SlideShare une entreprise Scribd logo
1  sur  8
Télécharger pour lire hors ligne
E f f e c t s o R e a c t i o n Conditions on Gasification
                                        f
                                          of Coal-Residual Oil S l u r r y

     H i r o s h i Miyadera, Mizuho H i r a t o , S h u n t a r o Koyama, Kenichi Gomi

     H i t a c h i R e s e r a c h L a b o r a t o r y , H i t a c h i L t d . , Ibaraki-ken, J a p a n


Introduction

         I n the face of e n e r g y crisis and environmental pollution, t h e technology for coal
gasification is b e i n g developed as a p a r t of "Sunshine P r o j e c t " promoted by t h e
Ministry of I n t e r n a t i o n a l T r a d e a n d I n d u s t r y (MITI). P e t r o l e u m , h o w e v e r , w i l l hold
by f a r the l a r g e s t s h a r e in J a p a n ' s p r i m a r y e n e r g y supply f o r t h e n e x t d e c a d e s .
While the utilization of heavy oil s u c h as vacuum r e s i d u e is limited f r o m a point of
view of the air pollution because of difficult d e s u l f u r i z a t i o n .
         T h e r e f o r e , in 1974 we h a v e s t a r t e d t h e development of " H y b r i d G a s i f i c a t i o n
P r o c e s s 1 ' in which c o a l a n d r e s i d u a l oil are simultaneously g a s i f i e d to c l e a n f u e l g a s .
T h i s r e p o r t b r i e f l y d e s c r i b e s the p r o c e s s and e x p e r i m e n t a l r e s u l t s .

P r o c e s s Description

         A flow d i a g r a m of H y b r i d G a s i f i c a t i o n P r o c e s s is shown i n F i g u r e 1. P u l v e r i z e d
c o a l is mixed and s t i r r e d with r e s i d u a l oil to form a s l u r r y , which is pumped to t h e
p r e s s u r i z e d fluidized b e d gasifier with atomizing s t e a m . T h e slurry i c o n v e r t e d         s
into gas and char by t h e r m a l c r a c k i n g r e a c t i o n s in t h e upper z o n e of t h e f l u i d i z e d b e d .
The c h a r produced is f u r t h e r g a s i f i e d with s t e a m a n d oxygen.
          The gas leaving the gasifier is s c r u b b e d i n o i l and then i n w a t e r quench to r e m o v e
tar, d u s t and steam. A conventional gas c l e a n up s y s t e m is u s e d to a b s o r b c a r b o n
dioxide and hydrogen s u l f i d e from the gas. If SNG is r e q u i r e d , the p r o d u c t gas is
shifted and methanated.
          The advantages of the p r o c e s s are
(1) Almost all g r a d e s of c o a l a n d r e s i d u a l oil c a n b e simultaneously c o n v e r t e d to
        c l e a n fuel gas.
(2) Raw m a t e r i a l s are t r a n s p o r t e d a n d fed to t h e p r e s s u r i z e d gasifier without
        difficulty by means of s l u r r y .
(3) T h e gasifier c o n s i s t s of a s i n g l e fluidized bed a n d the g a s i f i c a t i o n r e a c t i o n s
       p r o c e e d i n two s t a g e s-       s l u r r y thermal c r a c k i n g a n d c h a r p a r t i a l oxidation.
        T h i s simple s t r u c t u r e of t h e g a s i f i e r a c h i e v e s e a s y c o n t r o l a n d h i g h t h e r m a l
        efficiency.

Experimental

         I n o r d e r to i n v e s t i g a t e t h e gasification c h a r a c t e r i s t i c s and to i m p r o v e the
p r o c e s s , experiments were conducted in t h e p r e s s u r i z e d g a s i f i c a t i o n a p p a r a t u s shown
in F i g u r e 2.           T h e g a s i f i e r h a s the i n n e r diameter of 120mm i n t h e u p p e r zone a n d
8 0 m m in the l o w e r zone.                   T h e height of e a c h zone is 2000mm.                       The temperatures i  n
t h e g a s i f i e r a r e c o n t r o l l e d by t h e s u r r o u n d i n g e l e c t r i c h e a t e r s .
         A t the beginning of e a c h experiment, p u l v e r i z e d and s i e v e d c o a l in t h e c o a l
hopper is c h a r g e d a n d Fluidized with steam a n d oxygen. T h e n t h e 2OO0C p r e - h e a t e d
s l u r r y with atomizing s t e a m is fed to the middle p a r t of the f l u i d i z e d b e d .                         The bed
height above t h e s l u r r y f e e d i n g point is 700mm. A f t e r d u s t , tar and s t e a m i n t h e
p r o d u c t gas are removed i n c y c l o n e s , s c r u b b e r and quencher, the gas p r e s s u r e is
r e d u c e d and its composition and its flow rate are m e a s u r e d .
          Since a p a r t of t h e gas is p r o d u c e d by t h e h e a t supplied f r o m t h e e x t e r n a l
h e a t e r s , the gas y e i l d s of t h e s e e x p e r i m e n t s are somewhat d i f f e r e n t f r o m t h e o n e s
p r o d u c e d in t h e p u r e l y i n t e r n a l l y f i r e d gasifier. T h e r e f o r e , w e h a v e examined the
c h a r a c t e r i s t i c s of thermal c r a c k i n g a n d p a r t i a l oxidation s e p a r a t e l y .          T h e gas
produced in t h e thermal c r a c k i n g z o n e is c o n s i d e r e d as follows.
                                                                160
GS= GT-CC                                                                                                        1)
w h e r e GS : gas production r a t e i n t h e s l u r r y thermal c r a c k i n g z o n e ,
            C c : g a s production r a t e i n t h e c h a r p a r t i a l oxidation zone,
            CT : total g a s production r a t e i n the g a s i f i e r when s l u r r y t h e r m a l c r a c k i n g
                       a n d c h a r p a r t i a l oxidation o c c u r simultaneously.
G c c a n b e measured when s l u r r y feeding is stopped a n d only t h e c h a r partial
oxidation r e a c t i o n t a k e s p l a c e .
         F e e d i n g m a t e r i a l s are shown i n T a b l e I. Taiheiyo coal, mined in Hokkaido, was
c h o s e n f o r this study b e c a u s e i t is t h e most p r a c t i c a b l e for g a s i f i c a t i o n u s e in
domestic coals.
                                              T a b l e I. Raw m a t e r i a l s

                    Taiheiyo coal                                          Gach S a r a n Vacuum R e s i d u e

      P r o x i m a t e analysis (wt5)                                  B o i l i n g point (OC)                           7550
          Moisture                                    5.3               A s p h a l t e n e (wt$)                           10.4
          Ash                                        14.4               C o n r a d s o n c a r b o n (wt%)                 21 -8
          Fixed carbon                                                                                     V                  318
                                                    .37.7               Metal content (pprn)
          Volatile matter                            42.5                                                  Ni                 112
      Ultimate a n a l y s i s (wt%,daf)                                Ultimate a n a l y s i s ( w t 5 )
                             C                       76.6                                     C                             85.0
                             H                        6.5                                     H                             10.8
                             N                        1 .o                                        N                          0.1
                             0                       15.3                                         0                            -
                              S                       0.6                                         S                          35
                                                                                                                              .
      Heating value (kcal/kg)                        6580               H e a t i n g value (kcal/kg)                      10090

      (Note) F e e d s l u r r y     ; Coal/Residual oil : 30/70 (wt. r a t i o )
                                         Coal s i z e : 40-140 mesh (0.105-0.42 mm)
                   Initially c h a r g e d coal s i z e : 25-40 mesh (0.42-0.71 mrn)

          G a s i f i e r t e m p e r a t u r e s w e r e c o n t r o l l e d by oxygen feed r a t e a n d t h e s u r r o u n d i n g
e l e c t r i c h e a t e r s between 800 a n d 95OoC i n t h e l o w e r p a r t i a l oxidation z o n e and bet-
ween 700 a n d 800°C i n t h e u p p e r thermal c r a c k i n g zone. Reaction p r e s s u r e s w e r e
v a r i e d from 5 to 20 atm.

Results and Discussion

(1) C h a r a c t e r i s t i c s of S l u r r y T h e r m a l C r a c k i n g Reaction.
          F i g u r e 3 s h o w s t h e e f f e c t s of t e m p e r a t u r e and p r e s s u r e o n t h e p r o d u c t yield of
s l u r r y thermal c r a c k i n g .       T h e main components p r o d u c e d are h y d r o g e n , methane,
c a r b o n monoxide a n d c a r b o n dioxide.                 T h e y i e l d s of t h e s e gases i n c r e a s e with
t e m p e r a t u r e (Ts)a n d p r e s s u r e , while yield of by-product tar d e c r e a s e s as p r e s s u r e
rises.
          In t h i s zone, following r e a c t i o n s t a k e place.




O v e r a l l h e a t of r e a c t i o n   AH,   c a n b e estimated by t h e next equation.


w h e r e the f i r s t t e r m o n the r i g h t s i d e r e f e r s to t h e summation of h e a t s of combustion
f o r the r e a c t a n t s a n d t h e second t e r m f o r the p r o d u c t s .
        T h e o v e r a l l h e a t of r e a c t i o n estimated by t h e m e a s u r e d - h e a t s of combustion for
                                                                  161
s l u r r y , t a r a n d c h a r are shown in t h e upper columns of F i g u r e 3 . A s shown i n the
f u g u r e , I i n c r e a s e s with i n c r e a s i n g t e m p e r a t u r e s and d e c r e a s e s with i n c r e a s i n g
                &
pressures.
          T h e c h a r a c t e r i s t i c s s t a t e d above definitely show that endothermic r e a c t i o n s s u c h
a s thermal c r a c k i n g a n d steam r e f o r m i n g are dominant a t higher t e m p e r a t u r e s and
exothermic hydrogasification t a k e s p l a c e a t higher p r e s s u r e s .                                                            II’
(2) C h a r a c t e r i s t i c s of C h a r Partial Oxidation Reaction.
     T h e main components i n the g a s produced in t h e p a r t i a l oxidation zone are
hydrogen, c a r b o n monoxide and c a r b o n dioxide. T h e r e f o r e , t h e main r e a c t i o n s are
supposedly as follows.                                                                                                                     I
                                                                                                                                           :
          C (char)           +   02      =       C02                                                                         6)
          C (char)          +    C02         =    2CO                                                                        7)
          C ( c h a r ) + H20                =    CO+H2                                                                      8)
           CO + N20 = C 0 2 + H2                                                                                           9)
T h e approach of t h e s e r e a c t i o n s toward equilibrium is indicated i n F i g u r e 4. Kp a n d
Kp’ are the equilibrium c o n s t a n t a n d the o b s e r v e d p a r t i a l p r e s s u r e r a t i o r e s p e c t i v e l y .
It is a p p a r e n t from F i g u r e 4 that t h e c a r b o n - c a r b o n dioxide r e a c t i o n a n d the carbon-
s t e a m r e a c t i o n a r e far f r o m equilibrium f o r all of t h e r u n conditions t e s t e d , while the
o b s e r v e d r a t i o s f o r the shift r e a c t i o n a p g r o a c h t h e equilibrium c o n s t a n t at p r e s s u r e s
above 1 0 atm. i n t h e r a n g e of 800 to 950 C                .
(3) H e a t and Material B a l a n c e i n G a s i f i e r .
         B a s e d o n the r e s u l t s d e s c r i b e d above, t h e h e a t a n d m a t e r i a l b a l a n c e i n the
g a s i f i e r without e x t e r n a l heating w a s investigated. A s shown i n F i g u r e 5, following
assumptions are made.
   (i) Qs, the heat r e q u i r e d i n t h e s l u r r y thermal c r a c k i n g zone, is r e p r e s e n t e d by
                                                                                                                                           E
                                                                                                                                           e
         Equation A , w h e r e A H is t h e h e a t r e q u i r e d to w a r m t h e r e a c t a n t s from t h e inlet
          t e m p e r a t u r e t o t h e r e a c t i o n t e m p e r a t u r e Ts.
 (ii) I n the c h a r p a r t i a l oxidation zone, Reaction 6 - 9 t a k e p l a c e , R e a c t i o n 9 b e i n g i n
          equilibrium. O v e r a l l h e a t of r e a c t i o n i n t h i s zone raises the t e m p e r a t u r e of
          fluidizing c h a r a n d gas, and t h i s h e a t is r e l e a s e d i n the t h e r m a l c r a c k i n g zone.
          T h e r e f o r e , in t h e s t e a d y s t a t e , h e a t balance i n t h e g a s i f i e r c a n b e r e p r e s e n t e d
          by Equation B , w h e r e QRC a n d Q G r~ p r e s e n t t h e quantities of h e a t t r a n s f e r r e d
                                                                           e
          by c h a r and g a s , r e s p e c t i v e l y .
 (iii) I n the steady s t a t e , t h e amount of c h a r produced i n the thermal c r a c k i n g zone is
          equal to the amount of c h a r g a s i f i e d i n the p a r t i a l oxidation z o n e .
          The conclusions from this investigation a r e summarized i n F i g u r e 6. It is indi-
 cated i n F i g u r e 6-a that the thermal efficiency, i.e., the r a t i o of the heating value of
p r o d u c t gas to that of r a w m a t e r i a l s , h a s the maximum value a t about 75OoC. T h i s is
 b e c a u s e the h e a t r e q u i r e d i n the thermal c r a c k i n g zone is so l a r g e a t h i g h e r tempera-
 t u r e s that the amount of c a r b o n dioxide i n c r e a s e s . When p r e s s u r e s i n c r e a s e a t
 c o n s t a n t t e m p e r a t u r e , as shown i n F i g u r e 6-b, both the product g a s heating v a l u e and
  t h e thermal e f f i c i e n c y i n c r e a s e and oxygen f e e d r a t e d e c r e a s e s . T h i s is b e c a u s e
 hydrogasification r e a c t i o n s play a m o r e important r o l e a t higher p r e s s u r e s .
                                                                                                                                           I
           T h e typical h e a t and m a t e r i a l balance is shown in F i g u r e 7. T h e heating value of
 the r a w gas is 4070 kcal/Nm3(460 Btu/scf), a n d 5970 kcal/Nm3(670 Btu/scf) a f t e r
 r e m o v a l of c a r b o n dioxide a n d hydrogen sulfide on the b a s i s of d r y gas. The thermal
 efficiency is about 75%.
            The by-product t a r y i e l d is r a t h e r high (13-15 wt%) i n this p r o c e s s . T h e t a r
 c a n be either r e c y c l e d to the g a s i f i e r or utilized as f u e l o i l , b i n d e r , r a w m a t e r i a l s f o r
 chemical i n d u s t r i e s a n d so on.
          I n addition t o t h e study mentioned above, r e c e n t l y a low p r e s s u r e (max. 3 a t m )
i n t e r n a l l y f i r e d g a s i f i e r with a 300mm diameter h a s b e e n o p e r a t e d t o s o l v e t h e p o s s i b l e
mechanical and o p e r a t i o n a l p r o b l e m s .


                                                       162
On the b a s i s of these r e s e a r c h e s , a 12 t/D pilot plant is being designed, and it
w i l l be constructed in 1980.

A c kflowledgement

     This work w a s sponsored by the Agency of Industrial S c i e n c e and Technology of
MITI and is presented with their permission.




                                                       163
Purification
                                     I
                                            I                          I
                                                                       I
                                                                       I

                                        Slurry
      Slurry
                                        Thermal
    F e e d System
                                        Cracking


   Steam                                Char
                                        Partial
                                        Oxidation


                        P r e s s u r i z e d fluidized bed gasifier


                   Figure 1   . Coal-Residual      O i l Hybrid Gasification P r o c e s s




Coal
                                                Cyclone     Scrubber       Quencher
Residual O i l




                                                A s h Receiver




                 Figure 2 .    P r e s s u r i z e d fluidized bed gasification apparatus


                                                              164
,    (a)    P : 5 atm           -
                              I



 0.4       1                                          c
0.3


0.2
           -



           -
               --w
0.1        -

   ,o -
                700          750          800         0-      io             20
                      Temperature TS ( O C )               P r e s s u r e (atrn)

 Figure 3 .           Effects of temperature and pressure o n s l u r r y
                      thermal cracking




      
       4
      -a        0.1
       Y                                   Reaction 7




               0.01

                      0              10               20

                              P r e s s u r e (atm)
Figure 4 . Comparison of observed partial p r e s s u r e ratio of partial
           oxidation gas with equilibrium constant

                                             165
I
                        - & Partial                                 c + co2-
                               I

S t e a m (300 "C)      J Oxidation                         I
                                                            I       C + H20-
                                                                                             2co
                                                                                             CO + H 2
oxy@n(250C)
                                        TCOC            I   1       co   +   ~          ~    C 0 2 0 H2
                                                                                                   +          s




                   F i g u r e 5.     R e a c t i o n model in H y b r i d G a s i f i e r




                                         S t e a m F e e d R a t e : 1.6 kg/kg s l u r r y
  x
  c:
                         (a)        P : 5 atm                                    (b) TS : 750       "c
  . I
   ?         80
  0
  .-
   .I
  c
  b


  W     g    70
  ;-
  E
  $          60
  s:
             50




  3
   a,

            5000    k                                                        t
                    I
                               I               I                I
  u                        700               750            800              0          10            20
                                    T e m p e r a t u r e TS (OC)                  P r e s s u r e (atm)

               F i g u r e 6.        Effects of t e m p e r a t u r e a n d p r e s s u r e o n H y b r i d
                                     Gasification P r o c e s s

                                                                             166
5

     2:
     5"
     a




W
0                      v)
                       v)
d
3                      W

m                      E
.$                    a
                       C
W
4                      1
                      .r(


2                     .Y
                      LI
                      .r(




                      u
                       :
                      .-
                      5
                      h
                      P
                       h
                N     2
                .-.   ."
                       C

                       W
                       2
                      d

                2     P
                       l
                       d
                      4

                      .r(


                      W
                      c
                       E
                      5
                      d
                      4

                       W
                      X

                      I-


                      5
                      .r(

                      G4




          167

Contenu connexe

En vedette (6)

On media_DaveMorgan_Feb2011
On media_DaveMorgan_Feb2011On media_DaveMorgan_Feb2011
On media_DaveMorgan_Feb2011
 
Africa's Voices sustainability analysis
Africa's Voices sustainability analysisAfrica's Voices sustainability analysis
Africa's Voices sustainability analysis
 
PINTURES DE L'ANTIC EGIPTE
PINTURES DE L'ANTIC EGIPTEPINTURES DE L'ANTIC EGIPTE
PINTURES DE L'ANTIC EGIPTE
 
LES PIRÀMIDES I L'ESFINX
LES PIRÀMIDES I L'ESFINXLES PIRÀMIDES I L'ESFINX
LES PIRÀMIDES I L'ESFINX
 
ELS JEROGLIFICS
ELS JEROGLIFICSELS JEROGLIFICS
ELS JEROGLIFICS
 
Modern Management Theories
Modern Management TheoriesModern Management Theories
Modern Management Theories
 

Similaire à 23 3 miami beach_09-78_0160

Given the definitions of throughput, inventory, operating expense an.pdf
Given the definitions of throughput, inventory, operating expense an.pdfGiven the definitions of throughput, inventory, operating expense an.pdf
Given the definitions of throughput, inventory, operating expense an.pdf
manjuguru3
 
Gb2013 frank goodwin_ international zinc association
Gb2013 frank goodwin_ international zinc associationGb2013 frank goodwin_ international zinc association
Gb2013 frank goodwin_ international zinc association
Galvabrasil
 
Hacking the kodak funsaver flash
Hacking the kodak funsaver flashHacking the kodak funsaver flash
Hacking the kodak funsaver flash
MechEProdigy
 
gas chromatograph (GC).pptx
gas chromatograph (GC).pptxgas chromatograph (GC).pptx
gas chromatograph (GC).pptx
dipika51
 

Similaire à 23 3 miami beach_09-78_0160 (20)

Jonathan Partsch GIS Portfolio
Jonathan Partsch GIS PortfolioJonathan Partsch GIS Portfolio
Jonathan Partsch GIS Portfolio
 
B. A. Cosgrove M.Sc. Thesis 1977
B. A. Cosgrove M.Sc. Thesis 1977B. A. Cosgrove M.Sc. Thesis 1977
B. A. Cosgrove M.Sc. Thesis 1977
 
06_2_001-014.pdf
06_2_001-014.pdf06_2_001-014.pdf
06_2_001-014.pdf
 
Snehesh-Presentation-PDF
Snehesh-Presentation-PDFSnehesh-Presentation-PDF
Snehesh-Presentation-PDF
 
Crystal Light Mocktails
Crystal Light MocktailsCrystal Light Mocktails
Crystal Light Mocktails
 
Given the definitions of throughput, inventory, operating expense an.pdf
Given the definitions of throughput, inventory, operating expense an.pdfGiven the definitions of throughput, inventory, operating expense an.pdf
Given the definitions of throughput, inventory, operating expense an.pdf
 
Pks0313
Pks0313Pks0313
Pks0313
 
Doklad usa-tc
Doklad usa-tcDoklad usa-tc
Doklad usa-tc
 
Document
DocumentDocument
Document
 
Gb2013 frank goodwin_ international zinc association
Gb2013 frank goodwin_ international zinc associationGb2013 frank goodwin_ international zinc association
Gb2013 frank goodwin_ international zinc association
 
Aqhs
AqhsAqhs
Aqhs
 
Aqhs
AqhsAqhs
Aqhs
 
Seton2007
Seton2007Seton2007
Seton2007
 
Hacking the kodak funsaver flash
Hacking the kodak funsaver flashHacking the kodak funsaver flash
Hacking the kodak funsaver flash
 
ammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptx
 
Resume Jan 2016
Resume Jan 2016Resume Jan 2016
Resume Jan 2016
 
gas chromatograph (GC).pptx
gas chromatograph (GC).pptxgas chromatograph (GC).pptx
gas chromatograph (GC).pptx
 
gas chromatograph (GC).pptx
gas chromatograph (GC).pptxgas chromatograph (GC).pptx
gas chromatograph (GC).pptx
 
Vijay anand catalytic
Vijay anand catalyticVijay anand catalytic
Vijay anand catalytic
 
Naming of Chemical Compounds Chemistry xvsv
Naming of Chemical Compounds Chemistry xvsvNaming of Chemical Compounds Chemistry xvsv
Naming of Chemical Compounds Chemistry xvsv
 

23 3 miami beach_09-78_0160

  • 1. E f f e c t s o R e a c t i o n Conditions on Gasification f of Coal-Residual Oil S l u r r y H i r o s h i Miyadera, Mizuho H i r a t o , S h u n t a r o Koyama, Kenichi Gomi H i t a c h i R e s e r a c h L a b o r a t o r y , H i t a c h i L t d . , Ibaraki-ken, J a p a n Introduction I n the face of e n e r g y crisis and environmental pollution, t h e technology for coal gasification is b e i n g developed as a p a r t of "Sunshine P r o j e c t " promoted by t h e Ministry of I n t e r n a t i o n a l T r a d e a n d I n d u s t r y (MITI). P e t r o l e u m , h o w e v e r , w i l l hold by f a r the l a r g e s t s h a r e in J a p a n ' s p r i m a r y e n e r g y supply f o r t h e n e x t d e c a d e s . While the utilization of heavy oil s u c h as vacuum r e s i d u e is limited f r o m a point of view of the air pollution because of difficult d e s u l f u r i z a t i o n . T h e r e f o r e , in 1974 we h a v e s t a r t e d t h e development of " H y b r i d G a s i f i c a t i o n P r o c e s s 1 ' in which c o a l a n d r e s i d u a l oil are simultaneously g a s i f i e d to c l e a n f u e l g a s . T h i s r e p o r t b r i e f l y d e s c r i b e s the p r o c e s s and e x p e r i m e n t a l r e s u l t s . P r o c e s s Description A flow d i a g r a m of H y b r i d G a s i f i c a t i o n P r o c e s s is shown i n F i g u r e 1. P u l v e r i z e d c o a l is mixed and s t i r r e d with r e s i d u a l oil to form a s l u r r y , which is pumped to t h e p r e s s u r i z e d fluidized b e d gasifier with atomizing s t e a m . T h e slurry i c o n v e r t e d s into gas and char by t h e r m a l c r a c k i n g r e a c t i o n s in t h e upper z o n e of t h e f l u i d i z e d b e d . The c h a r produced is f u r t h e r g a s i f i e d with s t e a m a n d oxygen. The gas leaving the gasifier is s c r u b b e d i n o i l and then i n w a t e r quench to r e m o v e tar, d u s t and steam. A conventional gas c l e a n up s y s t e m is u s e d to a b s o r b c a r b o n dioxide and hydrogen s u l f i d e from the gas. If SNG is r e q u i r e d , the p r o d u c t gas is shifted and methanated. The advantages of the p r o c e s s are (1) Almost all g r a d e s of c o a l a n d r e s i d u a l oil c a n b e simultaneously c o n v e r t e d to c l e a n fuel gas. (2) Raw m a t e r i a l s are t r a n s p o r t e d a n d fed to t h e p r e s s u r i z e d gasifier without difficulty by means of s l u r r y . (3) T h e gasifier c o n s i s t s of a s i n g l e fluidized bed a n d the g a s i f i c a t i o n r e a c t i o n s p r o c e e d i n two s t a g e s- s l u r r y thermal c r a c k i n g a n d c h a r p a r t i a l oxidation. T h i s simple s t r u c t u r e of t h e g a s i f i e r a c h i e v e s e a s y c o n t r o l a n d h i g h t h e r m a l efficiency. Experimental I n o r d e r to i n v e s t i g a t e t h e gasification c h a r a c t e r i s t i c s and to i m p r o v e the p r o c e s s , experiments were conducted in t h e p r e s s u r i z e d g a s i f i c a t i o n a p p a r a t u s shown in F i g u r e 2. T h e g a s i f i e r h a s the i n n e r diameter of 120mm i n t h e u p p e r zone a n d 8 0 m m in the l o w e r zone. T h e height of e a c h zone is 2000mm. The temperatures i n t h e g a s i f i e r a r e c o n t r o l l e d by t h e s u r r o u n d i n g e l e c t r i c h e a t e r s . A t the beginning of e a c h experiment, p u l v e r i z e d and s i e v e d c o a l in t h e c o a l hopper is c h a r g e d a n d Fluidized with steam a n d oxygen. T h e n t h e 2OO0C p r e - h e a t e d s l u r r y with atomizing s t e a m is fed to the middle p a r t of the f l u i d i z e d b e d . The bed height above t h e s l u r r y f e e d i n g point is 700mm. A f t e r d u s t , tar and s t e a m i n t h e p r o d u c t gas are removed i n c y c l o n e s , s c r u b b e r and quencher, the gas p r e s s u r e is r e d u c e d and its composition and its flow rate are m e a s u r e d . Since a p a r t of t h e gas is p r o d u c e d by t h e h e a t supplied f r o m t h e e x t e r n a l h e a t e r s , the gas y e i l d s of t h e s e e x p e r i m e n t s are somewhat d i f f e r e n t f r o m t h e o n e s p r o d u c e d in t h e p u r e l y i n t e r n a l l y f i r e d gasifier. T h e r e f o r e , w e h a v e examined the c h a r a c t e r i s t i c s of thermal c r a c k i n g a n d p a r t i a l oxidation s e p a r a t e l y . T h e gas produced in t h e thermal c r a c k i n g z o n e is c o n s i d e r e d as follows. 160
  • 2. GS= GT-CC 1) w h e r e GS : gas production r a t e i n t h e s l u r r y thermal c r a c k i n g z o n e , C c : g a s production r a t e i n t h e c h a r p a r t i a l oxidation zone, CT : total g a s production r a t e i n the g a s i f i e r when s l u r r y t h e r m a l c r a c k i n g a n d c h a r p a r t i a l oxidation o c c u r simultaneously. G c c a n b e measured when s l u r r y feeding is stopped a n d only t h e c h a r partial oxidation r e a c t i o n t a k e s p l a c e . F e e d i n g m a t e r i a l s are shown i n T a b l e I. Taiheiyo coal, mined in Hokkaido, was c h o s e n f o r this study b e c a u s e i t is t h e most p r a c t i c a b l e for g a s i f i c a t i o n u s e in domestic coals. T a b l e I. Raw m a t e r i a l s Taiheiyo coal Gach S a r a n Vacuum R e s i d u e P r o x i m a t e analysis (wt5) B o i l i n g point (OC) 7550 Moisture 5.3 A s p h a l t e n e (wt$) 10.4 Ash 14.4 C o n r a d s o n c a r b o n (wt%) 21 -8 Fixed carbon V 318 .37.7 Metal content (pprn) Volatile matter 42.5 Ni 112 Ultimate a n a l y s i s (wt%,daf) Ultimate a n a l y s i s ( w t 5 ) C 76.6 C 85.0 H 6.5 H 10.8 N 1 .o N 0.1 0 15.3 0 - S 0.6 S 35 . Heating value (kcal/kg) 6580 H e a t i n g value (kcal/kg) 10090 (Note) F e e d s l u r r y ; Coal/Residual oil : 30/70 (wt. r a t i o ) Coal s i z e : 40-140 mesh (0.105-0.42 mm) Initially c h a r g e d coal s i z e : 25-40 mesh (0.42-0.71 mrn) G a s i f i e r t e m p e r a t u r e s w e r e c o n t r o l l e d by oxygen feed r a t e a n d t h e s u r r o u n d i n g e l e c t r i c h e a t e r s between 800 a n d 95OoC i n t h e l o w e r p a r t i a l oxidation z o n e and bet- ween 700 a n d 800°C i n t h e u p p e r thermal c r a c k i n g zone. Reaction p r e s s u r e s w e r e v a r i e d from 5 to 20 atm. Results and Discussion (1) C h a r a c t e r i s t i c s of S l u r r y T h e r m a l C r a c k i n g Reaction. F i g u r e 3 s h o w s t h e e f f e c t s of t e m p e r a t u r e and p r e s s u r e o n t h e p r o d u c t yield of s l u r r y thermal c r a c k i n g . T h e main components p r o d u c e d are h y d r o g e n , methane, c a r b o n monoxide a n d c a r b o n dioxide. T h e y i e l d s of t h e s e gases i n c r e a s e with t e m p e r a t u r e (Ts)a n d p r e s s u r e , while yield of by-product tar d e c r e a s e s as p r e s s u r e rises. In t h i s zone, following r e a c t i o n s t a k e place. O v e r a l l h e a t of r e a c t i o n AH, c a n b e estimated by t h e next equation. w h e r e the f i r s t t e r m o n the r i g h t s i d e r e f e r s to t h e summation of h e a t s of combustion f o r the r e a c t a n t s a n d t h e second t e r m f o r the p r o d u c t s . T h e o v e r a l l h e a t of r e a c t i o n estimated by t h e m e a s u r e d - h e a t s of combustion for 161
  • 3. s l u r r y , t a r a n d c h a r are shown in t h e upper columns of F i g u r e 3 . A s shown i n the f u g u r e , I i n c r e a s e s with i n c r e a s i n g t e m p e r a t u r e s and d e c r e a s e s with i n c r e a s i n g & pressures. T h e c h a r a c t e r i s t i c s s t a t e d above definitely show that endothermic r e a c t i o n s s u c h a s thermal c r a c k i n g a n d steam r e f o r m i n g are dominant a t higher t e m p e r a t u r e s and exothermic hydrogasification t a k e s p l a c e a t higher p r e s s u r e s . II’ (2) C h a r a c t e r i s t i c s of C h a r Partial Oxidation Reaction. T h e main components i n the g a s produced in t h e p a r t i a l oxidation zone are hydrogen, c a r b o n monoxide and c a r b o n dioxide. T h e r e f o r e , t h e main r e a c t i o n s are supposedly as follows. I : C (char) + 02 = C02 6) C (char) + C02 = 2CO 7) C ( c h a r ) + H20 = CO+H2 8) CO + N20 = C 0 2 + H2 9) T h e approach of t h e s e r e a c t i o n s toward equilibrium is indicated i n F i g u r e 4. Kp a n d Kp’ are the equilibrium c o n s t a n t a n d the o b s e r v e d p a r t i a l p r e s s u r e r a t i o r e s p e c t i v e l y . It is a p p a r e n t from F i g u r e 4 that t h e c a r b o n - c a r b o n dioxide r e a c t i o n a n d the carbon- s t e a m r e a c t i o n a r e far f r o m equilibrium f o r all of t h e r u n conditions t e s t e d , while the o b s e r v e d r a t i o s f o r the shift r e a c t i o n a p g r o a c h t h e equilibrium c o n s t a n t at p r e s s u r e s above 1 0 atm. i n t h e r a n g e of 800 to 950 C . (3) H e a t and Material B a l a n c e i n G a s i f i e r . B a s e d o n the r e s u l t s d e s c r i b e d above, t h e h e a t a n d m a t e r i a l b a l a n c e i n the g a s i f i e r without e x t e r n a l heating w a s investigated. A s shown i n F i g u r e 5, following assumptions are made. (i) Qs, the heat r e q u i r e d i n t h e s l u r r y thermal c r a c k i n g zone, is r e p r e s e n t e d by E e Equation A , w h e r e A H is t h e h e a t r e q u i r e d to w a r m t h e r e a c t a n t s from t h e inlet t e m p e r a t u r e t o t h e r e a c t i o n t e m p e r a t u r e Ts. (ii) I n the c h a r p a r t i a l oxidation zone, Reaction 6 - 9 t a k e p l a c e , R e a c t i o n 9 b e i n g i n equilibrium. O v e r a l l h e a t of r e a c t i o n i n t h i s zone raises the t e m p e r a t u r e of fluidizing c h a r a n d gas, and t h i s h e a t is r e l e a s e d i n the t h e r m a l c r a c k i n g zone. T h e r e f o r e , in t h e s t e a d y s t a t e , h e a t balance i n t h e g a s i f i e r c a n b e r e p r e s e n t e d by Equation B , w h e r e QRC a n d Q G r~ p r e s e n t t h e quantities of h e a t t r a n s f e r r e d e by c h a r and g a s , r e s p e c t i v e l y . (iii) I n the steady s t a t e , t h e amount of c h a r produced i n the thermal c r a c k i n g zone is equal to the amount of c h a r g a s i f i e d i n the p a r t i a l oxidation z o n e . The conclusions from this investigation a r e summarized i n F i g u r e 6. It is indi- cated i n F i g u r e 6-a that the thermal efficiency, i.e., the r a t i o of the heating value of p r o d u c t gas to that of r a w m a t e r i a l s , h a s the maximum value a t about 75OoC. T h i s is b e c a u s e the h e a t r e q u i r e d i n the thermal c r a c k i n g zone is so l a r g e a t h i g h e r tempera- t u r e s that the amount of c a r b o n dioxide i n c r e a s e s . When p r e s s u r e s i n c r e a s e a t c o n s t a n t t e m p e r a t u r e , as shown i n F i g u r e 6-b, both the product g a s heating v a l u e and t h e thermal e f f i c i e n c y i n c r e a s e and oxygen f e e d r a t e d e c r e a s e s . T h i s is b e c a u s e hydrogasification r e a c t i o n s play a m o r e important r o l e a t higher p r e s s u r e s . I T h e typical h e a t and m a t e r i a l balance is shown in F i g u r e 7. T h e heating value of the r a w gas is 4070 kcal/Nm3(460 Btu/scf), a n d 5970 kcal/Nm3(670 Btu/scf) a f t e r r e m o v a l of c a r b o n dioxide a n d hydrogen sulfide on the b a s i s of d r y gas. The thermal efficiency is about 75%. The by-product t a r y i e l d is r a t h e r high (13-15 wt%) i n this p r o c e s s . T h e t a r c a n be either r e c y c l e d to the g a s i f i e r or utilized as f u e l o i l , b i n d e r , r a w m a t e r i a l s f o r chemical i n d u s t r i e s a n d so on. I n addition t o t h e study mentioned above, r e c e n t l y a low p r e s s u r e (max. 3 a t m ) i n t e r n a l l y f i r e d g a s i f i e r with a 300mm diameter h a s b e e n o p e r a t e d t o s o l v e t h e p o s s i b l e mechanical and o p e r a t i o n a l p r o b l e m s . 162
  • 4. On the b a s i s of these r e s e a r c h e s , a 12 t/D pilot plant is being designed, and it w i l l be constructed in 1980. A c kflowledgement This work w a s sponsored by the Agency of Industrial S c i e n c e and Technology of MITI and is presented with their permission. 163
  • 5. Purification I I I I I Slurry Slurry Thermal F e e d System Cracking Steam Char Partial Oxidation P r e s s u r i z e d fluidized bed gasifier Figure 1 . Coal-Residual O i l Hybrid Gasification P r o c e s s Coal Cyclone Scrubber Quencher Residual O i l A s h Receiver Figure 2 . P r e s s u r i z e d fluidized bed gasification apparatus 164
  • 6. , (a) P : 5 atm - I 0.4 1 c 0.3 0.2 - - --w 0.1 - ,o - 700 750 800 0- io 20 Temperature TS ( O C ) P r e s s u r e (atrn) Figure 3 . Effects of temperature and pressure o n s l u r r y thermal cracking 4 -a 0.1 Y Reaction 7 0.01 0 10 20 P r e s s u r e (atm) Figure 4 . Comparison of observed partial p r e s s u r e ratio of partial oxidation gas with equilibrium constant 165
  • 7. I - & Partial c + co2- I S t e a m (300 "C) J Oxidation I I C + H20- 2co CO + H 2 oxy@n(250C) TCOC I 1 co + ~ ~ C 0 2 0 H2 + s F i g u r e 5. R e a c t i o n model in H y b r i d G a s i f i e r S t e a m F e e d R a t e : 1.6 kg/kg s l u r r y x c: (a) P : 5 atm (b) TS : 750 "c . I ? 80 0 .- .I c b W g 70 ;- E $ 60 s: 50 3 a, 5000 k t I I I I u 700 750 800 0 10 20 T e m p e r a t u r e TS (OC) P r e s s u r e (atm) F i g u r e 6. Effects of t e m p e r a t u r e a n d p r e s s u r e o n H y b r i d Gasification P r o c e s s 166
  • 8. 5 2: 5" a W 0 v) v) d 3 W m E .$ a C W 4 1 .r( 2 .Y LI .r( u : .- 5 h P h N 2 .-. ." C W 2 d 2 P l d 4 .r( W c E 5 d 4 W X I- 5 .r( G4 167