project report
Steering system project report
 
Four wheel steering system
Four wheel steering systemFour wheel steering system
Four wheel steering system
 
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)
SYNOPSIS fOR FOUR WHEEL STEERING SYSTEM (MECHANICAL ENGG.)
 
HYBRID ELECTRIC VEHICLE
HYBRID ELECTRIC VEHICLE HYBRID ELECTRIC VEHICLE
HYBRID ELECTRIC VEHICLE
 
Four wheel steering system
Four wheel steering systemFour wheel steering system
Four wheel steering system
 
Steering system in automobile
Steering system in automobileSteering system in automobile
Steering system in automobile
 
Actuators
ActuatorsActuators
Actuators
 
Hybrid cars
Hybrid carsHybrid cars
Hybrid cars
 
Steering system ppt
Steering system pptSteering system ppt
Steering system ppt
 
Four Wheel Steering System
Four  Wheel  Steering  SystemFour  Wheel  Steering  System
Four Wheel Steering System
 

Similaire à Identification Procedure for McKibben Pneumatic Artificial Muscle Systems

WEDM Tension Control Simulation Based on Matlab
WEDM Tension Control Simulation Based on MatlabWEDM Tension Control Simulation Based on Matlab
WEDM Tension Control Simulation Based on MatlabIJRES Journal
 
Defense Presentation(Final).pptx
Defense Presentation(Final).pptxDefense Presentation(Final).pptx
Defense Presentation(Final).pptxAthar Baig
 
A complete model characterization of brushless dc motors
A complete model characterization of brushless dc motorsA complete model characterization of brushless dc motors
A complete model characterization of brushless dc motorsKarol Kyslan
 
A novel sliding-mode control of induction motor using space vector modulation...
A novel sliding-mode control of induction motor using space vector modulation...A novel sliding-mode control of induction motor using space vector modulation...
A novel sliding-mode control of induction motor using space vector modulation...ISA Interchange
 
Modeling and Simulation of Nonlinear Friction in XY AC Servo Table
Modeling and Simulation of Nonlinear Friction  in XY AC Servo Table Modeling and Simulation of Nonlinear Friction  in XY AC Servo Table
Modeling and Simulation of Nonlinear Friction in XY AC Servo Table Thuan Truongvan
 
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...IJECEIAES
 
Support at the choice of solutions to the phase of preliminary design based
Support at the choice of solutions to the phase of preliminary design basedSupport at the choice of solutions to the phase of preliminary design based
Support at the choice of solutions to the phase of preliminary design basedIAEME Publication
 
Support at the choice of solutions to the phase of preliminary design based
Support at the choice of solutions to the phase of preliminary design basedSupport at the choice of solutions to the phase of preliminary design based
Support at the choice of solutions to the phase of preliminary design basedIAEME Publication
 
Micro-nanosystems for electrical metrology and precision instrumentation
Micro-nanosystems for electrical metrology and precision instrumentationMicro-nanosystems for electrical metrology and precision instrumentation
Micro-nanosystems for electrical metrology and precision instrumentationdie_dex
 
Position sensorless vector control of pmsm for electrical household applicances
Position sensorless vector control of pmsm for electrical household applicancesPosition sensorless vector control of pmsm for electrical household applicances
Position sensorless vector control of pmsm for electrical household applicanceswarluck88
 
Simulations of a typical CMOS amplifier circuit using the Monte Carlo method
Simulations of a typical CMOS amplifier circuit using the Monte Carlo methodSimulations of a typical CMOS amplifier circuit using the Monte Carlo method
Simulations of a typical CMOS amplifier circuit using the Monte Carlo methodIJERA Editor
 
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...IOSR Journals
 
Modeling MEMS With Matlab’s Simulink
Modeling MEMS With Matlab’s SimulinkModeling MEMS With Matlab’s Simulink
Modeling MEMS With Matlab’s SimulinkCSCJournals
 
IRJET- Development of Semi-Active Suspension System-Variable Orifice based Da...
IRJET- Development of Semi-Active Suspension System-Variable Orifice based Da...IRJET- Development of Semi-Active Suspension System-Variable Orifice based Da...
IRJET- Development of Semi-Active Suspension System-Variable Orifice based Da...IRJET Journal
 

Similaire à Identification Procedure for McKibben Pneumatic Artificial Muscle Systems (20)

WEDM Tension Control Simulation Based on Matlab
WEDM Tension Control Simulation Based on MatlabWEDM Tension Control Simulation Based on Matlab
WEDM Tension Control Simulation Based on Matlab
 
Thesis topic
Thesis topicThesis topic
Thesis topic
 
Defense Presentation(Final).pptx
Defense Presentation(Final).pptxDefense Presentation(Final).pptx
Defense Presentation(Final).pptx
 
A complete model characterization of brushless dc motors
A complete model characterization of brushless dc motorsA complete model characterization of brushless dc motors
A complete model characterization of brushless dc motors
 
A novel sliding-mode control of induction motor using space vector modulation...
A novel sliding-mode control of induction motor using space vector modulation...A novel sliding-mode control of induction motor using space vector modulation...
A novel sliding-mode control of induction motor using space vector modulation...
 
Modeling and Simulation of Nonlinear Friction in XY AC Servo Table
Modeling and Simulation of Nonlinear Friction  in XY AC Servo Table Modeling and Simulation of Nonlinear Friction  in XY AC Servo Table
Modeling and Simulation of Nonlinear Friction in XY AC Servo Table
 
Be044345351
Be044345351Be044345351
Be044345351
 
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
 
130 133
130 133130 133
130 133
 
Support at the choice of solutions to the phase of preliminary design based
Support at the choice of solutions to the phase of preliminary design basedSupport at the choice of solutions to the phase of preliminary design based
Support at the choice of solutions to the phase of preliminary design based
 
Support at the choice of solutions to the phase of preliminary design based
Support at the choice of solutions to the phase of preliminary design basedSupport at the choice of solutions to the phase of preliminary design based
Support at the choice of solutions to the phase of preliminary design based
 
Micro-nanosystems for electrical metrology and precision instrumentation
Micro-nanosystems for electrical metrology and precision instrumentationMicro-nanosystems for electrical metrology and precision instrumentation
Micro-nanosystems for electrical metrology and precision instrumentation
 
Position sensorless vector control of pmsm for electrical household applicances
Position sensorless vector control of pmsm for electrical household applicancesPosition sensorless vector control of pmsm for electrical household applicances
Position sensorless vector control of pmsm for electrical household applicances
 
5630731
56307315630731
5630731
 
Simulations of a typical CMOS amplifier circuit using the Monte Carlo method
Simulations of a typical CMOS amplifier circuit using the Monte Carlo methodSimulations of a typical CMOS amplifier circuit using the Monte Carlo method
Simulations of a typical CMOS amplifier circuit using the Monte Carlo method
 
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
MATLAB Based Model for Analysis of the Effect of Equivalent Circuit Parameter...
 
Modeling MEMS With Matlab’s Simulink
Modeling MEMS With Matlab’s SimulinkModeling MEMS With Matlab’s Simulink
Modeling MEMS With Matlab’s Simulink
 
IRJET- Development of Semi-Active Suspension System-Variable Orifice based Da...
IRJET- Development of Semi-Active Suspension System-Variable Orifice based Da...IRJET- Development of Semi-Active Suspension System-Variable Orifice based Da...
IRJET- Development of Semi-Active Suspension System-Variable Orifice based Da...
 
Ijaret 06 09_002
Ijaret 06 09_002Ijaret 06 09_002
Ijaret 06 09_002
 
Ijaret 06 09_002
Ijaret 06 09_002Ijaret 06 09_002
Ijaret 06 09_002
 

Plus de Kiminao Kogiso

Parameterization of Equilibrium Assessment in Bayesian Game with Its Applicat...
Parameterization of Equilibrium Assessment in Bayesian Game with Its Applicat...Parameterization of Equilibrium Assessment in Bayesian Game with Its Applicat...
Parameterization of Equilibrium Assessment in Bayesian Game with Its Applicat...Kiminao Kogiso
 
Transition Models of Equilibrium Assessment in Bayesian Game
Transition Models of Equilibrium Assessment in Bayesian GameTransition Models of Equilibrium Assessment in Bayesian Game
Transition Models of Equilibrium Assessment in Bayesian GameKiminao Kogiso
 
Cyber-Security Enhancements of Networked Control Systems Using Homomorphic En...
Cyber-Security Enhancements of Networked Control Systems Using Homomorphic En...Cyber-Security Enhancements of Networked Control Systems Using Homomorphic En...
Cyber-Security Enhancements of Networked Control Systems Using Homomorphic En...Kiminao Kogiso
 
Player's Belief Estimation for Super Human Sports
Player's Belief Estimation for Super Human SportsPlayer's Belief Estimation for Super Human Sports
Player's Belief Estimation for Super Human SportsKiminao Kogiso
 
Controller encryption using RSA public-key encryption scheme (Asian Control C...
Controller encryption using RSA public-key encryption scheme (Asian Control C...Controller encryption using RSA public-key encryption scheme (Asian Control C...
Controller encryption using RSA public-key encryption scheme (Asian Control C...Kiminao Kogiso
 
Application of ElGamal Encryption Scheme to Control System for Security Enhan...
Application of ElGamal Encryption Scheme to Control System for Security Enhan...Application of ElGamal Encryption Scheme to Control System for Security Enhan...
Application of ElGamal Encryption Scheme to Control System for Security Enhan...Kiminao Kogiso
 
Estimating Player's Belief in Bayesian Game by Feedback Control
Estimating Player's Belief in Bayesian Game by Feedback ControlEstimating Player's Belief in Bayesian Game by Feedback Control
Estimating Player's Belief in Bayesian Game by Feedback ControlKiminao Kogiso
 

Plus de Kiminao Kogiso (7)

Parameterization of Equilibrium Assessment in Bayesian Game with Its Applicat...
Parameterization of Equilibrium Assessment in Bayesian Game with Its Applicat...Parameterization of Equilibrium Assessment in Bayesian Game with Its Applicat...
Parameterization of Equilibrium Assessment in Bayesian Game with Its Applicat...
 
Transition Models of Equilibrium Assessment in Bayesian Game
Transition Models of Equilibrium Assessment in Bayesian GameTransition Models of Equilibrium Assessment in Bayesian Game
Transition Models of Equilibrium Assessment in Bayesian Game
 
Cyber-Security Enhancements of Networked Control Systems Using Homomorphic En...
Cyber-Security Enhancements of Networked Control Systems Using Homomorphic En...Cyber-Security Enhancements of Networked Control Systems Using Homomorphic En...
Cyber-Security Enhancements of Networked Control Systems Using Homomorphic En...
 
Player's Belief Estimation for Super Human Sports
Player's Belief Estimation for Super Human SportsPlayer's Belief Estimation for Super Human Sports
Player's Belief Estimation for Super Human Sports
 
Controller encryption using RSA public-key encryption scheme (Asian Control C...
Controller encryption using RSA public-key encryption scheme (Asian Control C...Controller encryption using RSA public-key encryption scheme (Asian Control C...
Controller encryption using RSA public-key encryption scheme (Asian Control C...
 
Application of ElGamal Encryption Scheme to Control System for Security Enhan...
Application of ElGamal Encryption Scheme to Control System for Security Enhan...Application of ElGamal Encryption Scheme to Control System for Security Enhan...
Application of ElGamal Encryption Scheme to Control System for Security Enhan...
 
Estimating Player's Belief in Bayesian Game by Feedback Control
Estimating Player's Belief in Bayesian Game by Feedback ControlEstimating Player's Belief in Bayesian Game by Feedback Control
Estimating Player's Belief in Bayesian Game by Feedback Control
 

Dernier

Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 

Dernier (20)

Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 

Identification Procedure for McKibben Pneumatic Artificial Muscle Systems

  • 1. IEEE/RSJ International Conference on Intelligent Robots and Systems October 7-12, 2012 Vilamoura, Algarve, Portugal Identification Procedure for McKibben Pneumatic Artificial Muscle Systems K. Kogiso, K. Sawano, T. Itto, and K. Sugimoto Nara Institute of Science and Technology (NAIST), Japan Oct. 10, 2012 @ WedBT5, 9:30 to 9:45 am, Regular Session, Gemini 2, Tivoli Marina Vilamoura 13年1月30日水曜日
  • 2. Outline Introduction Modeling of PAM system Identification Procedure Experimental Validation Extension Conclusion Active Link, Co. 2 13年1月30日水曜日
  • 3. Introduction McKibben Pneumatic Artificial Muscle (PAM) rubber tube mesh Advantage for application Disadvantage for modeling & control high power/weight ratio complex & nonlinear system (hydrodynamics) flexibility empirical approximation or linearization 3 13年1月30日水曜日
  • 4. Introduction Motivation Mathematical modeling of PAM is a challenging issue. L0 L l nonlinearities such as hysteresis, hydrodynamics, friction,... solenoid PDC valve valve difficulty to explain validity of approximation or linearization. dependence on what kind of a valve you use. air compressure M M PAM system = PAM + proportional directional control (PDC) valve 0.3 Mathematical modeling of PAM system w/ constant weight. 0.2 [Itto, Kogiso: Hybrid modeling of McKibben pneumatic artificial muscle systems, IEEE ICIT&SSST, 2011] ε formulates model structure based on dynamics, but 0.1 M = 3 [kg] requires complete try and errors for identifying parameters. M = 6 [kg] M = 9 [kg] 0 hysteresis loop 100 200 300 400 500 600 700 pressure [kPa] 4 13年1月30日水曜日
  • 5. Introduction Motivation Mathematical modeling of PAM is a challenging issue. L0 L l nonlinearities such as hysteresis, hydrodynamics, friction,... solenoid PDC valve valve difficulty to explain validity of approximation or linearization. dependence on what kind of a valve you use. air compressure M M PAM system = PAM + proportional directional control (PDC) valve 0.3 Mathematical modeling of PAM system w/ constant weight. 0.2 [Itto, Kogiso: Hybrid modeling of McKibben pneumatic artificial muscle systems, IEEE ICIT&SSST, 2011] ε formulates model structure based on dynamics, but 0.1 M = 3 [kg] requires complete try and errors for identifying parameters. M = 6 [kg] M = 9 [kg] 0 hysteresis loop Outcomes 100 200 300 pressure 400 [kPa] 500 600 700 a parameter identification procedure supported by analysis of the mathematical model, which contributes to reduce the cost for try and errors. an identified model validated by comparison with several experimental data, which well simulates behaviors of a practical PAM system. an extension to a model expressing the PAM system over a specified weight range, which is realized by interpolation of some dominant parameters in terms of a weight. 4 13年1月30日水曜日
  • 6. Modeling Dynamics of PAM system [Itto, Kogiso, IEEE ICIT&SSST 11] switched system with 64 nonlinear subsystems x(t) = f (x(t), u(t)) if x(t) 2 S ˙ y(t) = h(x(t)) T x := [✏ ✏ P ]T y := [✏ F ] ˙ S := {x 2 <3 | (x)  0} 2 {1, 2, · · · , 64} 5 13年1月30日水曜日
  • 7. Modeling Dynamics of PAM system [Itto, Kogiso, IEEE ICIT&SSST 11] switched system with 64 nonlinear subsystems x(t) = f (x(t), u(t)) if x(t) 2 S ˙ y(t) = h(x(t)) T x := [✏ ✏ P ]T y := [✏ F ] ˙ S := {x 2 <3 | (x)  0} 2 {1, 2, · · · , 64} dynamic equation (w/ friction [Kikuue, IEEE TRO 06] ) 8 > F (P, ✏, t) M g Ff (t) > < M L¨(t) = ✏ K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 , > > : F (P, ✏, t) M g F (t), f otherwise, 8 > cv L✏(t) + cc sgn(✏(t)), ˙ ˙ if ✏(t) 6= 0, ˙ > > < c , if ✏(t) = 0 and Fo (t) > cc , ˙ c Ff (t) = > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ], > ˙ > : cc , if ✏(t) = 0 and Fo (t) < cc , ˙ 5 13年1月30日水曜日
  • 8. Modeling Dynamics of PAM system PAM volume [Kagawa, CEP 97], [Minh, Mechatronics 10] [Itto, Kogiso, IEEE ICIT&SSST 11] V (t) = D1 ✏(t)2 + D2 ✏(t) + D3 switched system with 64 nonlinear subsystems x(t) = f (x(t), u(t)) if x(t) 2 S ˙ y(t) = h(x(t)) T x := [✏ ✏ P ]T y := [✏ F ] ˙ S := {x 2 <3 | (x)  0} 2 {1, 2, · · · , 64} dynamic equation (w/ friction [Kikuue, IEEE TRO 06] ) 8 > F (P, ✏, t) M g Ff (t) > < M L¨(t) = ✏ K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 , > > : F (P, ✏, t) M g F (t), f otherwise, 8 > cv L✏(t) + cc sgn(✏(t)), ˙ ˙ if ✏(t) 6= 0, ˙ > > < c , if ✏(t) = 0 and Fo (t) > cc , ˙ c Ff (t) = > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ], > ˙ > : cc , if ✏(t) = 0 and Fo (t) < cc , ˙ 5 13年1月30日水曜日
  • 9. Modeling Dynamics of PAM system PAM volume [Kagawa, CEP 97], [Minh, Mechatronics 10] [Itto, Kogiso, IEEE ICIT&SSST 11] V (t) = D1 ✏(t)2 + D2 ✏(t) + D3 switched system with 64 nonlinear subsystems contraction force [Tondu, IEEE CSM 00], [Kang, ICRA 09] x(t) = f (x(t), u(t)) if x(t) 2 S ˙  n ⇣ ⌘ o2 Cq2 Pg (t) F (P, ✏, t) = APg (t) at a C q1 1 + e ✏(t) as y(t) = h(x(t)) T x := [✏ ✏ P ]T y := [✏ F ] ˙ S := {x 2 <3 | (x)  0} 2 {1, 2, · · · , 64} dynamic equation (w/ friction [Kikuue, IEEE TRO 06] ) 8 > F (P, ✏, t) M g Ff (t) > < M L¨(t) = ✏ K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 , > > : F (P, ✏, t) M g F (t), f otherwise, 8 > cv L✏(t) + cc sgn(✏(t)), ˙ ˙ if ✏(t) 6= 0, ˙ > > < c , if ✏(t) = 0 and Fo (t) > cc , ˙ c Ff (t) = > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ], > ˙ > : cc , if ✏(t) = 0 and Fo (t) < cc , ˙ 5 13年1月30日水曜日
  • 10. Modeling Dynamics of PAM system PAM volume [Kagawa, CEP 97], [Minh, Mechatronics 10] [Itto, Kogiso, IEEE ICIT&SSST 11] V (t) = D1 ✏(t)2 + D2 ✏(t) + D3 switched system with 64 nonlinear subsystems contraction force [Tondu, IEEE CSM 00], [Kang, ICRA 09] x(t) = f (x(t), u(t)) if x(t) 2 S ˙  n ⇣ ⌘ o2 Cq2 Pg (t) F (P, ✏, t) = APg (t) at a C q1 1 + e ✏(t) as y(t) = h(x(t)) T pressure change in a PAM [Richer, JDSMC 00] x := [✏ ✏ P ]T y := [✏ F ] ˙ ˙ ˙ RT V (t) S := {x 2 <3 | (x)  0} 2 {1, 2, · · · , 64} P (t) = k1 m(t) ˙ k2 P (t) V (t) V (t) dynamic equation (w/ friction [Kikuue, IEEE TRO 06] ) 8 > F (P, ✏, t) M g Ff (t) > < M L¨(t) = ✏ K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 , > > : F (P, ✏, t) M g F (t), f otherwise, 8 > cv L✏(t) + cc sgn(✏(t)), ˙ ˙ if ✏(t) 6= 0, ˙ > > < c , if ✏(t) = 0 and Fo (t) > cc , ˙ c Ff (t) = > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ], > ˙ > : cc , if ✏(t) = 0 and Fo (t) < cc , ˙ 5 13年1月30日水曜日
  • 11. Modeling Dynamics of PAM system PAM volume [Kagawa, CEP 97], [Minh, Mechatronics 10] [Itto, Kogiso, IEEE ICIT&SSST 11] V (t) = D1 ✏(t)2 + D2 ✏(t) + D3 switched system with 64 nonlinear subsystems contraction force [Tondu, IEEE CSM 00], [Kang, ICRA 09] x(t) = f (x(t), u(t)) if x(t) 2 S ˙  n ⇣ ⌘ o2 Cq2 Pg (t) F (P, ✏, t) = APg (t) at a C q1 1 + e ✏(t) as y(t) = h(x(t)) T pressure change in a PAM [Richer, JDSMC 00] x := [✏ ✏ P ]T y := [✏ F ] ˙ ˙ ˙ RT V (t) S := {x 2 <3 | (x)  0} 2 {1, 2, · · · , 64} P (t) = k1 m(t) ˙ k2 P (t) V (t) V (t) net mass flow rate of PDC valve dynamic equation (w/ friction [Kikuue, IEEE TRO 06] ) m(t) = ↵(t)mi (t) (1 ↵(t))mo (t) ˙ ˙ ˙ 8 8 r ⇣ ⌘k 1 > F (P, ✏, t) M g Ff (t) > > > A Pp k > 0 tank R k+1 2 k+1 < > > > > T ⇣ ⌘ kk 1 > M L¨(t) = ✏ K(L0 L(1 ✏(t)))3 , if ✏(t)  L LL0 , > > < if P (t)  2 k+1 Ptank , > > mi (t) = ˙ r : > > > q ⇣ ⌘k 1 ⇣ ⌘ kk 1 F (P, ✏, t) M g F (t), f otherwise, > A0 Pp > > > tank T 2k P (t) R(k 1) Ptank 1 P (t) Ptank > > ⇣ ⌘ kk 1 > 8 : if P (t) > 2 Ptank , > cv L✏(t) + cc sgn(✏(t)), ˙ ˙ if ✏(t) 6= 0, ˙ 8 r k+1 > > > ⇣ ⌘k 1 k+1 < c , if ✏(t) = 0 and Fo (t) > cc , ˙ > A P (t) k > 0p > > 2 R k+1 c > > T ⇣ ⌘ kk 1 Ff (t) = > > > 2 > Fo (t), if ✏(t) = 0 and Fo (t) 2 [ cc , cc ], > ˙ < if P (t) k+1 Pout , > : mo (t) = ˙ > q ⇣ ⌘1 r ⇣ ⌘ kk 1 > > cc , if ✏(t) = 0 and Fo (t) < cc , ˙ > A0 P (t) > > p 2k Pout k R(k 1) P (t) 1 Pout P (t) > > T ⇣ ⌘ kk 1 > > : if P (t) 2 < Pout . k+1 5 13年1月30日水曜日
  • 12. Analysis     Dominant parameters switched system with 64 nonlinear subsystems x(t) = f (x(t), u(t)) if x(t) 2 S ˙ y(t) = h(x(t)) x := [✏ ✏ P ]T y := [✏ F ]T ˙ 6 13年1月30日水曜日
  • 13. Analysis     Dominant parameters M : mass of weight [kg] D0 : natural diameter of PAM [m] switched system with 64 nonlinear subsystems L0 : natural length of PAM [m] x(t) = f (x(t), u(t)) if x(t) 2 S ˙ D1 D2 D3 : coefficients for PAM volume [m^3] y(t) = h(x(t)) Ptank : source absolute pressure [Pa] x := [✏ ✏ P ]T y := [✏ F ]T ˙ Pout : atmospheric pressure [Pa] k : specific heat ratio for air [-] R : ideal gas constant [J/kg K] T : absolute temperature [K] K : coefficient of elasticity [N/m^3] ✓ : initial angle btw braided thread & cylinder long axis [deg] Cq1 : correction coefficient [-] Cq2 : correction coefficient [1/Pa] cc : Coulomb friction [N] A0 : orifice area of PDC valve [m^2] k1 k2 : polytropic indexes [-] cv : viscous friction coefficient [Ns/m] 6 13年1月30日水曜日
  • 14. Analysis     Dominant parameters M : mass of weight [kg] D0 : natural diameter of PAM [m] switched system with 64 nonlinear subsystems L0 : natural length of PAM [m] x(t) = f (x(t), u(t)) if x(t) 2 S ˙ D1 D2 D3 : coefficients for PAM volume [m^3] y(t) = h(x(t)) Ptank : source absolute pressure [Pa] x := [✏ ✏ P ]T y := [✏ F ]T ˙ Pout : atmospheric pressure [Pa] k : specific heat ratio for air [-] R : ideal gas constant [J/kg K] Analysis result: T : absolute temperature [K] For the PAM system model, : coefficient of elasticity [N/m^3] K its steady-state behavior is characterized by : initial angle btw braided thread ✓ & cylinder long axis [deg] parameters: K ✓ Cq1 Cq2 cc : correction coefficient [-] Cq1 and its transient behavior is characterized by Cq2 : correction coefficient [1/Pa] cc : Coulomb friction [N] parameters: A0 k1 k2 cv A0 : orifice area of PDC valve [m^2] k1 k2 : polytropic indexes [-] Hint: as t ! 1 , then params left or not. cv : viscous friction coefficient [Ns/m] 6 13年1月30日水曜日
  • 15. Analysis     Dominant parameters M : mass of weight [kg] D0 : natural diameter of PAM [m] switched system with 64 nonlinear subsystems L0 : natural length of PAM [m] x(t) = f (x(t), u(t)) if x(t) 2 S ˙ D1 D2 D3 : coefficients for PAM volume [m^3] y(t) = h(x(t)) Ptank : source absolute pressure [Pa] x := [✏ ✏ P ]T y := [✏ F ]T ˙ Pout : atmospheric pressure [Pa] k : specific heat ratio for air [-] R : ideal gas constant [J/kg K] Analysis result: T : absolute temperature [K] For the PAM system model, : coefficient of elasticity [N/m^3] K its steady-state behavior is characterized by : initial angle btw braided thread ✓ & cylinder long axis [deg] parameters: K ✓ Cq1 Cq2 cc : correction coefficient [-] Cq1 and its transient behavior is characterized by Cq2 : correction coefficient [1/Pa] cc : Coulomb friction [N] parameters: A0 k1 k2 cv A0 : orifice area of PDC valve [m^2] k1 k2 : polytropic indexes [-] Hint: as t ! 1 , then params left or not. cv : viscous friction coefficient [Ns/m] 6 13年1月30日水曜日
  • 16. Analysis     Dominant parameters M : mass of weight [kg] D0 : natural diameter of PAM [m] switched system with 64 nonlinear subsystems L0 : natural length of PAM [m] x(t) = f (x(t), u(t)) if x(t) 2 S ˙ D1 D2 D3 : coefficients for PAM volume [m^3] y(t) = h(x(t)) Ptank : source absolute pressure [Pa] x := [✏ ✏ P ]T y := [✏ F ]T ˙ Pout : atmospheric pressure [Pa] k : specific heat ratio for air [-] R : ideal gas constant [J/kg K] Analysis result: T : absolute temperature [K] For the PAM system model, : coefficient of elasticity [N/m^3] K its steady-state behavior is characterized by : initial angle btw braided thread ✓ & cylinder long axis [deg] parameters: K ✓ Cq1 Cq2 cc : correction coefficient [-] Cq1 and its transient behavior is characterized by Cq2 : correction coefficient [1/Pa] cc : Coulomb friction [N] parameters: A0 k1 k2 cv A0 : orifice area of PDC valve [m^2] k1 k2 : polytropic indexes [-] Hint: as t ! 1 , then params left or not. cv : viscous friction coefficient [Ns/m] Note, no couplings btwn the two param groups. 6 13年1月30日水曜日
  • 17. Achievement Identification procedure -5 x 10 7 PAM volume: PAM volume 6 measurable or known in advance V (t) = V [m ] 3 5 D1 ✏(t)2 + 4 M D0 L0 D1 Ptank Pout k T R D2 ✏(t) + D3 3 2 contraction ratio 0 0.1 0.2 0.3 ε steady-state behavior transient behavior Determines the parameters value: Determines the parameters value: K ✓ Cq1 Cq2 cc A0 k1 k2 cv until model maker satisfies. until model maker satisfies. 7 13年1月30日水曜日
  • 18. Achievement Identification procedure -5 x 10 7 PAM volume: PAM volume 6 measurable or known in advance V (t) = V [m ] 3 5 D1 ✏(t)2 + 4 M D0 L0 D1 Ptank Pout k T R D2 ✏(t) + D3 3 2 contraction ratio 0 0.1 0.2 0.3 ε steady-state behavior transient behavior Determines the parameters value: Determines the parameters value: K ✓ Cq1 Cq2 cc A0 k1 k2 cv until model maker satisfies. until model maker satisfies. When satisfied? Since determination of values is subjective, observe a trend by parameter variation. 7 13年1月30日水曜日
  • 19. Info.  for  observing Trend by parameter variation 0.3 0.3 0.3 0.2 0.2 0.2 cq  increases cc increases ε ε ε cq  increases 0.1 0.1 0.1 cc = 0 cq  = 0.8 cq  = - 1/0.01 x10-6 cc = 4.875/P (oo) x105 cq  = 0.99 cq  = - 1/0.083 x10-6 0 cc = 9.75 / P (oo) x105 0 0 cq  = 1.2 cq  = - 1/0.2 x10-6 100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700 pressure [kPa] pressure [kPa] pressure [kPa] param in contraction force param in contraction force Coulomb friction coefficient 0.26 0.26 0.26 ε ε ε 0.24 0.24 0.24 k  increases k  increases c v increases A increases 0.22 0.22 0.22 0 10 20 0 10 20 0 10 20 pressure [kPa] pressure [kPa] 550 pressure [kPa] 550 550 -6 k = 1.0, k = 1.0 c v = 10 A = 0.058 x10 -6 k = 1.0, k = 1.4 A increases A = 0.099 x10 500 k = 1.4, k = 1.0 500 c v = 500 500 -6 c v = 1000 A = 0.176 x10 k = 1.4, k = 1.4 450 k  increases k  increases 450 450 0 10 20 0 10 20 0 10 20 time [s] time [s] time [s] polytropic indexes viscous friction coefficient max orifice area 8 13年1月30日水曜日
  • 20. Experimental  Validation PAM system setup for model validation proportional directional control valve How to validate: Input a step signal to the PDC valve, and check steady-state and transient responses of simulation and experiment. 9 13年1月30日水曜日
  • 21. Experimental  Validation Comparison: steady state behavior in e vs P 0.30 0.30 0.25 M = 4.0 [kg] 0.25 M = 5.0 [kg] 0.20 0.20 0.15 0.15 ε ε 0.10 0.10 0.05 0.05 experiment experiment model fixed at M=4 model fixed at M=5 0 0 model parametried by M model parametried by M 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 P [kPa] P [kPa] experiment 0.30 experiment 0.30 model fixed at M=7 model fixed at M=8 0.25 model parametried by M 0.25 model parametried by M 0.20 0.20 0.15 0.15 ε ε 0.10 0.10 0.05 0.05 0 M = 7.0 [kg] 0 M = 8.0 [kg] 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 P [kPa] P [kPa] 10 13年1月30日水曜日
  • 22. Experimental  Validation Comparison: transient behavior in e vs t & P vs t M = 4.0 [kg] 11 13年1月30日水曜日
  • 23. Extension  to  M-‐‑‒parameterized  Model Interpolation over [1, 9] in weight 1.15 18 1.1 16 1.05 14 1 12 Cq1 [-] 10 cc [N] 0.95 8 0.9 6 0.85 4 0.8 Cq1 (M ) = 0.1573 log M + 0.7974 2 cc (M ) = 1.7353M + 0.1422 0.75 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 M [kg] M [kg] x 10 7 8 40 7 38 0.7915M 0.2296 K(M ) = 109600 exp 36 ✓(M ) = 39.984M 6 34 5 K [N/m] 32 θ [rad] 4 30 3 28 2 26 1 24 0 22 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 M [kg] 12 M [kg] 13年1月30日水曜日
  • 24. Extension  to  M-‐‑‒parameterized  Model Interpolation over [1, 9] in weight 1.15 18 1.1 16 1.05 14 1 12 Cq1 [-] 10 cc [N] 0.95 8 0.9 6 0.85 4 0.8 Cq1 (M ) = 0.1573 log M + 0.7974 2 cc (M ) = 1.7353M + 0.1422 0.75 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 M [kg] M [kg] x 10 7 8 40 7 38 0.7915M 0.2296 K(M ) = 109600 exp 36 ✓(M ) = 39.984M 6 34 5 K [N/m] 32 θ [rad] 4 30 3 28 2 26 1 24 0 22 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 M [kg] 12 M [kg] 13年1月30日水曜日
  • 25. Extension  to  M-‐‑‒parameterized  Model Comparison: steady state behavior in e vs P 0.30 0.30 0.30 0.25 M = 4.0 [kg] 0.25 M = 4.5 [kg] 0.25 M = 5.0 [kg] 0.20 0.20 0.20 0.15 0.15 0.15 ε ε ε 0.10 0.10 0.10 0.05 0.05 0.05 experiment experiment model fixed at M=4 experiment model fixed at M=5 0 0 model parametried by M 0 model parametried by M model parametried by M 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 P [kPa] P [kPa] P [kPa] experiment 0.30 experiment 0.30 experiment 0.30 model fixed at M=7 model parametried by M model fixed at M=8 0.25 model parametried by M 0.25 0.25 model parametried by M 0.20 0.20 0.20 0.15 0.15 0.15 ε ε ε 0.10 0.10 0.10 0.05 0.05 0.05 0 M = 7.0 [kg] 0 M = 7.5 [kg] 0 M = 8.0 [kg] 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 P [kPa] P [kPa] P [kPa] 13 13年1月30日水曜日
  • 26. Extension  to  M-‐‑‒parameterized  Model Comparison: transient behavior in e vs t & P vs t M = 4.5 [kg] M = 7.5 [kg] 14 13年1月30日水曜日
  • 27. Conclusion Summary a mathematical model of a PAM system (PAM + PDC valve) with a constant weight, which involves 11 measurable parameters and 9 need-to-be-identified parameters. a parameter identification procedure supported by analysis of the mathematical model, which contributes to reduce the cost for try and errors in finding the 9 parameter values. an identified model validated by comparison with several experimental data, which well simulates behaviors of a practical PAM system. a mathematical model expressing the PAM system over a specified weight range, which is also identifiable by using the proposed procedure plus interpolation. Future works an automatic identification procedure that appropriately determines parameter values based on experimental sample data. an antagonistic layout of PAMs as an actuator to realize position/force controls appropriate for applications of power-assist systems or rehabilitation/training exoskeleton systems. a model reduction technique in case of practical use of many PAMs. 15 13年1月30日水曜日
  • 28. Thank you for your kind attention. 16 13年1月30日水曜日