SlideShare une entreprise Scribd logo
1  sur  77
Télécharger pour lire hors ligne
Elementary Triangle Geometry

                 Mark Dabbs

      The Mathematical Association Conference
              University of York, U.K
                   Spring 2004




               Version 1.1 April 2004
               (www.mfdabbs.com)
2
3


Contents

    Motivating Problem.                                                             5
    §1: Basic Trigonometrical Formulae.                                            11
    §2: Further Trigonometrical Formulae.                                          13
    §3: Ratio Theorems.                                                            15
              Theorem (3.1).
              Theorem (3.2).
    §4: Basic Triangle Formulae.                                                   17
              Cosine Rule.
              Sine Rule and Cicumcircle.
              Tangent Rule.
    §5: Other Triangle Formulae.                                                   21
              Area Formulae in terms of a, b and c.
              Sin A, sin B and sin C in terms of a, b and c.
              Cos A, cos B and cos C in terms of a, b and c.
              Tan A, tan B and tan C in terms of a, b and c.
    §6: Associated Circles.                                                        25
              Incircle.
              Excircles.
              Heron’s Area Formula.
    §7: Further Triangle Formulae.                                                 33
           Tan ( 1 A ) , tan ( 1 B ) and tan ( 1 C )
                 2             2               2       in terms of a , b and c.
              Cos ( 1 A ) , cos ( 1 B ) and cos ( 1 C ) in terms of a , b and c.
                    2             2               2


              Sin ( 1 A ) , sin ( 1 B ) and sin ( 1 C ) in terms of a , b and c.
                    2             2               2


    §8: Further Triangle Relationships.                                            37
              Relationship between r and R.
              Relationships between rA , rB , rC and R.
              The distances AI , BI and CI .
              The distances AI A , BI B and CI C .
              The distances II A , II B and II C .

    §9: Further Triangle Centres.                                                  47
              The Orthocentre of any Triangle ABC .
              The Pedal Triangle of any Triangle ABC.
              The Circumcircle and the Pedal Triangle.
              The Excentric Triangle.
4


§10: Special Cevian Lengths.                                         55
       The Centroid and Medians of any Triangle.
       Cevians Bisecting Angles Internally.
       Cevians Bisecting Angles Externally.
       Apollonius’ Theorem.
       A Generalisation of Apollonius’ Theorem – Stewart’s Theorem
§11: Problems.                                                       63
Appendix: Concurrences of Straight Lines in a Triangle.              67
       Circumcentre.
       Incentre.
       Centroid.
       Orthocentre.
Bibliography.                                                        73
5


Motivating Problem

The motivation for this work came from an open question to a class to find the
area of a triangle whose base is known but whose perpendicular height is not
known.
                                                             B
A typical diagram is shown in Figure MP.1



                                                  a                h     c



                                                                   P
                          C                                                      A
                                                  x                    b-x
                                                         Figure MP.1

The area of the triangle, ∆ , is seen to be
                                 ∆ = 1 ( base ) ( ⊥ height )
                                     2
                                                                             (MP.1)
                                  ∆ = 1 bh,
                                      2

where b = AC and h = BP .

After some discussion, two methods were proposed

    o Method 1: Using Trigonometry
    o Method 2: Using Pythagoras

Method 1 is perhaps the more familiar and progresses thus:

In triangle BPC we have:
                                                 PB
                                        sin C =
                                                 BC
                                                 h
                                        sin C =
                                                 a
Therefore,                               h = a sin C                         (MP.2)

From (MP.1) and (MP.2) we have the general area formula

                                       ∆ = 1 ab sin C
                                           2                                 (MP.3)
6


Method 2 was somewhat more involved and led to quite a voyage of discovery!

Note the following Pythagorean relations within the two triangles CBP and ABP.

                                                       a 2 = x 2 + h2                            (MP.4)
                                                 c 2 = ( b − x ) + h2 .
                                                                  2
and                                                                                              (MP.5)

Eliminating h from (MP.4) and (MP.5) gives:

                                             a2 − x2 = c2 − (b − x )
                                                                           2



                                             a2 − c2 = x2 − (b − x ) .
                                                                           2
That is:

Thus, by the difference of two squares formula we have

                                    a 2 − c 2 = ( x − b − x )( x + b − x )

                                    a 2 − c 2 = ( x − b + x )( x + b − x )

                                    a 2 − c 2 = ( 2 x − b )( b )
Hence,
                                                        a2 + b2 − c2
                                                     x=              .                           (MP.6)
                                                             2b

Substituting (MP.6) into (MP.4) gives
                                                                               2
                                                 a2 + b2 − c2 
                                         h = a −
                                             2        2
                                                                .
                                                      2b      
That is
                                                 4 a 2b 2 − ( a 2 + b 2 − c 2 )
                                                                                   2

                                        h =
                                         2
                                                                                                 (MP.7)
                                                               4b 2

Once again, by the difference of two squares formula we have the alternative form
of (MP.7):


                   h   2
                           =
                             ( 2ab − a           2
                                                                 )(
                                                     + b2 − c 2 2ab + a 2 + b 2 − c 2   ),
                                                              4b   2




                           =
                             ( 2ab − a           2
                                                     − b 2 + c 2 )( 2ab + a 2 + b2 − c 2 )
                                                                                             ,
                                                              4b 2


                           =
                               (c   2
                                        − a 2 + 2ab − b 2 )( a 2 + 2ab + b2 − c 2 )
                                                                                             ,
                                                              4b 2
7


That is:

                     h   2
                             =
                               (c   2
                                        − a 2 − 2ab + b2           )( a   2
                                                                              + 2ab + b 2 − c 2       ),
                                                               4b    2




which, on factorising gives:


                               h   2
                                        =
                                          (c   2
                                                   − (a − b)
                                                               2
                                                                   ) (( a + b)    2
                                                                                      − c2   ).
                                                               4b    2




Therefore, on using the difference of two squares formula again we have:


                    h2 =
                              ( c − a − b )( c + a − b )( a + b − c )( a + b + c )
                                                               4b 2

                             ( c − a + b )( c + a − b )( a + b − c )( a + b + c )
                   h2 =                                                                                    .   (MP.8)
                                                               4b 2

Now it’s time to ask which of the four factors in the numerator “looks” the “nicest”
and hope that the answer to come back is the fourth or last one of ( a + b + c ) !
Having established this, the suggestion is then made that it is a pity that the other
three factors do not have this same elegant symmetry and once agreed that we
ought to insist that such symmetry exist in these other three factors.
It is eventually determined that a suitable “trick” is to rewrite them in the
following manner:
                             ( c − a + b ) ≡ ( a + b + c − 2a )
                                        ( c + a − b ) ≡ ( a + b + c − 2b )                                     (MP.9)

                                        ( a + b − c ) ≡ ( a + b + c − 2c )

Realising that ( a + b + c ) is just the perimeter of the original triangle ABC, say p
gives (MP.8) as:
                                  ( p − 2a )( p − 2b )( p − 2c )( p )
                            h2 =                                      .         (MP.10)
                                                 4b 2

However, if we then let the new variable, s, be defined as the semi-perimeter then
(MP.10) is re-written

                                        ( 2s − 2a )( 2s − 2b )( 2s − 2c )( 2s )
                             h2 =                                                                 .
                                                               4b 2
8


This is then easily factorised to give:

                                   16 ( s − a )( s − b )( s − c )( s )
                            h2 =
                                                  4b 2
or
                                    4s ( s − a )( s − b )( s − c )
                             h2 =                                  .
                                                 b2

                                   2 s ( s − a )( s − b )( s − c )
Hence,                       h=                                           (MP.11)
                                                    b

Finally then, substituting (MP.11) back into (MP.1) gives

                                  2 s ( s − a )( s − b )( s − c ) 
                         ∆ = 1 b×                                 
                             2
                                                b                 
                                                                  
or
                              ∆ = s ( s − a )( s − b )( s − c )           (MP.12)

Which is the familiar result of Heron of Alexandria (First Century A.D)
9




“What a marvel that so simple a figure as the triangle is so
           inexhaustible in its properties!”

                     (A. L. Crelle, 1821)
10
11


§1: Basic Trigonometrical Formulae

                          sin θ
                                = tan θ                    (1.1)
                          cos θ

                       sin 2 θ + cos 2 θ = 1               (1.2)



          θ      0       30           45        60    90
                          1             2         3
         sin θ    0                                   1
                          2            2         2
                                                           (1.3)
                            3           2        1
         cos θ    1                                   0
                           2           2         2
                           1
         tan θ    0                    1         3    ∞
                            3

                                     1
                         cosec θ =
                                   sin θ
                                     1
                           sec θ =                         (1.4)
                                   cos θ
                                     1
                           cot θ =
                                   tan θ

                       tan 2 θ + 1 = sec 2 θ               (1.5)

                      1 + cot 2 θ = cosec 2 θ              (1.6)
12
13


§2: Further Trigonometrical Formulae


                        sin ( A + B ) = sin A cos B + cos A sin B              (2.1)

                        sin ( A − B ) = sin A cos B − cos A sin B              (2.2)

                        cos ( A + B ) = cos A cos B − sin A sin B              (2.3)

                        cos ( A − B ) = cos A cos B + sin A sin B              (2.4)

                                                     tan A + tan B
                             tan ( A + B ) =                                   (2.5)
                                                    1 − tan A tan B

                                                     tan A − tan B
                             tan ( A − B ) =                                   (2.6)
                                                    1 + tan A tan B

                                              P+Q       P−Q 
                      sin P + sin Q = 2 sin 
                                                  cos                      (2.7)
                                             2         2 

                                              P +Q   P −Q 
                      sin P − sin Q = 2 cos 
                                                   sin                     (2.8)
                                             2   2 

                                              P+Q      P−Q 
                      cos P + cos Q = 2 cos 
                                                 cos                       (2.9)
                                             2        2 

                                               P +Q   P −Q 
                     cos P − cos Q = − 2 sin 
                                                    sin                   (2.10)
                                              2   2 

                                   sin ( 2 A ) = 2sin A cos A                 (2.11)

                cos ( 2 A ) = cos2 A − sin 2 A = 2cos2 A − 1 = 1 − 2sin 2 A   (2.12)

                                   sin 2 A =   1
                                               2   (1 − cos ( 2 A) )          (2.13)

                                   cos 2 A =   1
                                               2   (1 + cos ( 2 A) )          (2.14)

Notice further, if we define t = tan 1 θ then it can be shown that
                                     2



                          2t                 1 − t2               2t
                sin θ =        ,      cosθ =        and tan θ =        .      (2.15)
                        1 + t2               1+ t 2
                                                                1 − t2
14
15


§3: Ratio Theorems

Theorem (3.1)

                   p a     λ p + µ q λ a + µb
 If we have that    = then          =         , for any numbers λ , µ , m and n.
                   q b     mp + nq ma + nb



Proof:
                                           p a
Let                                          = ≡t
                                           q b
⇒                                       p = qt , a = bt .

                          λ p + µq       λ ( qt ) + µ q       λt + µ
Therefore,                           =                    =
                          mp + nq         m ( qt ) + nq       mt + n
and
                         λ a + µb       λ ( bt ) + µ q       λt + µ
                                    =                    =             □
                         ma + nb        m ( bt ) + nq        mt + n



Theorem (3.2)

                   p a     λ p + µa p a
 If we have that    = then         = = , for any numbers λ and µ .
                   q b     λ q + µb q b


Proof:
                                           p a
Let                                          = ≡t
                                           q b
⇒                                       p = qt , a = bt .

                λ p + µ a λ ( qt ) + µ ( bt ) t ( λ q + µ b )     p a
Therefore,               =                   =                =t ≡ ≡  □
                λ q + µb      λ q + µb         ( λ q + µb )       q b
16
17

                                                                      B
§4: Basic Triangle Formulae

Cosine Rule
                                            c                       h            a



                     A                                                                   C
                                                        b
                                            x                                y
                                                                                     Figure 4.1
                                            x                  y
Notice that:                       cos A = ,          cos C =
                                            c                 a
Therefore,                        x = c cos A,        y = a cos C

Hence                           b = x + y ≡ c cos A + a cos C

Using symmetry we interchange the variables to yield the complete set of results
thus:           a
                            a = b cos C + c cos B
                            b = c cos A + a cos C                            (4.1)
            c         b
                            c = a cos B + b cos A

The formulae of (4.1) are known as the Projection Formulae.
If we now multiply the equations of (4.1) by a, b and c, respectively, we have:

                                  a 2 = ab cos C + ac cos B                                   (4.2)

                                  b2 = bc cos A + ab cos C                                    (4.3)

                                  c 2 = ac cos B + bc cos A                                   (4.4)

Now construct (4.3) + (4.4) - (4.2) to give:

                                  b2 + c 2 − a 2 = 2bc cos A
Therefore,
                                  a 2 = b2 + c 2 − 2bc cos A                                  (4.5)

Equation (4.5) is known as the Cosine Rule for triangles.
Symmetry yields the other forms:

               b2 = c 2 + a 2 − 2ca cos B       and         c 2 = a 2 + b2 − 2ab cos C
18


Sine Rule

Also from Figure 4.1 we have the further set of relations:
                                     h              h
                              sin A = , sin C =
                                     c             a
Therefore,                h = c sin A or h = a sin C
Hence,                          c sin A = a sin C ≡ h
                                   sin A sin C
Therefore,                              =
                                     a     c
However, the initial orientation of the triangle ABC was arbitrary

                                sin A sin B sin C
⇒                                    =     =                                 (4.6)
                                  a     b     c

Equation (4.6) is known as the Sine Rule for triangles.

The Sine Rule can be extended by considering a circle through the apexes of the
triangle ABC (known as the Circumcircle of the triangle ABC)

                            B                                    B


                                    P
                                               A

                                                                                  C
                   O                                            O


    A                              C                                         P


               Figure 4.2                                    Figure 4.3

In both Figure 4.2 and 4.3 the red lines AP and PC have been added to the
original Circumcircle problem. In both cases the line segment AP is draw so as to
pass through the centre of the Circumcircle and is therefore a diameter.
⇒      ACP is a Right-Angle in both figures (Angle in a Semi-Circle is a right-
angle).

Further, APC = ABC since angles subtended by a single chord in the same
segment of a circle are equal (Euclid Book III Prop. 21).
                                                              AC   b
Therefore, from Figure 4.2 we have: sin ( APC ) ≡ sin ( B ) =    ≡
                                                              AP 2 R
where R is the radius of the Circumcircle of triangle ABC.
19


From Figure 4.3                     APC = 180 − B                   (Cyclic Quadrilateral)

Therefore,                sin (    APC ) = sin (180 − B ) ≡ sin B

Hence, as for Figure 4.2 we have
                                         b    sin B 1
                              sin B =      or      =
                                        2R      b    2R
Therefore, from (4.6) we have:

                                  sin A sin B sin C    1
                                       =     =      =                                (4.7)
                                    a     b     c     2R




Tangent Rule

                                         b sin B
From (4.7) we have that                   =
                                         c sin C

Using Theorem (3.1) with λ ≡ m ≡ n = 1 and µ = −1 this relation can be written

                          (1) b + ( −1) c (1) sin B + ( −1) sin C
                                         =
                           (1) b + (1) c   (1) sin B + (1) sin C

                                    b − c sin B − sin C
That is                                  =
                                    b + c sin B + sin C

Using (2.8) and (2.7) this can be rewritten as

                                         B +C   B −C 
                                 2 cos 
                                              sin        
                          b−c           2   2 ,
                               =
                          b + c 2 sin  B + C  cos  B − C 
                                                         
                                       2           2 

                                       B −C 
                                 sin 
                                           
                          b−c         2 ×         1
                               =                            ,
                          b + c cos  B − C  sin  B + C 
                                                       
                                      2          2 
                                                    B+C 
                                              cos 
                                                         
                                                   2 
                                       B−C 
                                 tan 
                                           
                          b−c         2 .
                               =
                          b + c tan  B + C 
                                           
                                      2 
20

                                                 b−c
That is                      tan 1 ( B − C ) =       tan 1 ( B + C )              (4.8)
                                                 b+c
                                 2                       2




However,             A + B + C = 180       ⇒          1
                                                      2   ( B + C ) = 90 − 1 A
                                                                           2      (4.9)

From (4.9) we see that
                              tan 1 ( B + C ) = tan ( 90 − 1 A )
                                  2                        2

                                                tan(90 ) − tan 1 A
                                             =                 2

                                               1 + tan(90 ) tan 1 A
                                                                 2

                                                       tan 2 A
                                                           1
                                                  1−
                                                      tan(90 )
                                             =
                                                    1
                                                         + tan 1 A
                                                               2
                                               tan(90 )
                                                  1− 0
                                             =
                                               0 + tan 1 A
                                                       2

                           ∴ tan 1 ( B + C ) = cot 1 A
                                 2                 2



Hence (4.8) can be written in its alternative form

                                                      b−c
                                tan 1 ( B − C ) =         cot 1 A                (4.10)
                                                      b+c
                                    2                         2




Equation (4.10) is known as the Tangent Rule for triangles.

Symmetry yields the other forms:
                                                      c−a
                 a
                                tan 1 ( C − A ) =         cot 1 B
                                                      c+a
                                    2                         2



            c          b                              a−b
                                tan 1 ( A − B ) =         cot 1 C
                                                      a+b
                                    2                         2
21


    §5: Other Triangle Formulae
                                                                               B
    Area Formulae in terms of a, b and c.


                                                              c                h           a



                                     A                                                              C
                                                                    b
                                                                                   Figure 5.1
    The area of triangle ABC is found from
                                                                         h
                                           ∆ = 1 bh, where sin C =
                                               2                           ,
                                                                         a
                                              = 1 b ( a sin C )
                                                2



    Hence,                                 ∆ = 1 ab sin C
                                               2                                                (5.1)
                                                                               a


    By symmetry,              ∆ = 1 ab sin C = 1 bc sin A = 1 ca sin B
                                  2            2            2
                                                                           c           b

                                                          c
    From (4.7) we have that                  sin C =
                                                         2R

                                                       c 
    Therefore, (5.1) becomes               ∆ = 1 ab 
                                               2        
                                                     2R 

                                                     abc
    That is:                                  ∆=                                                (5.2)
                                                     4R

                                                     abc
    or                                        R=         .
                                                     4∆

                                                    a sin B
    Also, from (4.7) we have that            b=
                                                     sin A
    Therefore, (5.1) now becomes:
                                                  a sin B 
                                         ∆ = 1 a
                                             2            sin C
                                                 sin A 

                                                    sin B sin C
    That is:                             ∆ = 1 a2
                                             2
                                                       sin A
    Hence,
         a
                              sin B sin C 1 2 sin C sin A 1 2 sin A sin B
                   ∆ = 1 a2
                       2                 = 2b            = 2c                                   (5.3)
c              b
                                 sin A           sin B           sin C
22


Sin A in terms of a, b and c, etc.

From (1.2)
                                   sin 2 A = 1 − cos 2 A
                                           = (1) − ( cos A )
                                                  2            2


                                           = (1 − cos A )(1 + cos A )
Therefore, from (4.5) this becomes

                   b2 + c 2 − a 2   b2 + c 2 − a 2 
        sin 2 A =  1 −                1 +                 
                           2bc                 2bc        
                                                          
                   2bc − b 2 + c 2 − a 2   2bc + b 2 + c 2 − a 2
                                                                
                =                                            
                          2bc                     2bc        
                                                             
                   2bc − b 2 − c 2 + a 2   2bc + b 2 + c 2 − a 2
                                                                
                =                                            
                          2bc                     2bc        
                  a − b + 2bc − c   b + 2bc + c − a 
                    2   2            2      2           2     2
                =                                            
                         2bc                     2bc         
                  a − (b − c )   (b + c ) − a 
                    2          2            2     2
                =                                 
                     2bc               2bc        
                                                  
                    1
                           (                 )(
                = 2 2 a2 − (b − c ) (b + c ) − a2
                 4b c
                                       2          2
                                                               )
                    1
                = 2 2 ( a − b + c )( a + b − c )( b + c − a )( b + c + a )
                 4b c
                    1
                = 2 2 ( a + b + c − 2b )( a + b + c − 2c )( b + c + a − 2a )( b + c + a )
                 4b c

Now let s = 1 ( a + b + c ) , the Semi-perimeter, then we have
            2



                                   1
                       sin 2 A =          ( 2s − 2b )( 2 s − 2c )( 2s − 2a )( 2s )
                                 4b 2 c 2
                                   1
                                = 2 2 16 ( s − b )( s − c )( s − a )( s )
                                 4b c
Hence
                                            4
                               sin 2 A =      s ( s − a )( s − b )( s − c )
                                           bc
                                            2 2




Therefore,
                                        2
                 a
                               sin A =    s ( s − a )( s − b )( s − c )
                                       bc
                                        2
                               sin B =    s ( s − a )( s − b )( s − c )                     (5.4)
           c           b               ca
                                        2
                               sin C =    s ( s − a )( s − b )( s − c )
                                       ab
23


    Notice further that these three identities from (5.4) could be written

                                      2a
                              sin A =     s ( s − a )( s − b )( s − c ) ≡ 2aK
                                      abc
                                      2b
                              sin B =     s ( s − a )( s − b )( s − c ) ≡ 2bK                 (5.5)
                                      abc
                                      2c
                              sin C =     s ( s − a )( s − b )( s − c ) ≡ 2cK
                                      abc

    From which, the Sine Rule can be deduced, since

                                    sin A sin B sin C
                                                      ≡ 2K  ≡
                                                               1 
                                         =     =                
                                      a     b     c         2R 

    Moreover, from (5.1) and (5.4) we have that

                                                       2
                         ∆ = 1 ab × sin C ≡ 1 ab ×
                             2              2             s ( s − a )( s − b )( s − c )
                                                       ab
    Hence
                                        ∆ = s ( s − a )( s − b )( s − c )                     (5.6)

    This is the triangle area formula met previously in (MP.7): Heron’s Formula.
    We can now use the notation of (5.6) or more simply the form of (5.1) to write:

    Sin A, sin B, sin C in terms of a, b and c.
                     a

                                             2∆           2∆           2∆
                                   sin A =      , sin B =    , sin C =                        (5.7)
                c         b                  bc           ca           ab


    Cos A, cos B, cos C in terms of a, b and c.

    From (4.5) we simply rearrange to yield
       a

                              b2 + c2 − a 2           c2 + a 2 − b2           a 2 + b2 − c2
                    cos A =                 , cos B =               , cos C =                 (5.8)
c           b                     2bc                     2ca                      2ab


    Tan A, tan B, tan C in terms of a, b and c.

    From (1.1), (5.5) and (5.8) we have
       a

                                 4∆                 4∆                 4∆
                    tan A =             , tan B = 2        , tan C = 2                        (5.9)
c           b                 b +c −a
                               2  2   2
                                                 c +a −b
                                                     2   2
                                                                    a + b2 − c2
24
25


§6: Associated Circles
                                                                                  A
Incircle

Let I be the Incentre of the                                        F
                                                                                        E
triangle ABC, obtained by
bisecting the interior angles of
the triangle ABC. Then                                                        I
 ID = IE = IF ≡ r , where r is the
radius of the incircle.
( ID, IE and IF are the ⊥ 's .                                                                      C
                                         B                                        D
from I to the respective sides)
                                                                                      Figure 6.1

We have that
           Area of triangle ABC = Areas of triangles ( BIC + CIA + AIB )
                                 ∆ = 1 ar + 1 br + 1 cr
                                     2      2      2

                                 ∆ = 1 r (a + b + c)
                                     2


Hence for s, the semi perimeter
                                                 ∆ = rs                                     (6.1)

                                                      ∆
or                                               r=                                         (6.2)
                                                      s

Now, let
                            AE = AF ≡ x  Tangents to a circle from
                                        
                            BD = BF ≡ y  a single point have equal
                                        
                            CD = CE = z  lengths

⇒                     x+ y+ y+z+z+x= p                        ( perimeter )
Hence
                                  x+ y+z =s                   ( semi perimeter )

But                              BD + DC = y + z ≡ a
⇒                                     x+a=s

Hence                                        x = s−a.

Therefore, we can show:              a
                                                          x=s−a
                                                          y = s−b                           (6.3)
                             c               b
                                                          z = s−c
26

                                                                                                   A
    From triangle ABC we see that
                                                                                       s-a             s-a
                                      IF   r
                      tan ( 1 A ) =      =
                                      FA s − a
                            2


                                                                                       F
    Similarly                                                                                           E
                                     r
       a
                      tan ( 1 A ) =                                    s-b                                          s-c
                                    s−a
                            2
                                                                                             I
                                     r
                      tan ( 1 B ) =               (6.4)
                                    s−b
                            2
c             b
                                                                                             D                            C
                                     r
                      tan ( 1 C ) =                                                                         s-c
                                    s−c               B                          s-b
                            2


                                                                                                       Figure 6.2

    Moreover, from triangles AIE, BIF and CID we have


                                       AE = AF ≡ s − a = r cot ( 1 A )
                        a
                                                                 2

                                       BD = BF ≡ s − b = r cot ( 1 B )
                                                                 2                                          (6.5)
                  c           b
                                       CD = CE ≡ s − c = r cot ( 1 C )
                                                                 2




    Therefore, as a = BD + DC then

                                      a = r cot ( 1 B ) + r cot ( 1 C )
                                                  2               2

                                        = r ( cot ( 1 B ) + cot ( 1 C ) )
                                                    2             2

                                            cos ( 1 B ) cos ( 1 C ) 
                                        = r
                                            sin ( 1 B ) + sin ( 1 C ) 
                                                   2               2
                                                                        
                                                  2               2    
                                            cos ( 1 B ) sin ( 1 C ) + sin ( 1 B ) cos ( 1 C ) 
                                        = r
                                           
                                                   2           2              2          2
                                                                                               
                                                                                               
                                                         sin ( 1 B ) sin ( 1 C )
                                                                 2          2                  
                                             sin ( 1 B + 1 C )
                                        =r         2       2

                                           sin ( 2 B ) sin ( 1 C )
                                                 1
                                                             2



    But A + B + C = 180 and therefore,               1
                                                     2   B + 1 C = 90 − 1 A , giving
                                                             2          2



                                                    sin ( 90 − 1 A )
                                           a=r
                                                               2

                                                  sin ( 1 B ) sin ( 1 C )
                                                        2           2

    That is
                                                         cos ( 1 A )
                                           a=r                 2
                                                                             .
                                                  sin ( 1 B ) sin ( 1 C )
                                                        2           2

    Hence
                                                  sin ( 1 B ) sin ( 1 C )
                                           r=a          2           2
                                                                                                            (6.6)
                                                         cos ( 1 A )
                                                               2
27



Together, we have
                                           sin ( 1 B ) sin ( 1 C )
                                  r=a            2           2

                a                               cos ( 1 A )
                                                      2

                                           sin ( 1 C ) sin ( 1 A )
                                  r =b           2           2
                                                                                     (6.7)
           c           b                        cos ( 1 B )
                                                      2

                                           sin ( 1 A ) sin ( 1 B )
                                  r =c           2           2

                                                cos ( 1 C )
                                                      2

From (4.7) we have
                                           sin A 1
                                                =    , etc, where R is the Circumcircle.
                                             a    2R
or
                                          a = 2 R sin A , etc

Thus (6.6) becomes
                                                sin ( 1 B ) sin ( 1 C )
                             r = 2 R sin A ⋅          2           2

                                                       cos ( 1 A )
                                                             2

Using (2.11) gives
                                                           sin ( 1 B ) sin ( 1 C )
                     r = 2 R × 2sin ( A ) cos ( A ) ⋅
                                      1            1             2           2

                                                                cos ( 1 A )
                                      2            2
                                                                      2

Hence
                            r = 4 R sin ( 1 A ) sin ( 1 B ) sin ( 1 C )
                                          2           2           2                  (6.8)
28


Excircles
                                                           A

Let I A be the centre of a circle, opposite
angle A, of radius rA obtained by bisecting
the angles B and C externally and A
internally.                                                                   I


We have that:                                                   B         D       A'   D'    C

Area of triangle ABC =                                                                             E'

          Areas of triangles ( AI A B + CI A A − BI AC )


That is
                                                                                        IA
                ∆ = 1 crA + 1 brA − 1 arA
                    2       2       2
                                                                     F'
                      = 1 rA ( c + b − a )
                        2

                      = 1 rA ( a + b + c − 2a )
                        2


                                                                                                 Figure 6.3
Hence for s, the semi perimeter
                                                  ∆ = rA ( s − a )                                      (6.9)
Similarly, we have
                                                          ∆
                                                    rA =
                          a                              s−a
                                                          ∆
                                                    rB =                                            (6.10)
                  c              b
                                                         s−b
                                                          ∆
                                                    rC =
                                                         s−c

Notice further that A, I and I A are collinear as both AI and AI A lie on the bisector
line of angle A

Now let
                                      AE ' = AF ' ≡ x A  Tangents to a circle from
                                                        
                                      BD ' = BF ' ≡ y A  a single point have equal
                                                        
                                      CD ' = CE ' = z A  lengths

Then                                 AF '+ AE ' = AB + BF '+ AC + CE '

                                             2 xA = c + y A + b + z A
⇒
                                                  = b + c + ( yA + z A )

but                                   y A + z A = BD '+ D ' C ≡ BC = a .
29


Therefore:
                                          2 xA = a + b + c
                                           xA = 1 ( a + b + c )
                                                2

Hence
                                           xA = s         ( semi perimeter )              (6.11)
                                                             A
In a similar manner
       a


                       xB = s   and     xC = s
 c           b


The three distances x A = s, xB = s and xC = s
are displayed below                                                        D   A'
                                                                      B             D'     C
                                                                                                   E'




                                A

                                                                                    IA
                                                                      F'
                  IC




                                    B                             C
                                                                                         Figure 6.4
Figure 6.5




                                                                          IB




                        A




     Figure 6.6
                            B                       C
30


Notice also from triangle AI A F ' and from (6.11) that

                                                           I A F ' rA
                                           tan ( 1 A ) =
                                                 2                =
                                                           AF ' s
⇒
                                              rA = s tan ( 1 A ) .
                                                           2

Similarly
                        a
                                               rA = s tan ( 1 A )
                                                            2

                                               rB = s tan ( 1 B )
                                                            2                 (6.12)
                c               b
                                               rC = s tan ( 1 C )
                                                            2



Therefore, we can further show that
                    a           AE ' = AF ' ≡ s = rA cot ( 1 A ) ,
                                                           2

                                               s = rB cot ( 1 B ) ,
                                                            2                 (6.13)
                                               s = rC cot ( 1 C ) .
            c               b
                                                            2



Moreover, since                       BF ' = BD ' = AF '− AB = s − c
and                                   CE ' = CD ' = AE '− AC = s − b
then
                                          DD ' = CD ' ∼ CD
                                                = ( s − b) ∼ ( s − c)
                                                =b∼c
Where D is the point of tangency of the incircle with side a, D ' is the point of
tangency of the excircle with side a, and where the symbol ∼ is the positive
difference between its two arguments. Namely:

                                            DD ' = b ∼ c ≡ b − c              (6.14)

Further, as BD ' = CD = s − c it follows that A ' is the midpoint of DD ' where A '
is also the midpoint of BC.
31


Heron’s Area Formula




                                                               IA

                     C

                             D


                         I
                                             D'


           A
                                                       B
                                                                     Figure 6.7


As BI and BI A bisect the angle B both internally and externally, it follows that
  IBI A = 90 . Moreover, since IDB and I A D ' B are also right angles then this
implies that triangles BID and BI A D ' are similar.
Namely:
                       Triangles     BID ≅ I A BD '
                                       BI    ID   BD
Thus                                       =    =
                                      I A B BD ' I A D '
                                       BI    r     s −b
that is:                                  =      =
                                      I AB s − c     rA
Therefore:                           r ⋅ rA = ( s − b )( s − c )                  (6.15)

On using (6.2) and (6.10) this becomes
                                   ∆ ∆
                                    ⋅    = ( s − b )( s − c )
                                   s s−a
Hence                            ∆ = s ( s − a )( s − b )( s − c )                (6.16)

Which is the form of the area of triangle ABC as met previously in (MP.7) and
(5.6)
32
33


§7: Further Triangle Formulae


                                             Y

                                                                                  IA


                                   C




                                       I




                   A                    D                                   B    X
                                                                                     Figure 7.1


Tan ( 1 A ) , tan ( 1 B ) and tan ( 1 C ) in terms of a , b and c.
      2             2               2



                                                           ID   r
From Figure 7.1 we have                    tan ( 1 A ) =      ≡
                                                           AD s − a
                                                 2


On using (6.15) this becomes
                                  ( s − b )( s − c ) 
                                                     
                   tan ( 1 A ) = 
                                           rA          = ( s − b )( s − c )
                                         s−a                 rA ( s − a )
                         2


On using (6.9) we have
                                   ( s − b )( s − c ) ( s − b )( s − c )
                    tan ( 1 A ) =                      =
                           2
                                       ∆                         ∆
                                             ( s − a)
                                   (s − a)
                                            ( s − b )( s − c )         ( s − b )( s − c )
Hence:             tan ( 1 A ) =                                     =
                                       s ( s − a )( s − b )( s − c )       s (s − a)
                         2




Similarly,
                                                           ( s − b )( s − c )
                                       tan ( 1 A ) =
                                                               s(s − a)
                                             2
               a

                                                           ( s − c )( s − a )
                                       tan ( 1 B ) =                                              (7.1)
                                                               s ( s − b)
                                             2
          c            b

                                                           ( s − a )( s − b )
                                       tan ( 1 C ) =
                                                               s (s − c)
                                             2
34


Cos ( 1 A ) , cos ( 1 B ) and cos ( 1 C ) in terms of a , b and c.
      2             2               2




From Figure 7.1 we have              I ACY =   1
                                               2    (180   − C)
                                            = 90 − 1 C
                                                   2

                                            = 1 ( A + B)
                                              2


Also, using the construction properties of the Incircle and Excircle
                                          I A AC = 1 A
                                                   2

Hence
                          AI AC = 180 − ( 1 A + (180 −
                                          2                       I ACY ) )
                                 = 180 − ( 1 A + (180 − 1 ( A + B ) ) )
                                           2            2

                                 = 180 − (180 − 1 B )
                                                2

                          AI AC = 1 B ≡
                                  2          DBI

Therefore, triangles AIB and ACI A are similar, that is AIB ≅ ACI A .
                                     AI     IB    AB
                                         =      =
                                     AC CI A AI A
    ⇒
                                     AI    IB     c
                                        =      =
                                     b CI A AI A
Hence                                   AI × AI A = bc                        (7.2)
                                                    AX
Also from Figure 7.1                  cos ( 1 A ) =
                                            2                                 (7.3)
                                                    AI A
                                                    AD
and                                  cos ( 1 A ) =
                                           2                                  (7.4)
                                                    AI
The product of (7.3) and (7.4) gives
                                                      AX AD
                          cos ( 1 A ) × cos ( 1 A ) =
                                2             2            ×
                                                      AI A AI
That is
                                                 AX × AD
                                 cos2 ( 1 A ) =
                                                 AI A × AI
                                        2



On using (6.3), (6.11) and (7.2) this becomes
                                                    s × (s − a)
                                  cos 2 ( 1 A ) =
                                          2
                                                         bc
Hence
                                                     s(s − a)
                                   cos ( 1 A ) =
                                         2
                      a                                bc
                                                     s ( s − b)
                                   cos ( 1 B ) =
                                         2                                    (7.5)
                 c         b                             ca
                                                     s (s − c)
                                   cos ( 1 C ) =
                                         2
                                                        ab
35


Sin ( 1 A ) , sin ( 1 B ) and sin ( 1 C ) in terms of a, b and c.
      2             2               2



Using (1.1), (7.1) and (7.5) we have that
                              sin ( 1 A ) = tan ( 1 A ) cos ( 1 A )
                                    2             2           2

Hence
                                           ( s − b )( s − c )   s(s − a)
                           sin ( 1 A ) =                      ×
                                               s(s − a)
                                 2
                                                                  bc
Giving
                                                  ( s − b )( s − c )
                                  sin ( 1 A ) =
                                        2
                a                                        bc
                                                  ( s − c )( s − a )
                                  sin ( 1 B ) =
                                        2                                           (7.6)
          c           b                                  ca
                                                  ( s − a )( s − b )
                                  sin ( 1 C ) =
                                        2
                                                         ab

Notice that in each of the above three subsections the negative root is rejected if the
angles, A, B and C are those of a triangle.
36
37


§8: Further Triangle Relationships

Relationship between r and R                                                                                     A


Note that
      BIC = 180 − 1 B − 1 C
                  2     2
                                                                                                     I

             = 180 − 1 ( B + C )
                     2                                                                                       r

             = 180 − 1 (180 − A )
                     2                           B                                                                                C
                                                                                                         D
             = 90 + A1
                     2                                                                                               Figure 8.1
                                                          ID r
and that                                    sin ( 1 B ) =
                                                  2         ≡
                                                          IB IB
Hence,                                          r = IB sin ( 1 B )
                                                             2                                                             (8.1)

Using the Sine Rule of (4.6) we have that
                              sin ( 1 C )       sin ( 90 + 1 A )               sin ( 1 B )
                                            =                          =
                                    2                      2                         2
                                                                                             ,
                                  IB                    BC                        IC
and from the first two of these fractions we have
                                            sin ( 1 C ) cos ( 1 A )
                                                  2
                                                       =      2
                                                                    .
                                               IB         BC
                                                     BC sin ( 1 C )
Therefore:                                   IB =             2
                                                                           ,
                                                       cos ( 1 A )
                                                             2


                                                       a sin ( 1 C )
that is                                         IB =           2
                                                                       .                                                   (8.2)
                                                       cos ( 1 A )
                                                             2


Substituting (8.2) into (8.1) gives
                                            a sin ( 1 C ) 
                                       r = cos ( 1 A )  sin ( 2 B )
                                                     2            1
                                                           
                                                   2      
                                           a sin ( 2 C ) sin ( 1 B )
                                                   1
                                         =                     2

                                                 cos ( 2 A )
                                                        1



                                                                                       2 R sin A sin ( 1 B ) sin ( 1 C )
Using (4.7) a can be written as: a = 2 R sin A, giving r =                                             2           2
                                                                                                                                  .
                                                                                                     cos ( 1 A )
                                                                                                           2


Using (2.11) gives
                              2 R × 2sin ( 1 A ) cos ( 1 A ) sin ( 1 B ) sin ( 1 C )
                         r=                2           2           2           2
                                                                                                 .
                                                       cos ( 1 A )
                                                             2



Hence:                             r = 4 R sin ( 1 A ) sin ( 1 B ) sin ( 1 C )
                                                 2           2           2                                                 (8.3)

as met previously in (6.8).
38


Relationships between rA , rB , rC and R.

From Figure 8.2 we see that
                                                                                           C
                                  I AD '   r
           sin ( I A BD ') =             ≡ A
                                   I AB I AB                                          D'
                                                                                                    IA
                                                                                               rA

that is    rA = I A B sin ( 90 − 1 B )
                                 2


(8.4)      rA = I A B cos ( 1 B )
                            2

                                         A                                       B
                                                                                                         Figure 8.2
Using the Sine Rule of (4.6) we have that
                      sin ( 90 − 1 C )             sin ( 90 − 1 A )         sin ( 90 − 1 B )
                                               =                        =
                                 2                            2                        2

                              I AB                        BC                     I AC
and from the first two of these fractions we have
                                              cos ( 1 C ) cos ( 1 A )
                                                    2
                                                         =      2

                                                I AB        BC
                                                       BC cos ( 1 C )
Therefore,                                    I AB =            2
                                                                            .
                                                          cos ( 1 A )
                                                                2


                                                         a cos ( 1 C )
that is,                                        I AB =           2
                                                                                                           (8.5)
                                                          cos ( 1 A )
                                                                2

Substituting (8.5) into (8.4) gives

                                           a cos ( 1 C ) 
                                           cos ( 1 A )  cos ( 2 B )
                                     rA =           2           1
                                                          
                                                  2      
                                          a cos ( 1 C ) cos ( 1 B )
                                        =         2           2

                                                cos ( 2 A )
                                                       1



Using (4.7) a can be written as:                   a = 2 R sin A ,
                                             2 R sin A cos ( 1 C ) cos ( 1 B )
giving                             rA =                      2           2
                                                                                  .
                                                         cos ( 1 A )
                                                               2


Using (2.11) gives
                              2 R × 2sin ( 1 A ) cos ( 1 A ) cos ( 1 C ) cos ( 1 B )
                       rA =                2           2           2           2
                                                                                               .
                                                         cos ( 1 A )
                                                               2



Hence:                        a                  rA = 4 R sin ( 1 A ) cos ( 1 B ) cos ( 1 C ) ,
                                                                2           2           2


and similarly                                    rB = 4 R cos ( 1 A ) sin ( 1 B ) cos ( 1 C ) ,
                                                                2           2           2                  (8.6)
                       c             b

                                                 rC = 4 R cos ( 1 A ) cos ( 1 B ) sin ( 1 C ) .
                                                                2           2           2
39


The distances AI , BI and CI .


From Figure 8.3 notice that                                          C


                          ID                                                     IA
          sin ( 1 A ) =
                2                                                    I
                          IA


                                   A                                 D       B   X
Therefore,                                                                            Figure 8.3

                          a
                                          AI = r cosec ( 1 A )
                                                         2

                                        BI = r cosec ( 1 B )
                                                       2                                   (8.7)
                   c           b
                                        CI = r cosec ( 1 C )
                                                       2



If we just consider the triangle AI A X for the present and determine some of its
angles from Figure 8.4                                                                                 IA
we find that:

Clearly       AIB = 180 − 1 ( A + B )
                          2
                                                                         I
and so on using the Sine Rule of (4.6)
we have from triangle AIB

                                   A                                     D            B                X
    sin ( B ) sin ( AIB ) sin ( A )
          1                               1
          2
             =           =                2                                               Figure 8.4
       AI          AB        BI
Considering just the first two fractions here gives
                                                   AB sin ( 1 B )
                                        AI =                2

                                                   sin (    AIB )
Therefore
                                                     c sin ( 1 B )
                                   AI =                      2

                                          sin (180 − 1 ( A + B ) )
                                                     2

That is on using (2.2):
                                                     c sin ( 1 B )
                                       AI =                  2

                                                  sin ( 1 ( A + B ) )
                                                        2

                                                     c sin ( 1 B )
                                              =              2

                                                  sin ( 90 − 1 C )
                                                             2

                                                  c sin ( 1 B )
                                              =           2

                                                  cos ( 1 C )
                                                        2


But on using (4.7) c can be written as: c = 2 R sin C , giving
40


                                           2 R sin C sin ( 1 B )
                                    AI =                   2

                                                   cos ( 1 C )
                                                         2

                                           2 R × 2sin ( 1 C ) cos ( 1 C ) sin ( 1 B )
Using (2.11) gives                 AI =                 2           2           2

                                                             cos ( 1 C )
                                                                   2


Hence
                                  AI = 4 R sin ( 1 B ) sin ( 1 C )
                     a
                                                 2           2

                                  BI = 4 R sin ( 1 C ) sin ( 1 A )
                                                 2           2                                     (8.8)
              c            b
                                  CI = 4 R sin ( 1 A ) sin ( 1 B )
                                                 2           2



which give an alternative form of (8.7). Further, from (8.7), as it is somewhat
                                                       r
easier we may proceed       AI = r cosec ( 1 A ) =
                                                   sin ( 1 A )
                                           2
                                                         2

Thus, from (7.6) we have
                                                   r                        r bc
                                 AI =                            =
                                          ( s − b )( s − c )           ( s − b )( s − c )
                                                   bc

                                              r s ( s − a ) bc
                                    ≡
                                          s ( s − a )( s − b )( s − c )


                                        r s ( s − a ) bc             s ( s − a ) bc
Using (5.6) and (6.1)            AI =                        ≡                        .
                                                ∆                           s

                                          ( s − a ) bc                 (s − a)
Hence,                          AI =                        = bc
                     a                         s                            s
                                          a ( s − b) c      ( s − b)
similarly                       BI =                   = ca                                        (8.9)
              c            b                    s               s
                                          ab ( s − c )      (s − c)
                                CI =                   = ab
                                               s               s

Note that the relations of (8.9) can be written

                         abc ( s − a )    (s − a)
              AI =                     ≡K         ,
                          s      a           a
                         abc ( s − b )    ( s − b)                                          abc
              BI =                     ≡K          ,                    where K =                 (8.10)
                          s      b            b                                              s
                         abc ( s − c )    (s − c)
              CI =                     ≡K         .
                          s      c           c

                                           (s − a)          ( s − b)            (s − c)
⇒                        AI : BI : CI =                 :               :                         (8.11)
                                               a                 b                c
41



The distances AI A , BI B and CI C .


                                                  C

                                                                                IA

                                                 I




                   A                            D                       B       X

                                                                                     Figure 8.5
From Figure 8.5 notice that
                                                             I AD
                                             sin ( 1 A ) =
                                                   2
                                                             IAA
Therefore,
                                         AI A = rA cosec ( 1 A )
                       a
                                                           2

                                        BI B = rB cosec ( 1 B )
                                                          2                                           (8.12)
               c            b
                                        CI C = rC cosec ( 1 C )
                                                          2


                                                                            C
 Notice also from Figure 8.6 that

                                                                                                           IA
                   θ + θ + φ + φ = 180
                            θ + φ = 90                              I
 Hence
                                IBI A = 90
 Also, since
                                                                D                         B
   θ = 1 B and φ = 1 (180 − B ) = 90 − 1 B
       2           2                   2
                                                                                               Figure 8.6


 then                  I I A B = 90 − 1 ( A + B )
                                      2

                                                                                                      IA




                                                       I




                                                                                              Figure 8.7
        A                                             D                              B
42


On using the Sine Rule of (4.6) we have from triangle ABI A

                         sin ( 90 + 1 B )        sin (     AI A B )        sin ( 1 A )
                                             =                        =
                                    2                                            2

                                AI A                      AB                  BI A

Considering just the first two fractions here gives

                                             AB sin ( 90 + 1 B )
                                    AI A =
                                                           2

                                                  sin (    AI A B )
Therefore
                                                   c cos ( 1 B )
                                   AI A =                  2

                                            sin ( 90 − 1 ( A + B ) )
                                                       2

That is on using (2.2):
                                                   c cos ( 1 B )
                                       AI A =              2

                                                 cos ( 1 ( A + B ) )
                                                       2

                                                   c cos ( 1 B )
                                             =             2

                                                 cos ( 90 − 1 C )
                                                            2

                                                 c cos ( 1 B )
                                             =           2

                                                  sin ( 1 C )
                                                        2



But on using (4.7) c can be written as: c = 2 R sin C
giving
                                     2 R sin C cos ( 1 B )
                              AI A =                  2

                                          sin ( 2 C )
                                                1


Using (2.11) gives
                                   2 R × 2sin ( 1 C ) cos ( 1 C ) cos ( 1 B )
                          AI A =                2           2           2

                                                     sin ( 1 C )
                                                           2




Hence                a                 AI A = 4 R cos ( 1 B ) cos ( 1 C )
                                                        2           2


and similarly                          BI B = 4 R cos ( 1 C ) cos ( 1 A )
                                                        2           2                    (8.13)
                c           b

                                       CI C = 4 R cos ( 1 A ) cos ( 1 B )
                                                        2           2




which give an alternative form of (8.12)
Further, from (8.12), as it is slightly easier we may proceed
                                                                      rA
                                AI A = rA cosec ( 1 A ) =
                                                                 sin ( 1 A )
                                                  2
                                                                       2
43


Thus, from (6.10) and (7.6) we have

                                                       ∆            1
                                         AI A =
                                                   ( s − a ) ( s − b )( s − c )
                                                                    bc
                                                     s ( s − a )( s − b )( s − c )             bc
                                               =
                                                                   (s − a)              ( s − b )( s − c )
                                                     bc s ( s − a )
                                               =
                                                         (s − a)
                                                        bc s
                                               =
                                                     (s − a)
                                                          bc
                                               =
                                                        (s − a)
                                                           s
Therefore:

                                                          bc
or                                       AI A =
                                                     (s − a)
                                                          s
                         a

                                                         ca
similarly                                BI B =                                                      (8.14)
                   c           b                    ( s − b)
                                                          s

                                                         ab
                                         CI C =
                                                    (s − c)
                                                          s

In a manner similar to the processes used to arrive at (8.11) we can also show that
                                           1                   1               1
                 AI A : BI B : CI C =               :                  :                             (8.15)
                                        a(s − a)          b( s − b)          c(s − c)

Further, if we take respective products of (8.9) and (8.14) then we quickly get the
very nice results:
                         a
                                        AI × AI A = bc
                                        BI × BI B = ca                                               (8.16)
                   c           b
                                        CI × CI C = ab
44


The distances II A , II B and II C .                                                            IA




                                                               I
                                                                                                Y




                              A                                D              B                X
                                                                                  Figure 8.8
Consider the similar triangles AID and II AY , we have
                                        AI    AD ID
                                            =   =
                                        II A DX I AY

That is
                              AI    (s − a)      r
                                  =         =
                              II A AX − AD I A X − YX

                                  AI     (s − a)        r
                                      =             =
                                  II A s − ( s − a ) rA − ID

                                    AI ( s − a )      r
Hence,                                   =       =                                     (8.17)
                                    II A   a       rA − r

From the first two fractions we have


                                                 a 
                                        II A = 
                                                   AI
                         a
                                               s−a

                                                  b 
similarly                               II B = 
                                                    BI                               (8.18)
                    c         b                 s−b

                                                 c 
                                        II C = 
                                                   CI
                                               s−c

Therefore, on using the values from the first forms in (8.10), the results in (8.18)
can be written in the manner
                                      a   abc ( s − a )
                             II A = 
                                       ×
                                    s−a   s      a

                                             abc   a
                                    II A =
                                              s (s − a)
Hence

              abc   a                     abc    b                  abc   c
     II A =              ,     II B =                 ,    II C =              .       (8.19)
               s (s − a)                   s ( s − b)                s (s − c)
45


Squaring the value of II A from (8.19) gives

                                                              abc   a 
                                             ( II A )
                                                        2
                                                            =            
                                                              s  (s − a) 

Therefore, from the last two fractions of (8.17) this becomes

                                                                   abc  rA − r 
                                             ( II A )           =
                                                        2
                                                                                                                   (8.20)
                                                                  s  r 

                                                                     abc
From (5.2) we have                                               ∆=
                                                                     4R
and from (6.1) that                                              ∆ = rs

                                                                         abc
Hence,                                                      4 Rr =                                                     (8.21)
                                                                          s

Therefore, from (8.20) and (8.21) we have that

         ( II A )       = 4 R ( rA − r ) ,     ( II B )         = 4 R ( rB − r ) ,    ( IIC )       = 4 R ( rC − r )
                    2                                       2                                   2
                                                                                                                       (8.22)

Moreover, using the half-angle formula in (7.5) we see that (8.19) can be
rearranged thus:
                                    a 2bc        bc            1           a
                        II A =              =a          =a            ≡
                                   s(s − a)    s(s − a)    s ( s − a ) cos ( 1 A )
                                                                             2

                                                               bc
Hence
                                      a                                  b                           c
                          II A =               ,    II B =                     ,     II C =                 .          (8.23)
                                   cos ( A )
                                        1
                                        2                          cos ( B )
                                                                          1
                                                                          2                   cos ( 1 C )
                                                                                                    2




Therefore, on using the results of (4.7), (8.23) can be rewritten in a further,
alternative form

               II A = 4 R sin ( 1 A ) ,
                                2                  II B = 4 R sin ( 1 B ) ,
                                                                    2                 II C = 4 R sin ( 1 C ) .
                                                                                                       2               (8.24)
46
47


§9: Further Triangle Centres

The Orthocentre of any Triangle ABC

The perpendiculars drawn from the vertices of a triangle ABC to the opposite
sides are concurrent at a point called the Orthocentre, H.             A


From Figure 9.1 let AD, BE and CF be the perpendiculars
                                                                            F
 on BC, CA and AB respectively, and H the Orthocentre;
then
               DH = BD tan ( HBD )
                                                                                               E
                                                                                      H

                         = AB cos B × tan ( 90 − C ) ,
                         = c cos B cot C

Using (4.7) c can be written as:                          B                           D                C
                                                                                          Figure 9.1
                     c = 2 R sin C ,
giving          DH = 2 R sin C cos B cot C

Hence                    a
                                          DH = 2 R cos B cos C    hA
                                          EH = 2 R cos C cos A hB                             (9.1)
                c                 b
                                          FH = 2 R cos A cos B    hC

                                          DA = AB sin B
Further,                                      = c sin B
                                              = 2 R sin C sin B
That is                   a
                                          DA = 2 R sin B sin C
                                          EB = 2 R sin C sin A                                (9.2)
                 c                b
                                          FC = 2 R sin A sin B
Therefore, from (9.2) and (9.1) we have that
                                             HA = DA − DH
                                                = 2 R sin B sin C − 2 R cos B cos C
Using (2.3) this becomes
                                             HA = −2 R cos ( B + C )
                                                 = −2 R cos (180 − A )
Hence:
                              a
                                            HA = 2 R cos A
                                            HB = 2 R cos B                                    (9.3)
                     c                b
                                            HC = 2 R cos C
48



Notice that
                                      HA2 = ( 2 R cos A )
                                                            2


                                           = 4 R 2 cos 2 A
                                           = 4 R 2 (1 − sin 2 A )
                                           = 4 R 2 − 4 R 2 sin 2 A
                                           = 4 R 2 − ( 2 R sin A )
                                                                     2




Using (4.7) a can be written as:        a = 2 R sin A ,

giving                                HA2 = 4 R 2 − a 2

Hence, we have the alternative forms of (9.3) as

                        a
                                      HA = 4 R 2 − a 2
                                      HB = 4 R 2 − b2                                (9.4)
                   c           b
                                     HC = 4 R 2 − c 2

Exercise: Establish (9.1) to (9.4) for an obtuse-angled triangle

Again using Figure 9.1, note the following simply found forms of hA , hB and hC .

                            Area of triangle ABC = 1 BC × AD
                                                   2

                                                     = 1 a × hA
                                                       2
                                                                             a
Therefore,
                              2∆                      2∆        2∆
                       hA =      , and similarly hB =    , hC =    .
                               a                       b         c       c       b
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry
Elementary triangle goemetry

Contenu connexe

Tendances

F4 05 The Straight Line
F4 05 The Straight LineF4 05 The Straight Line
F4 05 The Straight Lineguestcc333c
 
F4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 DimF4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 Dimguestcc333c
 
Jee 2009 Paper 2
Jee 2009 Paper 2Jee 2009 Paper 2
Jee 2009 Paper 2Resonance
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printedFelicia Shirui
 
MODULE 3-Circle Area and Perimeter
MODULE 3-Circle Area and PerimeterMODULE 3-Circle Area and Perimeter
MODULE 3-Circle Area and Perimeterguestcc333c
 
Assignment # 5
Assignment # 5Assignment # 5
Assignment # 5Aya Chavez
 
Kuiz Add Maths
Kuiz Add MathsKuiz Add Maths
Kuiz Add Mathsmorabisma
 
Algebra review-olga lednichenko math turtoring, math,
Algebra review-olga lednichenko math turtoring, math,Algebra review-olga lednichenko math turtoring, math,
Algebra review-olga lednichenko math turtoring, math,Olga Lednichenko
 
Integrated Math 2 Section 6-1
Integrated Math 2 Section 6-1Integrated Math 2 Section 6-1
Integrated Math 2 Section 6-1Jimbo Lamb
 
Int Math 2 Section 6-1
Int Math 2 Section 6-1Int Math 2 Section 6-1
Int Math 2 Section 6-1Jimbo Lamb
 
Sample test paper JEE mains 2013
Sample test paper JEE mains 2013Sample test paper JEE mains 2013
Sample test paper JEE mains 2013APEX INSTITUTE
 
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…SmartPrep Education
 

Tendances (18)

F4 05 The Straight Line
F4 05 The Straight LineF4 05 The Straight Line
F4 05 The Straight Line
 
F4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 DimF4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 Dim
 
Jee 2009 Paper 2
Jee 2009 Paper 2Jee 2009 Paper 2
Jee 2009 Paper 2
 
Week 12 - Trigonometry
Week 12 - TrigonometryWeek 12 - Trigonometry
Week 12 - Trigonometry
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printed
 
DEV
DEVDEV
DEV
 
MODULE 3-Circle Area and Perimeter
MODULE 3-Circle Area and PerimeterMODULE 3-Circle Area and Perimeter
MODULE 3-Circle Area and Perimeter
 
Assignment # 5
Assignment # 5Assignment # 5
Assignment # 5
 
Kuiz Add Maths
Kuiz Add MathsKuiz Add Maths
Kuiz Add Maths
 
Algebra review-olga lednichenko math turtoring, math,
Algebra review-olga lednichenko math turtoring, math,Algebra review-olga lednichenko math turtoring, math,
Algebra review-olga lednichenko math turtoring, math,
 
Integrated Math 2 Section 6-1
Integrated Math 2 Section 6-1Integrated Math 2 Section 6-1
Integrated Math 2 Section 6-1
 
Int Math 2 Section 6-1
Int Math 2 Section 6-1Int Math 2 Section 6-1
Int Math 2 Section 6-1
 
Sample test paper JEE mains 2013
Sample test paper JEE mains 2013Sample test paper JEE mains 2013
Sample test paper JEE mains 2013
 
January 2012
January 2012January 2012
January 2012
 
10thmaths online(e)
10thmaths online(e)10thmaths online(e)
10thmaths online(e)
 
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
 
Algorithm
AlgorithmAlgorithm
Algorithm
 
January 2007
January 2007January 2007
January 2007
 

Similaire à Elementary triangle goemetry

Sin cos questions
Sin cos questionsSin cos questions
Sin cos questionsGarden City
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questionsGarden City
 
VIT - Mathematics -2008 Unsolved Paper
VIT - Mathematics -2008 Unsolved PaperVIT - Mathematics -2008 Unsolved Paper
VIT - Mathematics -2008 Unsolved PaperVasista Vinuthan
 
Remodulization of Congruences
Remodulization of CongruencesRemodulization of Congruences
Remodulization of CongruencesJeffrey Gold
 
Sslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediumSslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediummohanavaradhan777
 
Core 4 Parametric Equations 2
Core 4 Parametric Equations 2Core 4 Parametric Equations 2
Core 4 Parametric Equations 2davidmiles100
 
Precalculus 4 4 graphs pf sine and cosine v2
Precalculus 4 4 graphs pf sine and cosine v2Precalculus 4 4 graphs pf sine and cosine v2
Precalculus 4 4 graphs pf sine and cosine v2excetes1
 
A Novel Solution Of Linear Congruences
A Novel Solution Of Linear CongruencesA Novel Solution Of Linear Congruences
A Novel Solution Of Linear CongruencesJeffrey Gold
 
sine and cosine rule
 sine and cosine rule sine and cosine rule
sine and cosine rulemozzytazz02
 
10 Mathematics Standard.pdf
10 Mathematics Standard.pdf10 Mathematics Standard.pdf
10 Mathematics Standard.pdfRohitSindhu10
 
Discrete mathematics sol
Discrete mathematics solDiscrete mathematics sol
Discrete mathematics solmuqaddasisrar
 
Set theory and relation
Set theory and relationSet theory and relation
Set theory and relationankush_kumar
 
UPSEE - Mathematics -2005 Unsolved Paper
UPSEE - Mathematics -2005 Unsolved PaperUPSEE - Mathematics -2005 Unsolved Paper
UPSEE - Mathematics -2005 Unsolved PaperVasista Vinuthan
 

Similaire à Elementary triangle goemetry (20)

Yiu -notes_on_euclidean_geometry_(1998)
Yiu  -notes_on_euclidean_geometry_(1998)Yiu  -notes_on_euclidean_geometry_(1998)
Yiu -notes_on_euclidean_geometry_(1998)
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questions
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questions
 
VIT - Mathematics -2008 Unsolved Paper
VIT - Mathematics -2008 Unsolved PaperVIT - Mathematics -2008 Unsolved Paper
VIT - Mathematics -2008 Unsolved Paper
 
Remodulization of Congruences
Remodulization of CongruencesRemodulization of Congruences
Remodulization of Congruences
 
1007 ch 10 day 7
1007 ch 10 day 71007 ch 10 day 7
1007 ch 10 day 7
 
Sslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediumSslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-medium
 
midpoint theorem &intersept theorm
midpoint theorem &intersept theorm midpoint theorem &intersept theorm
midpoint theorem &intersept theorm
 
Core 4 Parametric Equations 2
Core 4 Parametric Equations 2Core 4 Parametric Equations 2
Core 4 Parametric Equations 2
 
AMU - Mathematics - 2001
AMU - Mathematics  - 2001AMU - Mathematics  - 2001
AMU - Mathematics - 2001
 
Precalculus 4 4 graphs pf sine and cosine v2
Precalculus 4 4 graphs pf sine and cosine v2Precalculus 4 4 graphs pf sine and cosine v2
Precalculus 4 4 graphs pf sine and cosine v2
 
A Novel Solution Of Linear Congruences
A Novel Solution Of Linear CongruencesA Novel Solution Of Linear Congruences
A Novel Solution Of Linear Congruences
 
sine and cosine rule
 sine and cosine rule sine and cosine rule
sine and cosine rule
 
C4 January 2012 QP
C4 January 2012 QPC4 January 2012 QP
C4 January 2012 QP
 
AMU - Mathematics - 2006
AMU - Mathematics  - 2006AMU - Mathematics  - 2006
AMU - Mathematics - 2006
 
10 Mathematics Standard.pdf
10 Mathematics Standard.pdf10 Mathematics Standard.pdf
10 Mathematics Standard.pdf
 
Module 1 similarity
Module 1 similarityModule 1 similarity
Module 1 similarity
 
Discrete mathematics sol
Discrete mathematics solDiscrete mathematics sol
Discrete mathematics sol
 
Set theory and relation
Set theory and relationSet theory and relation
Set theory and relation
 
UPSEE - Mathematics -2005 Unsolved Paper
UPSEE - Mathematics -2005 Unsolved PaperUPSEE - Mathematics -2005 Unsolved Paper
UPSEE - Mathematics -2005 Unsolved Paper
 

Plus de knbb_mat

Maria Montessori
Maria MontessoriMaria Montessori
Maria Montessoriknbb_mat
 
Konstrukcje geometryczne
Konstrukcje geometryczneKonstrukcje geometryczne
Konstrukcje geometryczneknbb_mat
 
Gra Licytacja
Gra LicytacjaGra Licytacja
Gra Licytacjaknbb_mat
 
UK - konstrukcje
UK - konstrukcjeUK - konstrukcje
UK - konstrukcjeknbb_mat
 
Jak rozwiązać trójkąt
Jak rozwiązać trójkątJak rozwiązać trójkąt
Jak rozwiązać trójkątknbb_mat
 
Geometria - Vademecum
Geometria - VademecumGeometria - Vademecum
Geometria - Vademecumknbb_mat
 
Pedagogika - Stadia rozwoju moralnego
Pedagogika - Stadia rozwoju moralnegoPedagogika - Stadia rozwoju moralnego
Pedagogika - Stadia rozwoju moralnegoknbb_mat
 
Rodzina jako srodowisko wychowawcze
Rodzina jako srodowisko wychowawczeRodzina jako srodowisko wychowawcze
Rodzina jako srodowisko wychowawczeknbb_mat
 
Algebra - zestaw 1
Algebra  - zestaw 1Algebra  - zestaw 1
Algebra - zestaw 1knbb_mat
 
Algebra - wielomiany - zestaw 2
Algebra - wielomiany - zestaw 2Algebra - wielomiany - zestaw 2
Algebra - wielomiany - zestaw 2knbb_mat
 
Dydaktyka - wyklady WPUW
Dydaktyka - wyklady WPUWDydaktyka - wyklady WPUW
Dydaktyka - wyklady WPUWknbb_mat
 
Cele dydaktyczne
Cele dydaktyczneCele dydaktyczne
Cele dydaktyczneknbb_mat
 
Analiza - definicje i twierdzenia
Analiza - definicje i twierdzeniaAnaliza - definicje i twierdzenia
Analiza - definicje i twierdzeniaknbb_mat
 
Algebra liniowa 1 - Przykłady i zadania
Algebra liniowa 1 - Przykłady i zadaniaAlgebra liniowa 1 - Przykłady i zadania
Algebra liniowa 1 - Przykłady i zadaniaknbb_mat
 
Pedagogika - Z. Kwieciński, B. Śliwerski
Pedagogika -  Z. Kwieciński, B. ŚliwerskiPedagogika -  Z. Kwieciński, B. Śliwerski
Pedagogika - Z. Kwieciński, B. Śliwerskiknbb_mat
 
Pedagogika - uczenie sie
Pedagogika - uczenie siePedagogika - uczenie sie
Pedagogika - uczenie sieknbb_mat
 
Teoria wychowania w zarysie (4)
Teoria wychowania w zarysie (4)Teoria wychowania w zarysie (4)
Teoria wychowania w zarysie (4)knbb_mat
 
Teoria wychowania w zarysie (3)
Teoria wychowania w zarysie (3)Teoria wychowania w zarysie (3)
Teoria wychowania w zarysie (3)knbb_mat
 
Teoria wychowania w zarysie (2)
Teoria wychowania w zarysie (2)Teoria wychowania w zarysie (2)
Teoria wychowania w zarysie (2)knbb_mat
 
Teoria wychowania w zarysie (1)
Teoria wychowania w zarysie (1)Teoria wychowania w zarysie (1)
Teoria wychowania w zarysie (1)knbb_mat
 

Plus de knbb_mat (20)

Maria Montessori
Maria MontessoriMaria Montessori
Maria Montessori
 
Konstrukcje geometryczne
Konstrukcje geometryczneKonstrukcje geometryczne
Konstrukcje geometryczne
 
Gra Licytacja
Gra LicytacjaGra Licytacja
Gra Licytacja
 
UK - konstrukcje
UK - konstrukcjeUK - konstrukcje
UK - konstrukcje
 
Jak rozwiązać trójkąt
Jak rozwiązać trójkątJak rozwiązać trójkąt
Jak rozwiązać trójkąt
 
Geometria - Vademecum
Geometria - VademecumGeometria - Vademecum
Geometria - Vademecum
 
Pedagogika - Stadia rozwoju moralnego
Pedagogika - Stadia rozwoju moralnegoPedagogika - Stadia rozwoju moralnego
Pedagogika - Stadia rozwoju moralnego
 
Rodzina jako srodowisko wychowawcze
Rodzina jako srodowisko wychowawczeRodzina jako srodowisko wychowawcze
Rodzina jako srodowisko wychowawcze
 
Algebra - zestaw 1
Algebra  - zestaw 1Algebra  - zestaw 1
Algebra - zestaw 1
 
Algebra - wielomiany - zestaw 2
Algebra - wielomiany - zestaw 2Algebra - wielomiany - zestaw 2
Algebra - wielomiany - zestaw 2
 
Dydaktyka - wyklady WPUW
Dydaktyka - wyklady WPUWDydaktyka - wyklady WPUW
Dydaktyka - wyklady WPUW
 
Cele dydaktyczne
Cele dydaktyczneCele dydaktyczne
Cele dydaktyczne
 
Analiza - definicje i twierdzenia
Analiza - definicje i twierdzeniaAnaliza - definicje i twierdzenia
Analiza - definicje i twierdzenia
 
Algebra liniowa 1 - Przykłady i zadania
Algebra liniowa 1 - Przykłady i zadaniaAlgebra liniowa 1 - Przykłady i zadania
Algebra liniowa 1 - Przykłady i zadania
 
Pedagogika - Z. Kwieciński, B. Śliwerski
Pedagogika -  Z. Kwieciński, B. ŚliwerskiPedagogika -  Z. Kwieciński, B. Śliwerski
Pedagogika - Z. Kwieciński, B. Śliwerski
 
Pedagogika - uczenie sie
Pedagogika - uczenie siePedagogika - uczenie sie
Pedagogika - uczenie sie
 
Teoria wychowania w zarysie (4)
Teoria wychowania w zarysie (4)Teoria wychowania w zarysie (4)
Teoria wychowania w zarysie (4)
 
Teoria wychowania w zarysie (3)
Teoria wychowania w zarysie (3)Teoria wychowania w zarysie (3)
Teoria wychowania w zarysie (3)
 
Teoria wychowania w zarysie (2)
Teoria wychowania w zarysie (2)Teoria wychowania w zarysie (2)
Teoria wychowania w zarysie (2)
 
Teoria wychowania w zarysie (1)
Teoria wychowania w zarysie (1)Teoria wychowania w zarysie (1)
Teoria wychowania w zarysie (1)
 

Dernier

Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsPooky Knightsmith
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Developmentchesterberbo7
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxDhatriParmar
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQuiz Club NITW
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 

Dernier (20)

Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young minds
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Development
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 

Elementary triangle goemetry

  • 1. Elementary Triangle Geometry Mark Dabbs The Mathematical Association Conference University of York, U.K Spring 2004 Version 1.1 April 2004 (www.mfdabbs.com)
  • 2. 2
  • 3. 3 Contents Motivating Problem. 5 §1: Basic Trigonometrical Formulae. 11 §2: Further Trigonometrical Formulae. 13 §3: Ratio Theorems. 15 Theorem (3.1). Theorem (3.2). §4: Basic Triangle Formulae. 17 Cosine Rule. Sine Rule and Cicumcircle. Tangent Rule. §5: Other Triangle Formulae. 21 Area Formulae in terms of a, b and c. Sin A, sin B and sin C in terms of a, b and c. Cos A, cos B and cos C in terms of a, b and c. Tan A, tan B and tan C in terms of a, b and c. §6: Associated Circles. 25 Incircle. Excircles. Heron’s Area Formula. §7: Further Triangle Formulae. 33 Tan ( 1 A ) , tan ( 1 B ) and tan ( 1 C ) 2 2 2 in terms of a , b and c. Cos ( 1 A ) , cos ( 1 B ) and cos ( 1 C ) in terms of a , b and c. 2 2 2 Sin ( 1 A ) , sin ( 1 B ) and sin ( 1 C ) in terms of a , b and c. 2 2 2 §8: Further Triangle Relationships. 37 Relationship between r and R. Relationships between rA , rB , rC and R. The distances AI , BI and CI . The distances AI A , BI B and CI C . The distances II A , II B and II C . §9: Further Triangle Centres. 47 The Orthocentre of any Triangle ABC . The Pedal Triangle of any Triangle ABC. The Circumcircle and the Pedal Triangle. The Excentric Triangle.
  • 4. 4 §10: Special Cevian Lengths. 55 The Centroid and Medians of any Triangle. Cevians Bisecting Angles Internally. Cevians Bisecting Angles Externally. Apollonius’ Theorem. A Generalisation of Apollonius’ Theorem – Stewart’s Theorem §11: Problems. 63 Appendix: Concurrences of Straight Lines in a Triangle. 67 Circumcentre. Incentre. Centroid. Orthocentre. Bibliography. 73
  • 5. 5 Motivating Problem The motivation for this work came from an open question to a class to find the area of a triangle whose base is known but whose perpendicular height is not known. B A typical diagram is shown in Figure MP.1 a h c P C A x b-x Figure MP.1 The area of the triangle, ∆ , is seen to be ∆ = 1 ( base ) ( ⊥ height ) 2 (MP.1) ∆ = 1 bh, 2 where b = AC and h = BP . After some discussion, two methods were proposed o Method 1: Using Trigonometry o Method 2: Using Pythagoras Method 1 is perhaps the more familiar and progresses thus: In triangle BPC we have: PB sin C = BC h sin C = a Therefore, h = a sin C (MP.2) From (MP.1) and (MP.2) we have the general area formula ∆ = 1 ab sin C 2 (MP.3)
  • 6. 6 Method 2 was somewhat more involved and led to quite a voyage of discovery! Note the following Pythagorean relations within the two triangles CBP and ABP. a 2 = x 2 + h2 (MP.4) c 2 = ( b − x ) + h2 . 2 and (MP.5) Eliminating h from (MP.4) and (MP.5) gives: a2 − x2 = c2 − (b − x ) 2 a2 − c2 = x2 − (b − x ) . 2 That is: Thus, by the difference of two squares formula we have a 2 − c 2 = ( x − b − x )( x + b − x ) a 2 − c 2 = ( x − b + x )( x + b − x ) a 2 − c 2 = ( 2 x − b )( b ) Hence, a2 + b2 − c2 x= . (MP.6) 2b Substituting (MP.6) into (MP.4) gives 2  a2 + b2 − c2  h = a − 2 2  .  2b  That is 4 a 2b 2 − ( a 2 + b 2 − c 2 ) 2 h = 2 (MP.7) 4b 2 Once again, by the difference of two squares formula we have the alternative form of (MP.7): h 2 = ( 2ab − a 2 )( + b2 − c 2 2ab + a 2 + b 2 − c 2 ), 4b 2 = ( 2ab − a 2 − b 2 + c 2 )( 2ab + a 2 + b2 − c 2 ) , 4b 2 = (c 2 − a 2 + 2ab − b 2 )( a 2 + 2ab + b2 − c 2 ) , 4b 2
  • 7. 7 That is: h 2 = (c 2 − a 2 − 2ab + b2 )( a 2 + 2ab + b 2 − c 2 ), 4b 2 which, on factorising gives: h 2 = (c 2 − (a − b) 2 ) (( a + b) 2 − c2 ). 4b 2 Therefore, on using the difference of two squares formula again we have: h2 = ( c − a − b )( c + a − b )( a + b − c )( a + b + c ) 4b 2 ( c − a + b )( c + a − b )( a + b − c )( a + b + c ) h2 = . (MP.8) 4b 2 Now it’s time to ask which of the four factors in the numerator “looks” the “nicest” and hope that the answer to come back is the fourth or last one of ( a + b + c ) ! Having established this, the suggestion is then made that it is a pity that the other three factors do not have this same elegant symmetry and once agreed that we ought to insist that such symmetry exist in these other three factors. It is eventually determined that a suitable “trick” is to rewrite them in the following manner: ( c − a + b ) ≡ ( a + b + c − 2a ) ( c + a − b ) ≡ ( a + b + c − 2b ) (MP.9) ( a + b − c ) ≡ ( a + b + c − 2c ) Realising that ( a + b + c ) is just the perimeter of the original triangle ABC, say p gives (MP.8) as: ( p − 2a )( p − 2b )( p − 2c )( p ) h2 = . (MP.10) 4b 2 However, if we then let the new variable, s, be defined as the semi-perimeter then (MP.10) is re-written ( 2s − 2a )( 2s − 2b )( 2s − 2c )( 2s ) h2 = . 4b 2
  • 8. 8 This is then easily factorised to give: 16 ( s − a )( s − b )( s − c )( s ) h2 = 4b 2 or 4s ( s − a )( s − b )( s − c ) h2 = . b2 2 s ( s − a )( s − b )( s − c ) Hence, h= (MP.11) b Finally then, substituting (MP.11) back into (MP.1) gives  2 s ( s − a )( s − b )( s − c )  ∆ = 1 b×  2  b    or ∆ = s ( s − a )( s − b )( s − c ) (MP.12) Which is the familiar result of Heron of Alexandria (First Century A.D)
  • 9. 9 “What a marvel that so simple a figure as the triangle is so inexhaustible in its properties!” (A. L. Crelle, 1821)
  • 10. 10
  • 11. 11 §1: Basic Trigonometrical Formulae sin θ = tan θ (1.1) cos θ sin 2 θ + cos 2 θ = 1 (1.2) θ 0 30 45 60 90 1 2 3 sin θ 0 1 2 2 2 (1.3) 3 2 1 cos θ 1 0 2 2 2 1 tan θ 0 1 3 ∞ 3 1 cosec θ = sin θ 1 sec θ = (1.4) cos θ 1 cot θ = tan θ tan 2 θ + 1 = sec 2 θ (1.5) 1 + cot 2 θ = cosec 2 θ (1.6)
  • 12. 12
  • 13. 13 §2: Further Trigonometrical Formulae sin ( A + B ) = sin A cos B + cos A sin B (2.1) sin ( A − B ) = sin A cos B − cos A sin B (2.2) cos ( A + B ) = cos A cos B − sin A sin B (2.3) cos ( A − B ) = cos A cos B + sin A sin B (2.4) tan A + tan B tan ( A + B ) = (2.5) 1 − tan A tan B tan A − tan B tan ( A − B ) = (2.6) 1 + tan A tan B P+Q   P−Q  sin P + sin Q = 2 sin    cos   (2.7)  2   2  P +Q   P −Q  sin P − sin Q = 2 cos    sin   (2.8)  2   2  P+Q  P−Q  cos P + cos Q = 2 cos    cos   (2.9)  2   2  P +Q   P −Q  cos P − cos Q = − 2 sin    sin   (2.10)  2   2  sin ( 2 A ) = 2sin A cos A (2.11) cos ( 2 A ) = cos2 A − sin 2 A = 2cos2 A − 1 = 1 − 2sin 2 A (2.12) sin 2 A = 1 2 (1 − cos ( 2 A) ) (2.13) cos 2 A = 1 2 (1 + cos ( 2 A) ) (2.14) Notice further, if we define t = tan 1 θ then it can be shown that 2 2t 1 − t2 2t sin θ = , cosθ = and tan θ = . (2.15) 1 + t2 1+ t 2 1 − t2
  • 14. 14
  • 15. 15 §3: Ratio Theorems Theorem (3.1) p a λ p + µ q λ a + µb If we have that = then = , for any numbers λ , µ , m and n. q b mp + nq ma + nb Proof: p a Let = ≡t q b ⇒ p = qt , a = bt . λ p + µq λ ( qt ) + µ q λt + µ Therefore, = = mp + nq m ( qt ) + nq mt + n and λ a + µb λ ( bt ) + µ q λt + µ = = □ ma + nb m ( bt ) + nq mt + n Theorem (3.2) p a λ p + µa p a If we have that = then = = , for any numbers λ and µ . q b λ q + µb q b Proof: p a Let = ≡t q b ⇒ p = qt , a = bt . λ p + µ a λ ( qt ) + µ ( bt ) t ( λ q + µ b ) p a Therefore, = = =t ≡ ≡ □ λ q + µb λ q + µb ( λ q + µb ) q b
  • 16. 16
  • 17. 17 B §4: Basic Triangle Formulae Cosine Rule c h a A C b x y Figure 4.1 x y Notice that: cos A = , cos C = c a Therefore, x = c cos A, y = a cos C Hence b = x + y ≡ c cos A + a cos C Using symmetry we interchange the variables to yield the complete set of results thus: a a = b cos C + c cos B b = c cos A + a cos C (4.1) c b c = a cos B + b cos A The formulae of (4.1) are known as the Projection Formulae. If we now multiply the equations of (4.1) by a, b and c, respectively, we have: a 2 = ab cos C + ac cos B (4.2) b2 = bc cos A + ab cos C (4.3) c 2 = ac cos B + bc cos A (4.4) Now construct (4.3) + (4.4) - (4.2) to give: b2 + c 2 − a 2 = 2bc cos A Therefore, a 2 = b2 + c 2 − 2bc cos A (4.5) Equation (4.5) is known as the Cosine Rule for triangles. Symmetry yields the other forms: b2 = c 2 + a 2 − 2ca cos B and c 2 = a 2 + b2 − 2ab cos C
  • 18. 18 Sine Rule Also from Figure 4.1 we have the further set of relations: h h sin A = , sin C = c a Therefore, h = c sin A or h = a sin C Hence, c sin A = a sin C ≡ h sin A sin C Therefore, = a c However, the initial orientation of the triangle ABC was arbitrary sin A sin B sin C ⇒ = = (4.6) a b c Equation (4.6) is known as the Sine Rule for triangles. The Sine Rule can be extended by considering a circle through the apexes of the triangle ABC (known as the Circumcircle of the triangle ABC) B B P A C O O A C P Figure 4.2 Figure 4.3 In both Figure 4.2 and 4.3 the red lines AP and PC have been added to the original Circumcircle problem. In both cases the line segment AP is draw so as to pass through the centre of the Circumcircle and is therefore a diameter. ⇒ ACP is a Right-Angle in both figures (Angle in a Semi-Circle is a right- angle). Further, APC = ABC since angles subtended by a single chord in the same segment of a circle are equal (Euclid Book III Prop. 21). AC b Therefore, from Figure 4.2 we have: sin ( APC ) ≡ sin ( B ) = ≡ AP 2 R where R is the radius of the Circumcircle of triangle ABC.
  • 19. 19 From Figure 4.3 APC = 180 − B (Cyclic Quadrilateral) Therefore, sin ( APC ) = sin (180 − B ) ≡ sin B Hence, as for Figure 4.2 we have b sin B 1 sin B = or = 2R b 2R Therefore, from (4.6) we have: sin A sin B sin C 1 = = = (4.7) a b c 2R Tangent Rule b sin B From (4.7) we have that = c sin C Using Theorem (3.1) with λ ≡ m ≡ n = 1 and µ = −1 this relation can be written (1) b + ( −1) c (1) sin B + ( −1) sin C = (1) b + (1) c (1) sin B + (1) sin C b − c sin B − sin C That is = b + c sin B + sin C Using (2.8) and (2.7) this can be rewritten as B +C   B −C  2 cos    sin   b−c  2   2 , = b + c 2 sin  B + C  cos  B − C       2   2  B −C  sin    b−c  2 × 1 = , b + c cos  B − C  sin  B + C       2   2  B+C  cos     2  B−C  tan    b−c  2 . = b + c tan  B + C     2 
  • 20. 20 b−c That is tan 1 ( B − C ) = tan 1 ( B + C ) (4.8) b+c 2 2 However, A + B + C = 180 ⇒ 1 2 ( B + C ) = 90 − 1 A 2 (4.9) From (4.9) we see that tan 1 ( B + C ) = tan ( 90 − 1 A ) 2 2 tan(90 ) − tan 1 A = 2 1 + tan(90 ) tan 1 A 2 tan 2 A 1 1− tan(90 ) = 1 + tan 1 A 2 tan(90 ) 1− 0 = 0 + tan 1 A 2 ∴ tan 1 ( B + C ) = cot 1 A 2 2 Hence (4.8) can be written in its alternative form b−c tan 1 ( B − C ) = cot 1 A (4.10) b+c 2 2 Equation (4.10) is known as the Tangent Rule for triangles. Symmetry yields the other forms: c−a a tan 1 ( C − A ) = cot 1 B c+a 2 2 c b a−b tan 1 ( A − B ) = cot 1 C a+b 2 2
  • 21. 21 §5: Other Triangle Formulae B Area Formulae in terms of a, b and c. c h a A C b Figure 5.1 The area of triangle ABC is found from h ∆ = 1 bh, where sin C = 2 , a = 1 b ( a sin C ) 2 Hence, ∆ = 1 ab sin C 2 (5.1) a By symmetry, ∆ = 1 ab sin C = 1 bc sin A = 1 ca sin B 2 2 2 c b c From (4.7) we have that sin C = 2R c  Therefore, (5.1) becomes ∆ = 1 ab  2    2R  abc That is: ∆= (5.2) 4R abc or R= . 4∆ a sin B Also, from (4.7) we have that b= sin A Therefore, (5.1) now becomes: a sin B  ∆ = 1 a 2   sin C  sin A  sin B sin C That is: ∆ = 1 a2 2 sin A Hence, a sin B sin C 1 2 sin C sin A 1 2 sin A sin B ∆ = 1 a2 2 = 2b = 2c (5.3) c b sin A sin B sin C
  • 22. 22 Sin A in terms of a, b and c, etc. From (1.2) sin 2 A = 1 − cos 2 A = (1) − ( cos A ) 2 2 = (1 − cos A )(1 + cos A ) Therefore, from (4.5) this becomes  b2 + c 2 − a 2   b2 + c 2 − a 2  sin 2 A =  1 −  1 +   2bc  2bc      2bc − b 2 + c 2 − a 2   2bc + b 2 + c 2 − a 2  =    2bc  2bc      2bc − b 2 − c 2 + a 2   2bc + b 2 + c 2 − a 2  =    2bc  2bc   a − b + 2bc − c   b + 2bc + c − a  2 2 2 2 2 2 =    2bc  2bc   a − (b − c )   (b + c ) − a  2 2 2 2 =    2bc  2bc     1 ( )( = 2 2 a2 − (b − c ) (b + c ) − a2 4b c 2 2 ) 1 = 2 2 ( a − b + c )( a + b − c )( b + c − a )( b + c + a ) 4b c 1 = 2 2 ( a + b + c − 2b )( a + b + c − 2c )( b + c + a − 2a )( b + c + a ) 4b c Now let s = 1 ( a + b + c ) , the Semi-perimeter, then we have 2 1 sin 2 A = ( 2s − 2b )( 2 s − 2c )( 2s − 2a )( 2s ) 4b 2 c 2 1 = 2 2 16 ( s − b )( s − c )( s − a )( s ) 4b c Hence 4 sin 2 A = s ( s − a )( s − b )( s − c ) bc 2 2 Therefore, 2 a sin A = s ( s − a )( s − b )( s − c ) bc 2 sin B = s ( s − a )( s − b )( s − c ) (5.4) c b ca 2 sin C = s ( s − a )( s − b )( s − c ) ab
  • 23. 23 Notice further that these three identities from (5.4) could be written 2a sin A = s ( s − a )( s − b )( s − c ) ≡ 2aK abc 2b sin B = s ( s − a )( s − b )( s − c ) ≡ 2bK (5.5) abc 2c sin C = s ( s − a )( s − b )( s − c ) ≡ 2cK abc From which, the Sine Rule can be deduced, since sin A sin B sin C ≡ 2K  ≡ 1  = =   a b c  2R  Moreover, from (5.1) and (5.4) we have that 2 ∆ = 1 ab × sin C ≡ 1 ab × 2 2 s ( s − a )( s − b )( s − c ) ab Hence ∆ = s ( s − a )( s − b )( s − c ) (5.6) This is the triangle area formula met previously in (MP.7): Heron’s Formula. We can now use the notation of (5.6) or more simply the form of (5.1) to write: Sin A, sin B, sin C in terms of a, b and c. a 2∆ 2∆ 2∆ sin A = , sin B = , sin C = (5.7) c b bc ca ab Cos A, cos B, cos C in terms of a, b and c. From (4.5) we simply rearrange to yield a b2 + c2 − a 2 c2 + a 2 − b2 a 2 + b2 − c2 cos A = , cos B = , cos C = (5.8) c b 2bc 2ca 2ab Tan A, tan B, tan C in terms of a, b and c. From (1.1), (5.5) and (5.8) we have a 4∆ 4∆ 4∆ tan A = , tan B = 2 , tan C = 2 (5.9) c b b +c −a 2 2 2 c +a −b 2 2 a + b2 − c2
  • 24. 24
  • 25. 25 §6: Associated Circles A Incircle Let I be the Incentre of the F E triangle ABC, obtained by bisecting the interior angles of the triangle ABC. Then I ID = IE = IF ≡ r , where r is the radius of the incircle. ( ID, IE and IF are the ⊥ 's . C B D from I to the respective sides) Figure 6.1 We have that Area of triangle ABC = Areas of triangles ( BIC + CIA + AIB ) ∆ = 1 ar + 1 br + 1 cr 2 2 2 ∆ = 1 r (a + b + c) 2 Hence for s, the semi perimeter ∆ = rs (6.1) ∆ or r= (6.2) s Now, let AE = AF ≡ x  Tangents to a circle from  BD = BF ≡ y  a single point have equal  CD = CE = z  lengths ⇒ x+ y+ y+z+z+x= p ( perimeter ) Hence x+ y+z =s ( semi perimeter ) But BD + DC = y + z ≡ a ⇒ x+a=s Hence x = s−a. Therefore, we can show: a x=s−a y = s−b (6.3) c b z = s−c
  • 26. 26 A From triangle ABC we see that s-a s-a IF r tan ( 1 A ) = = FA s − a 2 F Similarly E r a tan ( 1 A ) = s-b s-c s−a 2 I r tan ( 1 B ) = (6.4) s−b 2 c b D C r tan ( 1 C ) = s-c s−c B s-b 2 Figure 6.2 Moreover, from triangles AIE, BIF and CID we have AE = AF ≡ s − a = r cot ( 1 A ) a 2 BD = BF ≡ s − b = r cot ( 1 B ) 2 (6.5) c b CD = CE ≡ s − c = r cot ( 1 C ) 2 Therefore, as a = BD + DC then a = r cot ( 1 B ) + r cot ( 1 C ) 2 2 = r ( cot ( 1 B ) + cot ( 1 C ) ) 2 2  cos ( 1 B ) cos ( 1 C )  = r  sin ( 1 B ) + sin ( 1 C )  2 2   2 2   cos ( 1 B ) sin ( 1 C ) + sin ( 1 B ) cos ( 1 C )  = r  2 2 2 2    sin ( 1 B ) sin ( 1 C ) 2 2  sin ( 1 B + 1 C ) =r 2 2 sin ( 2 B ) sin ( 1 C ) 1 2 But A + B + C = 180 and therefore, 1 2 B + 1 C = 90 − 1 A , giving 2 2 sin ( 90 − 1 A ) a=r 2 sin ( 1 B ) sin ( 1 C ) 2 2 That is cos ( 1 A ) a=r 2 . sin ( 1 B ) sin ( 1 C ) 2 2 Hence sin ( 1 B ) sin ( 1 C ) r=a 2 2 (6.6) cos ( 1 A ) 2
  • 27. 27 Together, we have sin ( 1 B ) sin ( 1 C ) r=a 2 2 a cos ( 1 A ) 2 sin ( 1 C ) sin ( 1 A ) r =b 2 2 (6.7) c b cos ( 1 B ) 2 sin ( 1 A ) sin ( 1 B ) r =c 2 2 cos ( 1 C ) 2 From (4.7) we have sin A 1 = , etc, where R is the Circumcircle. a 2R or a = 2 R sin A , etc Thus (6.6) becomes sin ( 1 B ) sin ( 1 C ) r = 2 R sin A ⋅ 2 2 cos ( 1 A ) 2 Using (2.11) gives sin ( 1 B ) sin ( 1 C ) r = 2 R × 2sin ( A ) cos ( A ) ⋅ 1 1 2 2 cos ( 1 A ) 2 2 2 Hence r = 4 R sin ( 1 A ) sin ( 1 B ) sin ( 1 C ) 2 2 2 (6.8)
  • 28. 28 Excircles A Let I A be the centre of a circle, opposite angle A, of radius rA obtained by bisecting the angles B and C externally and A internally. I We have that: B D A' D' C Area of triangle ABC = E' Areas of triangles ( AI A B + CI A A − BI AC ) That is IA ∆ = 1 crA + 1 brA − 1 arA 2 2 2 F' = 1 rA ( c + b − a ) 2 = 1 rA ( a + b + c − 2a ) 2 Figure 6.3 Hence for s, the semi perimeter ∆ = rA ( s − a ) (6.9) Similarly, we have ∆ rA = a s−a ∆ rB = (6.10) c b s−b ∆ rC = s−c Notice further that A, I and I A are collinear as both AI and AI A lie on the bisector line of angle A Now let AE ' = AF ' ≡ x A  Tangents to a circle from  BD ' = BF ' ≡ y A  a single point have equal  CD ' = CE ' = z A  lengths Then AF '+ AE ' = AB + BF '+ AC + CE ' 2 xA = c + y A + b + z A ⇒ = b + c + ( yA + z A ) but y A + z A = BD '+ D ' C ≡ BC = a .
  • 29. 29 Therefore: 2 xA = a + b + c xA = 1 ( a + b + c ) 2 Hence xA = s ( semi perimeter ) (6.11) A In a similar manner a xB = s and xC = s c b The three distances x A = s, xB = s and xC = s are displayed below D A' B D' C E' A IA F' IC B C Figure 6.4 Figure 6.5 IB A Figure 6.6 B C
  • 30. 30 Notice also from triangle AI A F ' and from (6.11) that I A F ' rA tan ( 1 A ) = 2 = AF ' s ⇒ rA = s tan ( 1 A ) . 2 Similarly a rA = s tan ( 1 A ) 2 rB = s tan ( 1 B ) 2 (6.12) c b rC = s tan ( 1 C ) 2 Therefore, we can further show that a AE ' = AF ' ≡ s = rA cot ( 1 A ) , 2 s = rB cot ( 1 B ) , 2 (6.13) s = rC cot ( 1 C ) . c b 2 Moreover, since BF ' = BD ' = AF '− AB = s − c and CE ' = CD ' = AE '− AC = s − b then DD ' = CD ' ∼ CD = ( s − b) ∼ ( s − c) =b∼c Where D is the point of tangency of the incircle with side a, D ' is the point of tangency of the excircle with side a, and where the symbol ∼ is the positive difference between its two arguments. Namely: DD ' = b ∼ c ≡ b − c (6.14) Further, as BD ' = CD = s − c it follows that A ' is the midpoint of DD ' where A ' is also the midpoint of BC.
  • 31. 31 Heron’s Area Formula IA C D I D' A B Figure 6.7 As BI and BI A bisect the angle B both internally and externally, it follows that IBI A = 90 . Moreover, since IDB and I A D ' B are also right angles then this implies that triangles BID and BI A D ' are similar. Namely: Triangles BID ≅ I A BD ' BI ID BD Thus = = I A B BD ' I A D ' BI r s −b that is: = = I AB s − c rA Therefore: r ⋅ rA = ( s − b )( s − c ) (6.15) On using (6.2) and (6.10) this becomes ∆ ∆ ⋅ = ( s − b )( s − c ) s s−a Hence ∆ = s ( s − a )( s − b )( s − c ) (6.16) Which is the form of the area of triangle ABC as met previously in (MP.7) and (5.6)
  • 32. 32
  • 33. 33 §7: Further Triangle Formulae Y IA C I A D B X Figure 7.1 Tan ( 1 A ) , tan ( 1 B ) and tan ( 1 C ) in terms of a , b and c. 2 2 2 ID r From Figure 7.1 we have tan ( 1 A ) = ≡ AD s − a 2 On using (6.15) this becomes  ( s − b )( s − c )    tan ( 1 A ) =  rA  = ( s − b )( s − c ) s−a rA ( s − a ) 2 On using (6.9) we have ( s − b )( s − c ) ( s − b )( s − c ) tan ( 1 A ) = = 2 ∆ ∆ ( s − a) (s − a) ( s − b )( s − c ) ( s − b )( s − c ) Hence: tan ( 1 A ) = = s ( s − a )( s − b )( s − c ) s (s − a) 2 Similarly, ( s − b )( s − c ) tan ( 1 A ) = s(s − a) 2 a ( s − c )( s − a ) tan ( 1 B ) = (7.1) s ( s − b) 2 c b ( s − a )( s − b ) tan ( 1 C ) = s (s − c) 2
  • 34. 34 Cos ( 1 A ) , cos ( 1 B ) and cos ( 1 C ) in terms of a , b and c. 2 2 2 From Figure 7.1 we have I ACY = 1 2 (180 − C) = 90 − 1 C 2 = 1 ( A + B) 2 Also, using the construction properties of the Incircle and Excircle I A AC = 1 A 2 Hence AI AC = 180 − ( 1 A + (180 − 2 I ACY ) ) = 180 − ( 1 A + (180 − 1 ( A + B ) ) ) 2 2 = 180 − (180 − 1 B ) 2 AI AC = 1 B ≡ 2 DBI Therefore, triangles AIB and ACI A are similar, that is AIB ≅ ACI A . AI IB AB = = AC CI A AI A ⇒ AI IB c = = b CI A AI A Hence AI × AI A = bc (7.2) AX Also from Figure 7.1 cos ( 1 A ) = 2 (7.3) AI A AD and cos ( 1 A ) = 2 (7.4) AI The product of (7.3) and (7.4) gives AX AD cos ( 1 A ) × cos ( 1 A ) = 2 2 × AI A AI That is AX × AD cos2 ( 1 A ) = AI A × AI 2 On using (6.3), (6.11) and (7.2) this becomes s × (s − a) cos 2 ( 1 A ) = 2 bc Hence s(s − a) cos ( 1 A ) = 2 a bc s ( s − b) cos ( 1 B ) = 2 (7.5) c b ca s (s − c) cos ( 1 C ) = 2 ab
  • 35. 35 Sin ( 1 A ) , sin ( 1 B ) and sin ( 1 C ) in terms of a, b and c. 2 2 2 Using (1.1), (7.1) and (7.5) we have that sin ( 1 A ) = tan ( 1 A ) cos ( 1 A ) 2 2 2 Hence ( s − b )( s − c ) s(s − a) sin ( 1 A ) = × s(s − a) 2 bc Giving ( s − b )( s − c ) sin ( 1 A ) = 2 a bc ( s − c )( s − a ) sin ( 1 B ) = 2 (7.6) c b ca ( s − a )( s − b ) sin ( 1 C ) = 2 ab Notice that in each of the above three subsections the negative root is rejected if the angles, A, B and C are those of a triangle.
  • 36. 36
  • 37. 37 §8: Further Triangle Relationships Relationship between r and R A Note that BIC = 180 − 1 B − 1 C 2 2 I = 180 − 1 ( B + C ) 2 r = 180 − 1 (180 − A ) 2 B C D = 90 + A1 2 Figure 8.1 ID r and that sin ( 1 B ) = 2 ≡ IB IB Hence, r = IB sin ( 1 B ) 2 (8.1) Using the Sine Rule of (4.6) we have that sin ( 1 C ) sin ( 90 + 1 A ) sin ( 1 B ) = = 2 2 2 , IB BC IC and from the first two of these fractions we have sin ( 1 C ) cos ( 1 A ) 2 = 2 . IB BC BC sin ( 1 C ) Therefore: IB = 2 , cos ( 1 A ) 2 a sin ( 1 C ) that is IB = 2 . (8.2) cos ( 1 A ) 2 Substituting (8.2) into (8.1) gives  a sin ( 1 C )  r = cos ( 1 A )  sin ( 2 B ) 2 1   2  a sin ( 2 C ) sin ( 1 B ) 1 = 2 cos ( 2 A ) 1 2 R sin A sin ( 1 B ) sin ( 1 C ) Using (4.7) a can be written as: a = 2 R sin A, giving r = 2 2 . cos ( 1 A ) 2 Using (2.11) gives 2 R × 2sin ( 1 A ) cos ( 1 A ) sin ( 1 B ) sin ( 1 C ) r= 2 2 2 2 . cos ( 1 A ) 2 Hence: r = 4 R sin ( 1 A ) sin ( 1 B ) sin ( 1 C ) 2 2 2 (8.3) as met previously in (6.8).
  • 38. 38 Relationships between rA , rB , rC and R. From Figure 8.2 we see that C I AD ' r sin ( I A BD ') = ≡ A I AB I AB D' IA rA that is rA = I A B sin ( 90 − 1 B ) 2 (8.4) rA = I A B cos ( 1 B ) 2 A B Figure 8.2 Using the Sine Rule of (4.6) we have that sin ( 90 − 1 C ) sin ( 90 − 1 A ) sin ( 90 − 1 B ) = = 2 2 2 I AB BC I AC and from the first two of these fractions we have cos ( 1 C ) cos ( 1 A ) 2 = 2 I AB BC BC cos ( 1 C ) Therefore, I AB = 2 . cos ( 1 A ) 2 a cos ( 1 C ) that is, I AB = 2 (8.5) cos ( 1 A ) 2 Substituting (8.5) into (8.4) gives  a cos ( 1 C )   cos ( 1 A )  cos ( 2 B ) rA =  2 1   2  a cos ( 1 C ) cos ( 1 B ) = 2 2 cos ( 2 A ) 1 Using (4.7) a can be written as: a = 2 R sin A , 2 R sin A cos ( 1 C ) cos ( 1 B ) giving rA = 2 2 . cos ( 1 A ) 2 Using (2.11) gives 2 R × 2sin ( 1 A ) cos ( 1 A ) cos ( 1 C ) cos ( 1 B ) rA = 2 2 2 2 . cos ( 1 A ) 2 Hence: a rA = 4 R sin ( 1 A ) cos ( 1 B ) cos ( 1 C ) , 2 2 2 and similarly rB = 4 R cos ( 1 A ) sin ( 1 B ) cos ( 1 C ) , 2 2 2 (8.6) c b rC = 4 R cos ( 1 A ) cos ( 1 B ) sin ( 1 C ) . 2 2 2
  • 39. 39 The distances AI , BI and CI . From Figure 8.3 notice that C ID IA sin ( 1 A ) = 2 I IA A D B X Therefore, Figure 8.3 a AI = r cosec ( 1 A ) 2 BI = r cosec ( 1 B ) 2 (8.7) c b CI = r cosec ( 1 C ) 2 If we just consider the triangle AI A X for the present and determine some of its angles from Figure 8.4 IA we find that: Clearly AIB = 180 − 1 ( A + B ) 2 I and so on using the Sine Rule of (4.6) we have from triangle AIB A D B X sin ( B ) sin ( AIB ) sin ( A ) 1 1 2 = = 2 Figure 8.4 AI AB BI Considering just the first two fractions here gives AB sin ( 1 B ) AI = 2 sin ( AIB ) Therefore c sin ( 1 B ) AI = 2 sin (180 − 1 ( A + B ) ) 2 That is on using (2.2): c sin ( 1 B ) AI = 2 sin ( 1 ( A + B ) ) 2 c sin ( 1 B ) = 2 sin ( 90 − 1 C ) 2 c sin ( 1 B ) = 2 cos ( 1 C ) 2 But on using (4.7) c can be written as: c = 2 R sin C , giving
  • 40. 40 2 R sin C sin ( 1 B ) AI = 2 cos ( 1 C ) 2 2 R × 2sin ( 1 C ) cos ( 1 C ) sin ( 1 B ) Using (2.11) gives AI = 2 2 2 cos ( 1 C ) 2 Hence AI = 4 R sin ( 1 B ) sin ( 1 C ) a 2 2 BI = 4 R sin ( 1 C ) sin ( 1 A ) 2 2 (8.8) c b CI = 4 R sin ( 1 A ) sin ( 1 B ) 2 2 which give an alternative form of (8.7). Further, from (8.7), as it is somewhat r easier we may proceed AI = r cosec ( 1 A ) = sin ( 1 A ) 2 2 Thus, from (7.6) we have r r bc AI = = ( s − b )( s − c ) ( s − b )( s − c ) bc r s ( s − a ) bc ≡ s ( s − a )( s − b )( s − c ) r s ( s − a ) bc s ( s − a ) bc Using (5.6) and (6.1) AI = ≡ . ∆ s ( s − a ) bc (s − a) Hence, AI = = bc a s s a ( s − b) c ( s − b) similarly BI = = ca (8.9) c b s s ab ( s − c ) (s − c) CI = = ab s s Note that the relations of (8.9) can be written abc ( s − a ) (s − a) AI = ≡K , s a a abc ( s − b ) ( s − b) abc BI = ≡K , where K = (8.10) s b b s abc ( s − c ) (s − c) CI = ≡K . s c c (s − a) ( s − b) (s − c) ⇒ AI : BI : CI = : : (8.11) a b c
  • 41. 41 The distances AI A , BI B and CI C . C IA I A D B X Figure 8.5 From Figure 8.5 notice that I AD sin ( 1 A ) = 2 IAA Therefore, AI A = rA cosec ( 1 A ) a 2 BI B = rB cosec ( 1 B ) 2 (8.12) c b CI C = rC cosec ( 1 C ) 2 C Notice also from Figure 8.6 that IA θ + θ + φ + φ = 180 θ + φ = 90 I Hence IBI A = 90 Also, since D B θ = 1 B and φ = 1 (180 − B ) = 90 − 1 B 2 2 2 Figure 8.6 then I I A B = 90 − 1 ( A + B ) 2 IA I Figure 8.7 A D B
  • 42. 42 On using the Sine Rule of (4.6) we have from triangle ABI A sin ( 90 + 1 B ) sin ( AI A B ) sin ( 1 A ) = = 2 2 AI A AB BI A Considering just the first two fractions here gives AB sin ( 90 + 1 B ) AI A = 2 sin ( AI A B ) Therefore c cos ( 1 B ) AI A = 2 sin ( 90 − 1 ( A + B ) ) 2 That is on using (2.2): c cos ( 1 B ) AI A = 2 cos ( 1 ( A + B ) ) 2 c cos ( 1 B ) = 2 cos ( 90 − 1 C ) 2 c cos ( 1 B ) = 2 sin ( 1 C ) 2 But on using (4.7) c can be written as: c = 2 R sin C giving 2 R sin C cos ( 1 B ) AI A = 2 sin ( 2 C ) 1 Using (2.11) gives 2 R × 2sin ( 1 C ) cos ( 1 C ) cos ( 1 B ) AI A = 2 2 2 sin ( 1 C ) 2 Hence a AI A = 4 R cos ( 1 B ) cos ( 1 C ) 2 2 and similarly BI B = 4 R cos ( 1 C ) cos ( 1 A ) 2 2 (8.13) c b CI C = 4 R cos ( 1 A ) cos ( 1 B ) 2 2 which give an alternative form of (8.12) Further, from (8.12), as it is slightly easier we may proceed rA AI A = rA cosec ( 1 A ) = sin ( 1 A ) 2 2
  • 43. 43 Thus, from (6.10) and (7.6) we have ∆ 1 AI A = ( s − a ) ( s − b )( s − c ) bc s ( s − a )( s − b )( s − c ) bc = (s − a) ( s − b )( s − c ) bc s ( s − a ) = (s − a) bc s = (s − a) bc = (s − a) s Therefore: bc or AI A = (s − a) s a ca similarly BI B = (8.14) c b ( s − b) s ab CI C = (s − c) s In a manner similar to the processes used to arrive at (8.11) we can also show that 1 1 1 AI A : BI B : CI C = : : (8.15) a(s − a) b( s − b) c(s − c) Further, if we take respective products of (8.9) and (8.14) then we quickly get the very nice results: a AI × AI A = bc BI × BI B = ca (8.16) c b CI × CI C = ab
  • 44. 44 The distances II A , II B and II C . IA I Y A D B X Figure 8.8 Consider the similar triangles AID and II AY , we have AI AD ID = = II A DX I AY That is AI (s − a) r = = II A AX − AD I A X − YX AI (s − a) r = = II A s − ( s − a ) rA − ID AI ( s − a ) r Hence, = = (8.17) II A a rA − r From the first two fractions we have a  II A =    AI a s−a b  similarly II B =    BI (8.18) c b  s−b c  II C =    CI s−c Therefore, on using the values from the first forms in (8.10), the results in (8.18) can be written in the manner a  abc ( s − a ) II A =   × s−a s a abc a II A = s (s − a) Hence abc a abc b abc c II A = , II B = , II C = . (8.19) s (s − a) s ( s − b) s (s − c)
  • 45. 45 Squaring the value of II A from (8.19) gives  abc   a  ( II A ) 2 =    s  (s − a)  Therefore, from the last two fractions of (8.17) this becomes abc  rA − r  ( II A ) = 2    (8.20)  s  r  abc From (5.2) we have ∆= 4R and from (6.1) that ∆ = rs abc Hence, 4 Rr = (8.21) s Therefore, from (8.20) and (8.21) we have that ( II A ) = 4 R ( rA − r ) , ( II B ) = 4 R ( rB − r ) , ( IIC ) = 4 R ( rC − r ) 2 2 2 (8.22) Moreover, using the half-angle formula in (7.5) we see that (8.19) can be rearranged thus: a 2bc bc 1 a II A = =a =a ≡ s(s − a) s(s − a) s ( s − a ) cos ( 1 A ) 2 bc Hence a b c II A = , II B = , II C = . (8.23) cos ( A ) 1 2 cos ( B ) 1 2 cos ( 1 C ) 2 Therefore, on using the results of (4.7), (8.23) can be rewritten in a further, alternative form II A = 4 R sin ( 1 A ) , 2 II B = 4 R sin ( 1 B ) , 2 II C = 4 R sin ( 1 C ) . 2 (8.24)
  • 46. 46
  • 47. 47 §9: Further Triangle Centres The Orthocentre of any Triangle ABC The perpendiculars drawn from the vertices of a triangle ABC to the opposite sides are concurrent at a point called the Orthocentre, H. A From Figure 9.1 let AD, BE and CF be the perpendiculars F on BC, CA and AB respectively, and H the Orthocentre; then DH = BD tan ( HBD ) E H = AB cos B × tan ( 90 − C ) , = c cos B cot C Using (4.7) c can be written as: B D C Figure 9.1 c = 2 R sin C , giving DH = 2 R sin C cos B cot C Hence a DH = 2 R cos B cos C hA EH = 2 R cos C cos A hB (9.1) c b FH = 2 R cos A cos B hC DA = AB sin B Further, = c sin B = 2 R sin C sin B That is a DA = 2 R sin B sin C EB = 2 R sin C sin A (9.2) c b FC = 2 R sin A sin B Therefore, from (9.2) and (9.1) we have that HA = DA − DH = 2 R sin B sin C − 2 R cos B cos C Using (2.3) this becomes HA = −2 R cos ( B + C ) = −2 R cos (180 − A ) Hence: a HA = 2 R cos A HB = 2 R cos B (9.3) c b HC = 2 R cos C
  • 48. 48 Notice that HA2 = ( 2 R cos A ) 2 = 4 R 2 cos 2 A = 4 R 2 (1 − sin 2 A ) = 4 R 2 − 4 R 2 sin 2 A = 4 R 2 − ( 2 R sin A ) 2 Using (4.7) a can be written as: a = 2 R sin A , giving HA2 = 4 R 2 − a 2 Hence, we have the alternative forms of (9.3) as a HA = 4 R 2 − a 2 HB = 4 R 2 − b2 (9.4) c b HC = 4 R 2 − c 2 Exercise: Establish (9.1) to (9.4) for an obtuse-angled triangle Again using Figure 9.1, note the following simply found forms of hA , hB and hC . Area of triangle ABC = 1 BC × AD 2 = 1 a × hA 2 a Therefore, 2∆ 2∆ 2∆ hA = , and similarly hB = , hC = . a b c c b