SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG
     PÓS-GRADUAÇÃO EM BIOLOGIA DE AMBIENTES
             AQUÁTICOS CONTINENTAIS
         LABORATÓRIO DE LIMNOLOGIA – ICB


               PROJETO DE MESTRADO




Emissão de metano em banhado subtropical




                  Autor: Marcelo Gomes

           Orientador: Dr. Cleber Palma Silva
        Co-orientadora: Dra. Edélti Faria Albertoni




                    Rio Grande, 2012.
SUMÁRIO


RESUMO                                                      3

1.      INTRODUÇÃO                                          4
     1.1 - A importância do metano como GEE                 6
     1.2 - Banhados, fontes naturais de metano              9
     1.3 - Estimativas das emissões de metano              13

2.      OBJETIVOS                                          14

3.      METODOLOGIA                                        15
     3.1 - Área de estudo                                  15
     3.2 - Coleta das Amostras                             16
     3.4 - Análise de sedimento                            18
     3.5 - Análise de metano                               19
     3.6 - Determinação dos fluxos de metano               20
     3.7 - Análise estatística                             20

4.      CRONOGRAMA                                         21

5.      ORÇAMENTO/ VIABILIDADE                             22

6.      BIBLIOGRAFIA                                       23




                                                            2
RESUMO



Um dos principais gases responsável pelo efeito estufa (GEE) é o metano (CH4). Uma
parcela significativa do metano emitido para a atmosfera é produzido naturalmente em
áreas alagadas e banhados, em solo saturado e anóxico. Os banhados correspondem,
aproximadamente, a 40% do total do metano emitido na atmosfera e estudos tem
mostrado que este valor tem aumentado 1% ao ano. Este estudo pretende estimar a
emissão de metano através da técnica de câmaras estáveis em um banhado localizado no
município de Rio Grande-RS (32º 04’ S e 52º 09’ W). Serão determinadas as médias das
taxas de emissão em duas estações do ano, inverno e verão de 2013, distribuídas em
gradiente de umidade do solo. A hipótese que norteia este estudo é que ocorre maior
emissão de metano durante o verão nas áreas mais úmidas. As amostras de ar serão
coletadas em seringas e a concentração de CH4 será analisadas através de cromatografia
gasosa. Será feita caracterização do perfil vertical dos 10 cm superficiais do sedimento
do banhado para análise das concentrações de CH4, porcentagem de matéria orgânica
(M.O.) e granulometria (GR). Este trabalho pretende contribuir para a elaboração de uma
estimativa representativa de emissão de metano em banhados subtropicais brasileiros.




Palavras-chave: Gases efeito estufa, metano, carbono, banhado de clima subtropical.




                                                                                       3
1. INTRODUÇÃO


        Às modificações climáticas de origem natural atualmente acrescentam-se aquelas
que resultam de atividades humanas, pois sua amplitude tornou-se considerável. Esses
fenômenos tem sido estudados em escala mundial por programas internacionais como o
PIGB (Programa Internacional Geosfera Biosfera) ou PMRC (Programa Mundial de
Pesquisa sobre o Clima). Esse tipo de pesquisa tem como objetivo descrever e compreender
os fenômenos observados, criar modelos e prever sua evolução e seu impacto sobre a
biosfera nos anos futuros (DAJOZ, 2006).
        Segundo DAJOZ (2006) a temperatura da superfície da Terra resulta de um
equilíbrio entre a radiação solar incidente e a perda de energia por radiação para o espaço.
Estima-se que sem a atmosfera a temperatura da superfície da Terra seria – 19ºC, ou seja
35ºC menor que sua temperatura real. Isso se deve à presença na atmosfera de vapor de
água, de gás carbônico e outros gases que absorvem a radiação e assim criam o efeito estufa
natural.


                                                          A radiação infravermelha é parcialmente
                                                              absorvida e refletida pelos GEEs.
                                                           Consequentemente a zona interior da
                                                            atmosfera e a superfície da terra são
                                                                         aquecidas

                                    Atmosfera            ..       ..     .       ..       .         ...
                                                                  .      (GEEs). .        .         .
                                                                  ..     ..      ...      ..        ..




    A superfície da Terra absorve          Superfície terrestre
    a maioria da radiação solar e
    utiliza-a para gerar calor.


                 Figura I – Esquema efeito estufa na atmosfera.
                 FONTE: Adaptado de IPCC 2007.




                                                                                                          4
O efeito estufa deve-se à capacidade de alguns gases existentes na atmosfera
terrestre, conhecidos como gases do efeito estufa (GEEs), de absorver e reemitir a radiação
de onda longa, ou infravermelha (comprimentos de onda entre cerca de 0,7 μm e 100 μm)
emitida pela superfície da Terra. Isto leva a um aumento da temperatura no sistema Terra-
atmosfera (IPCC, 2007). A Figura I apresenta um esquema do efeito estufa na atmosfera,
que é praticamente transparente à radiação solar e absorve fortemente na faixa do
infravermelho.
         Os principais gases responsáveis pelo efeito estufa são: dióxido de carbono (CO2),
produzido através da queima de combustíveis fósseis, queima de biomassa e do
revolvimento do solo; metano (CH4), produzido naturalmente em banhados e em lavouras
de arroz, fermentação entérica, queima da biomassa, aterros de lixo, minas de carvão e
oceanos; clorofluorcarbonetos (CFCs), oriundos da atividade industrial; e, óxido nitroso
(NO2), liberado após aplicação de fertilizantes nitrogenados em áreas agrícolas (MILICH,
1999).
         Mudanças climáticas podem ocorrer como resultado da liberação excessiva de gases
de efeito estufa (GEEs) na atmosfera, ou seja, pelo desequilíbrio no balanço entre a
emissão e absorção desses gases. Estes por sua vez formam uma espécie de cobertor
atmosférico que torna o planeta cada vez mais quente por não permitir a saída de radiação
Infra-vermelho (UV) (WWF, 2012).
         O governo brasileiro instituiu no dia 17 de abril de 2009 o Painel Brasileiro sobre
Mudanças do Clima. A iniciativa reúne cientistas e pesquisadores de várias instituições e
centros universitários. O grupo de cientistas brasileiros vai compilar e analisar toda a
produção científica do País a respeito dos mais diferentes aspectos das alterações do clima
no país. Dentre a diversidade de áreas de pesquisas e rede de climas no território brasileiro,
a FURG, Universidade Federal do Rio Grande assumiu o compromisso de estudar as Zonas
Costeiras (PORTAL BRASIL, 2012).
         O aumento da temperatura global (efeito estufa) promoverá várias anomalias
climáticas. Dada a grande preocupação gerada, o IPCC (Painel Intergovernamental sobre
Mudanças Climáticas) foi estabelecido em 1988 pela Organização Meteorológica Mundial e
o Programa das Nações Unidas para o Meio Ambiente (PNUMA) para fornecer
informações científicas, técnicas e socioeconômicas relevantes para o entendimento das
mudanças climáticas (IPCC, 2007).
         O IPCC em seu primeiro relatório de avaliação sobre o Meio Ambiente, publicado
em 1990, reuniu argumentos em favor da criação da Convenção do Quadro das Nações

                                                                                        5
Unidas para Mudanças do Clima, nessa instância os governos negociam políticas referentes
à mudança climática. O segundo relatório do IPCC foi publicado em 1995 e acrescentou
ainda mais elementos às discussões que resultaram na adoção do Protocolo de Kyoto dois
anos depois. O terceiro relatório do IPCC foi publicado em 2001.
       Em 2007, o grupo publicou seu quarto grande relatório. Desde o primeiro relatório, o
trabalho do IPCC tem sido publicado em quatro etapas e é produzido por três grupos de
trabalho. O primeiro grupo (GT – I) é responsável pelo primeiro capítulo, que reúne
evidências científicas de que a mudança climática se deve à ação do homem. O segundo
(GT – II) trata-se das consequências da mudança climática para o meio ambiente e para a
saúde humana. O terceiro (GT – III) estuda maneiras de combater as mudança climáticas e
prover alternativas de adaptação das populações. Um quarto capítulo sintetiza as conclusões
dos anteriores (IPCC, 2007).
       Em 2007, no relatório principal e uma versão resumida, conhecida como Summary
for Policymakers (Resumo para os elaboradores da política), os principais pontos de
conclusão foram que:
   1) O aquecimento do sistema climático é inequívoco. A maioria do aumento observado
       na temperatura média global desde meados do século XX é muito parecido ao
       aumento observado na concentração de gases do efeito estufa antropogênico.
   2) A temperatura mundial poderá aumentar entre 1,1 e 6,4 °C durante o século XXI.
   3) O nível do mar provavelmente se elevará entre 18 a 59 cm.
   4) Há um nível de confiança maior que 90% de que haverá mais derretimento glacial,
       ondas de calor e chuvas torrenciais.
   5) Concentrações atmosféricas globais de dióxido de carbono, metano, e óxido nitroso
       têm aumentado significativamente como resultado de atividades humanas desde
       1750 (IPCC, 2007 ).



1.1 - A importância do metano como GEE

       O IPCC define a mudança climática como uma variação estatisticamente significa
em um parâmetro climático médio ou sua variabilidade, persistindo por um período extenso,
tipicamente décadas ou por mais tempo. A mudança climática pode ser devido a processos
naturais ou forças externas ou devido a mudanças persistentes causadas pela ação do
homem na composição da atmosfera ou do uso da terra (IPCC, 2007).


                                                                                     6
Dentre os gases, um de grande destaque é o metano (CH4), devido à quantidade
emitida e à atividade desempenhada na absorção radioativa. Com relação à quantidade
produzida, o metano é o segundo gás mais importante, sendo superado apenas pelo CO2.
Com uma concentração média de 1,7 ppm (DLUGOKENCKY et al., 1994). Apresenta
média de variação ente o hemisfério Norte e Sul de 0.14 ppm e variação sazonal de cerca de
0,03 ppm (DLUGOKENCKY et al., 1994).
         Metano é um GEE, com capacidade de absorção de calor atmosférico 15 a 40 vezes
superior à do CO2 (CAO et al., 1998). Por outro lado, sua reação com o oxigênio (O2) na
presença de óxido nítrico, forma ozônio na troposfera terrestre (MILICH, 1999). Além
disso, o metano minimiza o ataque de átomos de cloro ao ozônio, reagindo com cloro
formando ácido clorídrico, o qual atua como reservatório inerente de cloro (MILICH,
1999). Ainda, segundo este autor a reação chave do metano na atmosfera inclui sua
oxidação com radicais hidroxilas, formando água.
         A concentração troposférica do metano é estimada em 4700 teragramas (1Tg=1012g)
(SASS,1994). Análises de ar preso em gelo polar estimaram emissão de metano de cerca de
180 TgCH4/ano durante o século XV e 200TgCH4/ano no início do século XVIII (KHALIL,
1994).
         Estudos mais atuais estimam a concentração atual de metano na atmosfera terrestre
está em torno de 1770 ppbv (parte por bilhões em volume) (SIMPSON et al., 2006),
correspondendo a um reservatório atmosférico de mais de 4900 Tg ( = 1012gramas) de
metano (TgCH4).
         As estimativas para o balanço global de metano indicam uma emissão anual total de
503 ± 125 TgCH4/ano, com uma faixa de estimativa entre 410 e 660 TgCH4/ano e um
sumidouro de 515 ± 85 TgCH4/ano, com uma faixa de estimativa entre 430-600 TgCH4/ano
(WUEBBLES E HAYHOE, 2002).
         Embora atualmente seu balanço global seja determinado a partir de uma grande base
de dados, até recentemente as fontes e sumidouros de metano não eram bem conhecido e
incertezas importantes ainda permanecem nos fluxos individuais. A Tabela I (AMSTEL,
1998), apresenta o balanço global de metano, onde a emissão global foi estimada em 515
TgCH4/ano.




                                                                                     7
Tabela I – Fontes e sumidouros de metano
                          Fonte: Adapatado de AMSTEL, 1998.


                                       Fontes e sumidouros de metano
                   Fontes naturais                                     TgCH4/ano
                    Áreas alagadas                                        115
                        Cupins                                            20
                        Oceanos                                           10
                          Rios                                             5
                  Hidratos de metano                                       5
                                           Fontes antropogênicas
Combustíveis fósseis: carvão, gás natural, petróleo.                      85
               Cultivo de arroz irrigado                                  60
                 Fermentação entérica                                     80
                 Queima de biomassa                                       40
                   Dejeto de animais                                      25
           Tratamento de esgoto doméstico                                 55
                        Lixeiras                                          30
                                                 Sumidouros
                Remoção na atmosfera                                      470
                 Remoção pelos solos                                      30
                   Excedente anual                                        32



        O Principal sumidouro na atmosfera ocorre com a reação com o radical hidroxila
com o radical oxidrila (OH) na troposfera o qual é responsável pela remoção de mais de
90% do metano emitido. Além desses, existem mais dois sumidouros menores, a absorção
pelos solos aerados e o transporte para a estratosfera. No balanço global observa-se um
excedente de emissão em relação ao removido anualmente de 32 TgCH4/ano, o que
corresponde ao crescimento anual de 0,6% desse gás na atmosfera (AMSTEL, 1998).




                                                                                   8
1.2 - Banhados, fontes naturais de metano


        Uma parcela significativa do metano naturalmente produzido é proveniente do
sedimento anóxico de zonas úmidas, áreas alagadiças ou banhados , cujo termo em inglês é
universalmente conhecido como “wetlands” que são encontradas em todos os continentes
(Figura II), latitudes temperadas, subtropicais e tropicais.




      Zonas úmidas
     Áreas com
     abundância de zonas
     úmidas




                     Figura II- Distribuição geral das zonas úmidas no mundo.
                     FONTE: Adaptado de MITSCH E GOSSELINK, 2000.



        A contribuição individual das áreas alagadas correspondem a cerca de 70% das
fontes naturais para este gás. Os banhados respondem por aproximadamente 40% do total
do metano emitido na atmosfera (IPCC, 2007). Estudos de DLUGOKENCKY et al., (1994),
concluiu que esses valor tem aumentado aproximadamente 1% ao ano (DLUGOKENCKY
et al., (1994).

                                                                                   9
De acordo com estudos de CAO et al., (1998), a emissão anual oriunda de banhados
naturais e não naturais é estimada em 145 Tg ano -1, a qual tem aumentado à taxa de 1% ao
ano.
       Essas áreas podem ser tanto naturais quanto antropogênicas (no caso dos arrozais).
Nas áreas alagadas naturais, como banhados e áreas de inundação, a emissão do metano
produzido no substrato para a atmosfera ocorre através da difusão através da lâmina d’água
e da liberação por bolhas. Essas emissões podem ser influenciadas por fatores ambientais
como temperatura da água e do substrato, velocidade dos ventos, pH e quantidade de
oxigênio dissolvido na água.
       Banhados são importantes componentes da Biosfera e possuem papel significante na
ciclagem e balanço do carbono global. A diversidade de tipos de banhados é resultado da
geologia, topografia e clima regionais. Diversos tipos de classificação têm sido propostas
com base na hidrologia, ecologia e características químicas dessas áreas. Geralmente
banhadas são áreas dificilmente drenadas, periodicamente saturadas ou cobertas com água
(FORD, 1993). Essas áreas sustentam uma diversidade de habitats e abundância alimentar
que permite a coexistência de muitas espécies.


       Zonas úmidas e banhados são formados de diversas maneiras (FORD, 1993):


       1)     Através de rios, lagos e até mesmo oceanos, que ao retornarem a seu nível
natural, deixam porção significativa de água nessas terras.
       2)     Onde a drenagem do solo é ruim devido a impermeabilidade da rocha, ou
camada de argila, ou quando a taxas de precipitação excedem a evaporação.
       3)     Devido a acumulação de matéria orgânica no sedimento de lagos ou como
consequência da atividade humana.


       Os solos de banhados se formaram sob condições de saturação, inundação e ao longo
do seu desenvolvimento propiciaram condições anaeróbicas. Segundo MITSCH E
GOSSELINK (2000) solos de banhados são de dois tipos: (1) solos minerais ou (2) solos
orgânicos. Geralmente todos os solos são constituídos de uma parte de matéria orgânica,
quando o solo possui menos de 20 a 35% de matéria orgânica (MO) é considerado um solo
mineral.
       Em muitos ecossistemas lacustres as entradas de matéria orgânica é constituída por
algas. Contudo em banhados a fonte são originárias de macrófitas (FORD, 1993).

                                                                                   10
A definição e a classificação de áreas alagadas são difíceis e imprecisas, dependendo
do regionalismo e da cultura local pode ser denominado de charcos, pântanos, brejos. Essas
áreas são estrategicamente importantes, tendo em vista sua função de filtragem,
armazenamento e reservatório de águas. Desempenham um papel vital para garantir o
abastecimento de água potável, a população de peixes, conservação da biodiversidade,
disponibilidade de água para a irrigação, ou mesmo proteção contra inundação. Assim,
áreas de banhado oferecem uma valiosa contribuição para a subsistência local.
       A “Internacional Union for the Conservation of Nature and Natural Resources”
(IUCN), adotou a seguinte definição: “Áreas alagadas são regiões com solos saturados de
água, ou submersas, naturais ou artificiais, permanentes ou temporárias, onde a água pode
ser estática ou com fluxo, salinas, salobras ou água doce”.
       Para COWARDIN (1979), banhados e zonas úmidas são ecossistemas onde a
saturação com água é o fator essencial para o controle e desenvolvimento das espécies de
plantas e animais que estão presentes. Neste trabalho o termo áreas alagadas (ou banhado)
deverá referir-se ao mesmo ecossistema que, ou está permanentemente sob inundação ou
sofre inundação com flutuação de nível. Assim essas áreas são importantes fontes naturais
de gás metano (CH4) que é produzido por bactérias que vivem em condições anóxicas
(COWARDIN, 1997).
       Este   processo    denominado     metanogênese     (realizado   por   arqueobactérias
metanogênicas) é o último estágio de decomposição do carbono em vários ambientes
anaeróbicos, tais como o trato intestinal dos animais, solos inundados, habitats geotérmicos
e sedimentos de áreas alagadas de água doce ou salina (FENCHEL E MICHELL, 1998).
       Segundo Esteves (2011), a metanogênese é considerada um dos mais importantes
processos de degradação da matéria orgânica em sedimento aquático anóxico. A produção
pode ocorre através da decomposição de acetato (1) ou transformação de CO2 em CH4 (2)
como indicado as reações:


                                   (1) CH3COO- → CH4 + CO2
                                   (2) CO2 + 4 H2 →CH4 + H2O


       Essas reações estão condicionadas também pela quantidade e natureza da matéria
orgânica (MO) (MER 2001). Nesse sentido é importante o conhecimento da flora associada
aos banhados e áreas alagadiças e avaliação da disponibilidade da MO no sedimento.
Observações realizadas relataram que a produção biológica de metano é dependente da

                                                                                     11
temperatura, com pico máximo de produção em torno de 30 ºC (BOONE E WHITMAN,
2000).
         O regime hídrico é um importante fator que influencia a liberação de gases entre o
solo e a atmosfera, tendo efeito direto nos processos envolvidos na produção, oxidação e
transporte de metano. Solos alagados apresentam decréscimo de 10000 vezes na difusão de
gases, o que resulta em mudanças físico químicas e biológicas no solo, propiciando
condições que favorecem a produção e a emissão de metano (BHARATI et al., 2001).
         A produção de metano depende do conteúdo de água no solo, variando entre os
períodos de inundação ou drenagem do solo. Quando o conteúdo de água no solo é inferior
a 23% a produção de metano é baixa, podendo ser desconsiderada, no entanto foi verificada
correlação linear entre produção total de metano e conteúdo de água no solo para valores
entre 17 e 67% (YANG E CHANG, 1998). Ainda, segundo este, autor quanto maior for a
submersão do solo, maiores serão a taxa de produção de metano e o total produzido, o que
se deve ao incremento da anaerobiose.
         A submersão de um solo aeróbico resulta em sucessivas reações de redução.
Inicialmente, as mudanças químicas predominantes, devido à inundação do solo, são o
desaparecimento do O2, a decomposição anaeróbica da matéria orgânica, acumulação de
CO2 ou sua redução a CH4 (WANG et al., 1993). O potencial de redução do solo varia de
400 a 600 mV em solos aerados e 100 a -300 mV em solos reduzidos ou anaeróbicos
(KLUDZE et al., 1995).
         Estudos têm mostrado que as bactérias metanogênicas apresentam máxima
população em solos completamente reduzidos. Nos estudos de KLUDZE et al. (1993)
observou-se que a metanogênese era estimulada apenas quando o potencial de redução era
inferior a -200mV. Os autores verificaram que a produção de metano aumentou de 10 a 17
vezes quando o potencial de redução do solo foi reduzido de -200mV para -300mV. Estudos
de MITRA et al. (1999) concluiuram que a produção de metano está na dependência da
disponibilidade de substrato e o potencial de redução do solo. Assim, a emissão de metano
depende do tipo do solo.




                                                                                    12
1.3 - Estimativas das emissões de metano


          Segundo pesquisas de BARTLETT E HARRISS et al. (1993), a estimativa para a
emissão global em áreas alagadas tropicais é de 66 TgCH4/ano, considerando que estas
ocupem uma área total de 1.885.000 km2, o que corresponderia a aproximadamente 60% do
total de emissões estimadas para todas as áreas alagadas naturais.
          Estudos realizados em diversos locais têm demonstraram que dependendo do tipo o
solo alagado poderá ter alta emissão de metano (LIIKANEN et al. 2006). Contudo os dados
são variáveis devido aos diferentes ecossistemas e diferenças climáticas. Por exemplo,
estudos de Tanner et al. (1997), tem mostrado que o fluxo de metano varia entre 28 e 278
mg-C m-2 h-1 (tabela II) para diferentes tipos de banhados.


          TABELA II- Revisão de fluxo de metano para diferentes tipos de banhados.
          FONTE: WETLANDS INTERNATIONAL (2009).


Tipos de Banhado                 Local                CH4-C (mg CH4-C m-2 h-1)          Referencia
Banhado ciliar         USA (Ohio)                     3.5                            Altor and Mitsch (2006)
Campos alagados        USA (Alaska)                   0,66-17.75                     Bartlett et al. (1992)
Banhados de água
                       China                          130                            Tai et al. (2002)
doce
                                                      0,0091-
Banhado artificial     Estônia                                                       Mander et al (2008)
                                                      371.83
Banhado artificial     Nova Zelândia                  27.6-278                       Tanner et al (1997)
Continuamente
                       China (Norte)                  0.5-0.19                       Zhang et al. (2005)
alagado
Naturalmente
                       Brasil                         8-92                           Barlett et al. (1988)
inundados
                                                                                     Ström and Christensen
Banhado Sub-ártico     Suécia                         0.2-36.1
                                                                                     (2007)



          Apesar da importância da emissão de metano em banhados estar evidente nos dias
atuais, há incertezas sobre as estimativas dos fluxos. Portanto as previsões continuam de
certa forma obscuras tendo em vista a uma resposta a mudança climática global (CAO,
1998).
          Alguns estudos em áreas alagadas tropicais no Pantanal Brasileiro têm estimado o
fluxo de metano (Tabela III):




                                                                                                             13
Tabela III - Revisão de fluxo de metano para diferentes tipos de banhados.



Localização    Emissão CH4 (mg CH4/m/dia)        Referência                         Tipo da Área

Brasil              53-330                       Engle e Melack (2000)           Lago tropical

Brasil              2-25                         Engle e Melack (2000)           Lago tropical

Brasil              50-8                         Melack et al. (2004)            Lago Tropical
                                                                                 Lago tropical com
Brasil              120-40                       Melack et al. (2004)
                                                                                 vegetação e água rasa.
                                                                                 Lago tropical com
Brasil              320-70                       Melack et al. (2004)
                                                                                 vegetação
Brasil              140-310                      Marani e Alvalá (2007)          Lagos tropicais



         Apesar dos estudos estarem sendo desenvolvidos em diversos locais, a dinâmica do
metano em ecossistemas de zonas úmidas em regiões subtropicais são relativamente pouco
compreendidas. Desta forma, este estudo pretende estimar a emissão de metano através da
técnica de câmaras estáveis em um banhado natural de clima sub tropical (32° 04' S e 52°
09' W) localizado no município de Rio Grande-RS, determinando as médias das taxas de
emissão em duas estação do ano, inverno e verão, em transectos de áreas secas e úmidas.
         Nossa hipótese é que ocorre maior emissão de metano durante o verão nas áreas
mais úmidas.




     2. OBJETIVOS


         Portanto o objetivo geral desse trabalho é contribuir para a elaboração de uma
estimativa representativa de emissão de metano em um banhado subtropical brasileiros.
         Para realização do objetivo principal deste estudo, foram definidos como objetivos
específicos:


1) Implementar a coleta de amostras utilizando a metodologia das câmaras estáticas e as
seringas de poliuretano.


2) Avaliar a variação durante Verão e Inverno para emissão de metano.


3) Avaliar a influência de fatores ambientais, como umidade do solo, matéria orgânica no
solo, temperatura da água, pH, nos fluxos de metano.



                                                                                                   14
4) Conhecer as características de textura, umidade e concentração de matéria orgânica do
sedimento o qual o metano está sendo emitido




   3. METODOLOGIA



3.1 - Área de estudo


       A planície costeira do Rio Grande do Sul no sul no Brasil é caracterizada pela
abrangência de ecossistemas aquáticos, um total de 39% dos 37,000km2 é constituído por
lagos, lagoas de água doce e áreas de banhados (SCHWARZBOLD E SCHÄFER 1984).
Com seus banhados e área alagada sazonalmente, propicia grande disponibilidade de
matéria orgânica, há um ambiente favorável à presença de organismos metanogênicos que
torna esses habitats potencialmente uma importante fonte regional de metano.
       O município de Rio Grande (32°04’S e 52°09’W), localizado ao sul do trópico de
Capricórnio, encontra-se na área sedimentar costeira, de idade quaternária, conhecida como
bacia de Pelotas. O território rio-grandino, encontra-se sob condições climáticas brandas,
com forte influência oceânica. Pela classificação de Strahler descrita em STRAHLER e
STRAHLER (1997), o clima desta região é subtropical úmido, carcterizado pela intensa
umidade no inverno e primavera, quando os índices pluviométricos registram os maiores
valores. Durante o verão há dessecação dos solo, dadas as médias termométricas superiores
à 20ºC (KRUSCHE et al. 2002).
       Os banhados naturais no presente estudo estão localizados na Universidade Federal
do Rio Grande FURG (Figura IV, V). Com área de aproximadamente 250 ha o Campus
Carreiros possui uma grande número de zonas alagadiças naturais e corpos de água rasos
que respondem a regimes de cheia durante o inverno, e regimes de seca durante o verão, o
que propicia estudos de fluxo de metano.




                                                                                   15
Figura IV – Banhado da reitoria – Campus Carreiros.     Figura V - Banhado reitoria (vista lateral).




   3.2 - Coleta das Amostras


            As amostras serão coletadas utilizando-se a técnica da câmara estática (estável),
   muito utilizada nesse tipo de estudo e descrita por KHALIL (1998). Basicamente, a técnica
   consiste de coletas de amostras de ar, realizadas em determinados intervalos de tempo, do
   interior de uma cúpula fechada colocada sobre a superfície da qual se pretende determinar o
   fluxo.
            Neste trabalho, será utilizada câmara cilíndrica construída em PVC (com diâmetro
   de 0,30 m, área da base de 0,066 m2 e volume de 26 litros. A cúpula deverá ser coberta com
   uma manta térmica, refletiva, para reduzir a variação de temperatura interna e evitar grandes
   alterações do microambiente criado dentro da cúpula em relação ao ambiente externo. As
   cúpulas serão presas no sedimento por estacas que deixarão completamente estáticas ou em
   caso de cheia será sustentadas por flutuadores de espuma fixados em suas bases. As
   amostras de ar serão retiradas do interior da cúpula através de um tubo de teflon, instalado à
   sua meia altura. A Figura VI, mostra todo o conjunto que será utilizado na coleta das
   amostras de ar, formado pela cúpula de coleta e a seringa.



                                                                                                16
Figura VI - Conjunto para coleta de ar com cúpula e seringa.

                    FONTE: Adaptado de BARTLLET et al. (1990)



                                           Manta térmica reflexiva

          Seringa

                                                      Cúpula

                                                 Cúpula




                                                                              Substrato


       As cúpulas serão levadas até o ponto de amostragem. Tomaremos a precaução para
que a perturbação sobre a superfície da água e sedimento seja mínima no ponto de
amostragem. Após a chegada ao local, espera-se cerca de 10 minutos antes das cúpulas
serem instaladas para a realização da amostragem. As coletas serão realizadas sempre entre
as 10:00h e 16:00h horas (hora local). Nesse intervalo, os principais parâmetros ambientais,
principalmente a temperatura, já se encontrarão estabilizados. Após o término das coletas do
dia, todos os equipamentos retornarão ao Laboratório de Limnologia da Universidade
Federal do Rio Grande, onde as câmaras serão limpas e os demais equipamentos de medida
limpos e calibrados.
       Seguindo a metodologia utilizada por Khalil et al. (1998). As amostras serão
coletadas em seringas de poliuretano de 60 ml, equipadas com uma torneira de três vias,
com trava tipo “luer lock”. O intervalo entre as coletas será fixado em 6 minutos, com três
amostras coletadas (6, 12 e 18 minutos após a colocação da câmara). O intervalo de 6
minutos é considerado ideal, por ser suficientemente longo para que o limite de detecção de
1 mgCH4m-2d-1 seja ultrapassado, e curto o suficiente para que a presença da cúpula não
altere substancialmente o ambiente, causando desvios no fluxo medido. Após o término da
coleta em um ponto, uma nova coleta em outro ponto será realizada somente depois de
esperados cerca de 30 minutos. Esse período é necessário para que a concentração do ar no


                                                                                          17
interior da cúpula se equilibre com a concentração do ar ambiente, impedindo assim a
contaminação nos fluxos seguintes.
       Amostras de ar ambiente também serão coletadas próximo ao local de amostragem,
em intervalos de 30 a 60 minutos. Essas amostras serão utilizadas na validação dos fluxos
obtidos. Em cada ponto de amostragem, também serão coletadas informações sobre
algumas variáveis ambientais que potencialmente poderão influenciar na emissão de metano
e também necessárias para o cálculo do fluxo. As variáveis de interesse que serão anotadas
são as temperaturas do ar, da água, a pressão atmosférica, o pH, o potencial de redução
(EH), a profundidade e a presença de vegetação.
       A pressão atmosférica (em mbar) é medida utilizando-se um barômetro digital, com
precisão de ±1 mbar. Para as medidas de pH é uzado um pHmetro digital, com precisão de
±0,1. As temperaturas do ar serão obtidas com auxílio de um termômetro digital. Todas as
amostras de ar coletadas em campo serão levadas ao Laboratório de Limnologia, na
Universidade Federal do Rio Grande – Campus Carreiros, onde terão suas concentrações de
metano determinadas através da técnica de cromatografia gasosa.
       Antes do início das campanhas das coletas, serão realizados alguns testes piloto com
as câmaras, com a finalidade de se determinar a melhor configuração, e a definição dos
possíveis intervalos de tempo que ela ficará instalado no ambiente.



3.4 - Análise de sedimento

       Será feita caracterização do perfil vertical dos 10cm iniciais da coluna sedimentar do
banhado. As amostras serão seccionadas em seis frações (0-1, 1-2, 2-4, 4-6, 6-8 e 8-10 cm),
para posterior análise das concentrações metano (CH4), porcentagem de matéria orgânica
(M.O.) e granulometria (GR).
        Para a caracterização sazonal será realizado o acompanhamento das variações nas
frações superficiais da coluna sedimentar. Os testemunhos serão seccionados em duas frações
(0-2 e 2-4 cm). As coletas serão realizadas em março (verão) e setembro (inverno) de 2013.
Para cada data serão determinadas as concentrações de CH4 e M.O.
       O coletor utilizado será do tipo testemunho, tubo de acrílico (50 x 9 cm), que possibilita
a análise da distribuição vertical dos parâmetros analisados, com pouca ou nenhuma
perturbação da sequência estratigráfica do sedimento. Depois de retiradas do tubo, as amostras
serão seccionadas com auxílio de um fatiador de testemunho, para separação das frações. Para
facilitar as amostragens e evitar perda de material ou mistura entre as camadas, será utilizada

                                                                                          18
uma haste de PVC, com a extremidade superior de diâmetro levemente inferior ao do tubo de
acrílico e uma rolha de isopor.
        O conteúdo da matéria orgânica no sedimento será mensurado com a porcentagem de
material orgânico, por gravimetria. Uma quantidade de sedimento será pesada para se estimar o
peso inicial (P1), após secar em temperatura entre 103-105ºC, e esfriar em de cadinhos, o
material será pesado novamente (P2). Após será calcinado em forno mufla a 503ºC, resfriado e
pesado novamente (P3). A porcentagem de matéria orgânica por peso seco será obtida pela
fórmula %MOPS=100(P2-P3)/P1.
        Para a análise granulométrica as amostras de sedimento serão secas em temperatura
entre 105 a 110º C. A metodologia utilizada para a análise da composição granulométrica
será a proposta por Suguio (1973). As partículas serão distribuídas quanto à frequência de
peso dos diversos tamanhos de grãos (escala phi), as partículas são divididas em três tipos
básicos: areia, siltes e argilas.




3.5 - Análise de metano


        As amostras serão analisadas utilizando um Cromatográfo gasoso (Varian Co 450-
GC). Devido à grande precisão, sensibilidade e linearidade, a cromatografia gasosa é
mundialmente utilizada em estudos similares de poluição urbana. As concentrações de
metano nas amostras coletadas serão determinadas através da comparação obtida para o
pico da amostra com a área de pico de amostra.
        No Laboratório de Limnologia da FURG, opera-se um cromatográfico gasoso que
será utilizado na análise das amostras. Calcula-se aproximadamente total de 150 amostras
coletadas.




                                                                                      19
3.6 - Determinação dos fluxos de metano


         A determinação do fluxo de metano emitido pela superfície de determinado
substrato será feito a partir da variação temporal da sua concentração no interior da cúpula.
         Admitindo a variação do fluxo através da área A (m2), o fluxo de metano (mgCH4m-
2
    dia-1) pode ser escrito através da seguinte equação. Fonte: Adaptado de MARANI e
ALVALÁ, (2007).




                                 Componentes de fórmula:
                       M CH4 = Massa molar do metano (16,04 g mol-1),
                                   p = pressão total (atm),
                                  V = volume total (litros),
                      R = a constante dos gases (0,082 atm l mol-1K-1),
                                  T = temperatura (K),
                                       A = área (m2),
                                  Δt = intervalo de tempo.




3.7 - Análise estatística


         Medidas de fluxo mostram resultados em distribuições não normais, pois são
combinações de emissões através de diferentes mecanismos de perda (BARTLETT et al.,
1998). Estudos tem demonstrado que um pequeno número de medidas com fluxos muito
altos tende a deslocar os valores médios derivados deste conjunto para valores mais altos,
levando a grande diferença entre médias e medianas (RAMOS, 2006).

                                                                                        20
Portanto o presente trabalho considerará tanto as médias de fluxos quanto as suas
          medianas, possibilitando a comparação e avaliação da importância dos fluxos na estimativa
          da emissão na região.
                 Para a avaliação dos componentes temporais em áreas secas e úmidas, serão
          separados os dados em diferentes conjuntos com a comparação entre médias obtidas entre
          cada conjunto. A hipótese de que as médias de quatro conjuntos são estatisticamente
          diferentes será testada através da aplicação do método Análise de Variância. (ANOVA)
          com medidas repetidas. A hipótese nula assumida é de que existam diferenças significativas
          entre os quatro conjuntos. Aplicaremos o pós-teste de Tukey, para determinar quais grupos
          apresentam diferença entre as médias do conjunto.




              4. CRONOGRAMA



                  2012       2013                                                         2014
                  NOV    DEZ JAN    FEV   MAR ABR MAI JUN JUL     AGO SET OUT NOV DEZ JAN           FEV MAR
PRÉ PROJETO       X      X
REVISÃO
                  X      X   X      X     X   X    X   X      X   X   X    X    X     X    X        X   X
BIBLIOGRÁFICA

COLETA DE                    X      X                  X      X
CAMPO

ANÁLISE LAB
                                    X     X                   X   X

RELATÓRIO                                     X                       X
PARCIAL

APRESENTAÇÃO                                                                              X
DA DISSERTAÇÃO

SUBMETER                                                                                            X   X
PUBLICAÇÃO




                                                                                               21
5. ORÇAMENTO/ VIABILIDADE


                Para a execução do projeto não serão necessários investimentos em materiais
        permanentes, pois já se encontram disponíveis no Laboratório de Limnologia, do
        Instituto de Ciências Biológicas (ICB), da Universidade Federal do Rio Grande
        (FURG).
                Os gastos do projeto serão viabilizados pela FURG e pelo Programa de Pós
        Graduação em Biologia de Ambientes Aquáticos Continentais (PPG-BAC), com a verba
        do PROAP. Os itens a serem adquiridos estão apresentados na tabela abaixo com o
        custo estimado.



                                         item                   valor (unid)          valor
1. Despesas custeio    Vidraria e Filtros                                       R$         4.000,00
                       Regentes                                                 R$         3.000,00
                       Seringas de poliuretano (60 ml)          R$       3,00   R$           450,00
                       Trava do tipo "luer lock"                R$       3,00   R$           300,00
                       Manta térmica de alumínio (m2)           R$       5,00   R$           500,00
                       Construção câmaras PVC                   R$     100,00   R$           300,00
TOTAL                                                                           R$         8.550,00




                                                                                        22
6. BIBLIOGRAFIA


AMSTEL, A.V.: Global anthropogenic methane emission emission comparisons. IGAC
Ativities Newsletter, v.12, p.11-17, 1998.


BHARATI, K., MOHANTY, S.R., RAO, V.R., et al.: Influence of flooded and non-
flooded conditions on methane efflux from two soils planted to rice.     Chemosphere –
Global Change Science, Oxford, v.3, p.25-32, 2001.


BARTLETT, K. B.; HARRISS, R. C.: Review and assessment of methane emission from
wetlands. Chemosphere, v. 26, n. 1-4, p. 261-320, 1993.


BARTLETT, K. B.; CRILL, P. M,: BONASSI, J. A.; RICHEY, J. E. HARRISS, R. C.:
Methane flux from the Amazon River floodplain: emissions during the rising water.
Journal of Geographysical Research, v. 95, p. 19773 – 16788. 1990.


BOONE, D. R.; WHITMAN, W. B.: Diversity an taxonomy of metanogens, em: Ferry, J. G.
Methanogenesis, Chapman and Hall. New York, p. 33 – 80. 2000.


CAO, M.; GREGSON, K.; MARSHALL, S.: Global methane emission from wetlands and
its sensitivity to climate change. Atmospheric Environment. v.32, p. 3293 – 3299. 1998.


COWARDIN.: Wetland and swamp microbiology, em: Fordy, T. E: Aquatic
Microbiobiology: an ecological approach. Blackwell Scientific Publications. Oxford. p.
215 – 238. 1979.


DAJOZ, R.: Princípios de ecologia. Artmed. Porto Alegre. p.41. 2006.


DLUGOKENCKY, E. J.; STEELE L.P.; MASARIE K.A. The growth rate and distribution
of atmospheric methane. Journal of Geophysical Research, v. 99. 1998.


ENGLE, D.; MELACK, J. M.: Methane emissions from the Amazon floodplain: enhanced
release during episodic mixing of lakes. Biogeochemistry, v.51, p.71–90. 2000.



                                                                                   23
ESTEVES, F. A.: Fundamentos de Limnologia. 3ª Ed. Editora interciência. Rio de
Janeiro. 2011.


FENCHEL, T.; MITCHELL, T.: Microscale nutrients patches in planktonic habitats shown
by chemostactic bacteria. Science. v. 282. New York. 1998.


FORD, T. E. Aquatic microbiobiology: an ecological approach. Blackwell Scientific
Publications. Oxford. 1993.


IPCC. Intergovernmental Panel on Climate Change 2007. Synthesis Report, Summary for
Policymakers. Valencia, Spain. 2007.


KHALIL, M. A. K.; RASMUSSEM, R. A. Atmospheric methane: trends over the last
several centuries. Chemosphere, v.29, n.5, p. 833 - 842. 1994.


KHALIL, M. A. K.; RASMUSSEM, R. A. Emissions of methane, nitrous oxide, and other
gases from Rice fields in China. Journal of Geophysical Research. v. 103, p. 25241 -
25250. 1998.


KLUDZE H. K.; DELAUNE R. D.: Gaseous exchange and wetland plant-response to soil
redox intensity and capacity, Soil Science Society American Journal. 1993.


KRUSCHE, N., SARAIVA, J. M. B., REBOITA, M. S. Normais climatológicas provisórias
de 1991 a 2000 para Rio Grande, RS. Rio Grande. p.104. 2002.


LIIKANEN, A.: Temporal and seasonal changes in greenhouses gas emissions from a
constructed wetland purifying peat mining runoff waters. Ecological Engineering, v. 26. p.
241 – 251. 2006.


MARANI, L.; ALVALÁ, P. C.; Methane emissions from lakes and floodplains in Pantanal,
Brazil. Atmospheric Environment, v. 41, p. 1627-1633, 2007.


MER, J. L.;. Production, oxidation, emission and consumption of methane by soils: A
review. European Journal of Soil Biology, v. 37. p. 25 – 50. France. 2001.

                                                                                   24
MITRA, S., JAIN, M.C., KUMAR, S., et al. Effect of rice cultivars on methane emission.
Agriculture Ecosystems & Environment, Amsterdam, v.73, p.177-183, 1999.


MELACK, J. M.; HESS, L. L.; GASTIL, M.; FORSBERG, B. R.; HAMILTON, S. K.;
LIMA, I. B. T.: Regionalization of methane emissions in the Amazon Basin with
microwave remote sensing. Global Change Biology, v. 10, p. 530-544, 2004.


MILICH, L. The role of methane in global warming: where might mitigation strategies be
focused? Global Environmental Change-Human and Policy Dimensions, Oxford, v.9,
1999.


MITSCH, J. W.; GOSSELINK, J. G. Wetlands. 3ª ed. John Wiley & Sons, Inc. Canadá.
2000.


PMRC, Programa Mundial de Pesquisa sobre o Clima. http://library.globalchange.gov/u-
s-global-change-research-program-strategic-plan-2012-2021. Ultimo acesso em 11/2012.


PORTAL BRASIL. Site: http://www.brasil.gov.br/cop/panorama/o-que-esta-emjogo/painel-
intergovernamental-sobre-mudanca-do-clima-ipcc. Acessado em 10/2012.


RAMOS, F. M. Extreme event dynamics in methane ebullitions fluxes from tropical
reservoirs, Geophysical Research Letters, v.33, 2006.


SASS, R.L.; FISHER, F.M.; WANG, Y.B.; TURNER, F. T.; JUND, M.F.: Methane
emissions from rice fields: the effect of floodwater management. Global Biogeochemical
Cycles, v. 6, p. 249 – 262, 1992.


SCHWARZBOLD, A., SCHAFER, A.: Gênese e morfologia das lagoas costeiras do Rio
Grande do Sul – Brasil. Amazônia 9. p.87-104. 1984.


SIMPSON, I.J.; ROWLAND, F.F.; MEINARDI, S.; BLAKE, D.R.: Influence of biomass
burning during recent fluctuations in the slow growth of global tropospheric methane.
Geophysical Research Letters. v.33. 2006.

                                                                                 25
STRAHLER, A. e STRAHLER, A.: Introducing Physical Geography. 2 Ed. New York.
1997.


SUGUIO, K.: Introdução à sedimentologia. Ed. Edgar Buckler, EDUSP, p. 317. São
Paulo 1973.


WANG, Z. P,; DELAUNE, R. D.; MASSCHELEYN, P, H. Soil redox and pH effects on
methane production in a flooded rice. Soil Science Society of America Journal, v. 57, p.
382 – 385. 1993.


WETLANDS INTERNATIONAL: Methane emissions from peat soils, organic soils,
histosols, Facts, MRV-ability, emission factors. Greifswald University. www.wetlands.org.
2009.
WUEBBLES, D.J.; HAYHOE, K. Atmospheric methane and global change. Earth-Science
Reviews, v. 57. P.177-220. 2002.


WWF. Word Wild Fund for Nature. www.wwf.org. Acessado em 10/2012.


YANG, A. A.; CHANG, H. L.; Effect of environmental conditions on methane production
and emission from paddy soil. Agriculture Ecosystem & Environmental, v. 69, p-69-80.
1998.




                                                                                  26

Contenu connexe

Tendances

www.AulasParticulares.Info - Geografia - Efeito Estufa e Aquecimento Global
www.AulasParticulares.Info - Geografia -  Efeito Estufa  e Aquecimento Globalwww.AulasParticulares.Info - Geografia -  Efeito Estufa  e Aquecimento Global
www.AulasParticulares.Info - Geografia - Efeito Estufa e Aquecimento GlobalAulasParticularesInfo
 
Fenômenos Atmosféricos
Fenômenos AtmosféricosFenômenos Atmosféricos
Fenômenos Atmosféricos7 de Setembro
 
Atmosfera - Biologia
Atmosfera - BiologiaAtmosfera - Biologia
Atmosfera - Biologia12anogolega
 
Química Ambiental
Química AmbientalQuímica Ambiental
Química AmbientalKiller Max
 
O Aquecimento Global e o Efeito estufa
O Aquecimento Global e o Efeito estufaO Aquecimento Global e o Efeito estufa
O Aquecimento Global e o Efeito estufatiagofl
 
Ciclo do carbono
Ciclo do carbonoCiclo do carbono
Ciclo do carbonouendell
 
Alterações na atmosfera e suas implicações
Alterações na atmosfera e suas implicaçõesAlterações na atmosfera e suas implicações
Alterações na atmosfera e suas implicaçõesguest3eaec9
 
Agravamento do efeito de estufa
Agravamento do efeito de estufaAgravamento do efeito de estufa
Agravamento do efeito de estufaRita Pereira
 
Alterações na atmosfera
Alterações na atmosferaAlterações na atmosfera
Alterações na atmosferaMayjö .
 
Prof(a) Luis Carlos / ATMOSFERA
Prof(a) Luis Carlos / ATMOSFERAProf(a) Luis Carlos / ATMOSFERA
Prof(a) Luis Carlos / ATMOSFERACarlaRosario
 

Tendances (20)

www.AulasParticulares.Info - Geografia - Efeito Estufa e Aquecimento Global
www.AulasParticulares.Info - Geografia -  Efeito Estufa  e Aquecimento Globalwww.AulasParticulares.Info - Geografia -  Efeito Estufa  e Aquecimento Global
www.AulasParticulares.Info - Geografia - Efeito Estufa e Aquecimento Global
 
Fenômenos Atmosféricos
Fenômenos AtmosféricosFenômenos Atmosféricos
Fenômenos Atmosféricos
 
Atmosfera - Biologia
Atmosfera - BiologiaAtmosfera - Biologia
Atmosfera - Biologia
 
Efeito estufa
Efeito estufaEfeito estufa
Efeito estufa
 
Química Ambiental
Química AmbientalQuímica Ambiental
Química Ambiental
 
O Aquecimento Global e o Efeito estufa
O Aquecimento Global e o Efeito estufaO Aquecimento Global e o Efeito estufa
O Aquecimento Global e o Efeito estufa
 
Mudanças Climáticas
Mudanças ClimáticasMudanças Climáticas
Mudanças Climáticas
 
Pp tozono2
Pp tozono2Pp tozono2
Pp tozono2
 
Ciclo do carbono
Ciclo do carbonoCiclo do carbono
Ciclo do carbono
 
Atividades aquecimento global e efeito estufa
Atividades aquecimento global e efeito estufaAtividades aquecimento global e efeito estufa
Atividades aquecimento global e efeito estufa
 
Alterações na atmosfera e suas implicações
Alterações na atmosfera e suas implicaçõesAlterações na atmosfera e suas implicações
Alterações na atmosfera e suas implicações
 
Aula da 5ª série efeito estufa 2008
Aula da 5ª série efeito estufa 2008Aula da 5ª série efeito estufa 2008
Aula da 5ª série efeito estufa 2008
 
Efeito estufa
Efeito estufaEfeito estufa
Efeito estufa
 
Aula efeito estufa
Aula efeito estufaAula efeito estufa
Aula efeito estufa
 
Agravamento do efeito de estufa
Agravamento do efeito de estufaAgravamento do efeito de estufa
Agravamento do efeito de estufa
 
Ciclo do carbono
Ciclo do carbonoCiclo do carbono
Ciclo do carbono
 
Alterações na atmosfera
Alterações na atmosferaAlterações na atmosfera
Alterações na atmosfera
 
Ciclo do carbono
Ciclo do carbonoCiclo do carbono
Ciclo do carbono
 
Efeito estufa
Efeito estufaEfeito estufa
Efeito estufa
 
Prof(a) Luis Carlos / ATMOSFERA
Prof(a) Luis Carlos / ATMOSFERAProf(a) Luis Carlos / ATMOSFERA
Prof(a) Luis Carlos / ATMOSFERA
 

En vedette

Percepção Ambiental TAIM (marcelo)
Percepção Ambiental TAIM   (marcelo)Percepção Ambiental TAIM   (marcelo)
Percepção Ambiental TAIM (marcelo)Marcelo Gomes
 
Futuyma evolução ciência e sociedade
Futuyma   evolução ciência e sociedadeFutuyma   evolução ciência e sociedade
Futuyma evolução ciência e sociedadeMarcelo Gomes
 
Fritjof capra a teia da vida (pdf)
Fritjof capra   a teia da vida (pdf)Fritjof capra   a teia da vida (pdf)
Fritjof capra a teia da vida (pdf)Marcelo Gomes
 
Apresentação gees 05.02
Apresentação gees 05.02Apresentação gees 05.02
Apresentação gees 05.02Marcelo Gomes
 
Ecossistemas - Nível superior
Ecossistemas - Nível superior Ecossistemas - Nível superior
Ecossistemas - Nível superior Marcelo Gomes
 
Fundamento de Ecologia - fluxo de energia (nível superior)
Fundamento de Ecologia -  fluxo de energia (nível superior)Fundamento de Ecologia -  fluxo de energia (nível superior)
Fundamento de Ecologia - fluxo de energia (nível superior)Marcelo Gomes
 

En vedette (6)

Percepção Ambiental TAIM (marcelo)
Percepção Ambiental TAIM   (marcelo)Percepção Ambiental TAIM   (marcelo)
Percepção Ambiental TAIM (marcelo)
 
Futuyma evolução ciência e sociedade
Futuyma   evolução ciência e sociedadeFutuyma   evolução ciência e sociedade
Futuyma evolução ciência e sociedade
 
Fritjof capra a teia da vida (pdf)
Fritjof capra   a teia da vida (pdf)Fritjof capra   a teia da vida (pdf)
Fritjof capra a teia da vida (pdf)
 
Apresentação gees 05.02
Apresentação gees 05.02Apresentação gees 05.02
Apresentação gees 05.02
 
Ecossistemas - Nível superior
Ecossistemas - Nível superior Ecossistemas - Nível superior
Ecossistemas - Nível superior
 
Fundamento de Ecologia - fluxo de energia (nível superior)
Fundamento de Ecologia -  fluxo de energia (nível superior)Fundamento de Ecologia -  fluxo de energia (nível superior)
Fundamento de Ecologia - fluxo de energia (nível superior)
 

Similaire à Emissão de metano em banhado subtropical

EFEITO ESTUFA E AQUECIMENTO GLOBAL
EFEITO ESTUFA E AQUECIMENTO GLOBALEFEITO ESTUFA E AQUECIMENTO GLOBAL
EFEITO ESTUFA E AQUECIMENTO GLOBALgestaoambientalUNESA
 
Créditos de carbono
Créditos de carbonoCréditos de carbono
Créditos de carbonoCesar Abreu
 
Atualidade maio magsul 1
Atualidade maio magsul 1Atualidade maio magsul 1
Atualidade maio magsul 1segundoanob
 
Química ambiental volume 1 - a atmosfera
Química ambiental   volume 1 - a atmosferaQuímica ambiental   volume 1 - a atmosfera
Química ambiental volume 1 - a atmosferarobertolima
 
Trabalho emas ciclos biogeoquímicos
Trabalho emas   ciclos biogeoquímicosTrabalho emas   ciclos biogeoquímicos
Trabalho emas ciclos biogeoquímicosLowrrayny Franchesca
 
As fontes e as formas de energia - GEOGRAFIA
As fontes e as formas de energia - GEOGRAFIAAs fontes e as formas de energia - GEOGRAFIA
As fontes e as formas de energia - GEOGRAFIAKAREN HÜSEMANN
 
Aquecimento+global +molion
Aquecimento+global +molionAquecimento+global +molion
Aquecimento+global +molionhelen0goulart
 
Alterações climáticas #1
Alterações climáticas #1Alterações climáticas #1
Alterações climáticas #1pasf4ever
 
Efeito De Estufa
Efeito De EstufaEfeito De Estufa
Efeito De Estufaguest45de82
 
ESTRATÉGIAS PARA LIDAR COM AS MUDANÇAS CLIMÁTICAS GLOBAIS.pdf
ESTRATÉGIAS PARA LIDAR COM AS MUDANÇAS CLIMÁTICAS GLOBAIS.pdfESTRATÉGIAS PARA LIDAR COM AS MUDANÇAS CLIMÁTICAS GLOBAIS.pdf
ESTRATÉGIAS PARA LIDAR COM AS MUDANÇAS CLIMÁTICAS GLOBAIS.pdfFaga1939
 
Efeito de estufa
Efeito de estufaEfeito de estufa
Efeito de estufaap3bmachado
 
Fluxo de-gases-traco-de-efeito-estufa-na-interface-solo atmosfera-em-solos-de...
Fluxo de-gases-traco-de-efeito-estufa-na-interface-solo atmosfera-em-solos-de...Fluxo de-gases-traco-de-efeito-estufa-na-interface-solo atmosfera-em-solos-de...
Fluxo de-gases-traco-de-efeito-estufa-na-interface-solo atmosfera-em-solos-de...Fernanda de Sousa Fernandes
 
Prof(a) Luis Carlos / ATMOSFERA
Prof(a) Luis Carlos / ATMOSFERAProf(a) Luis Carlos / ATMOSFERA
Prof(a) Luis Carlos / ATMOSFERACarlaRosario
 
15130 Sum Wg1 2007 Port
15130 Sum Wg1 2007  Port15130 Sum Wg1 2007  Port
15130 Sum Wg1 2007 PortMyris Silva
 

Similaire à Emissão de metano em banhado subtropical (20)

Slides quimica bezerra
Slides quimica bezerraSlides quimica bezerra
Slides quimica bezerra
 
EFEITO ESTUFA E AQUECIMENTO GLOBAL
EFEITO ESTUFA E AQUECIMENTO GLOBALEFEITO ESTUFA E AQUECIMENTO GLOBAL
EFEITO ESTUFA E AQUECIMENTO GLOBAL
 
Créditos de carbono
Créditos de carbonoCréditos de carbono
Créditos de carbono
 
Atualidade maio magsul 1
Atualidade maio magsul 1Atualidade maio magsul 1
Atualidade maio magsul 1
 
Esse
EsseEsse
Esse
 
Química ambiental volume 1 - a atmosfera
Química ambiental   volume 1 - a atmosferaQuímica ambiental   volume 1 - a atmosfera
Química ambiental volume 1 - a atmosfera
 
Trabalho emas ciclos biogeoquímicos
Trabalho emas   ciclos biogeoquímicosTrabalho emas   ciclos biogeoquímicos
Trabalho emas ciclos biogeoquímicos
 
Eduardo assad agrocafé salvador
Eduardo assad agrocafé salvadorEduardo assad agrocafé salvador
Eduardo assad agrocafé salvador
 
As fontes e as formas de energia - GEOGRAFIA
As fontes e as formas de energia - GEOGRAFIAAs fontes e as formas de energia - GEOGRAFIA
As fontes e as formas de energia - GEOGRAFIA
 
Aquecimento+global +molion
Aquecimento+global +molionAquecimento+global +molion
Aquecimento+global +molion
 
Aquecimento global
Aquecimento globalAquecimento global
Aquecimento global
 
Alterações climáticas #1
Alterações climáticas #1Alterações climáticas #1
Alterações climáticas #1
 
Efeito De Estufa
Efeito De EstufaEfeito De Estufa
Efeito De Estufa
 
C iclo c
C iclo cC iclo c
C iclo c
 
ESTRATÉGIAS PARA LIDAR COM AS MUDANÇAS CLIMÁTICAS GLOBAIS.pdf
ESTRATÉGIAS PARA LIDAR COM AS MUDANÇAS CLIMÁTICAS GLOBAIS.pdfESTRATÉGIAS PARA LIDAR COM AS MUDANÇAS CLIMÁTICAS GLOBAIS.pdf
ESTRATÉGIAS PARA LIDAR COM AS MUDANÇAS CLIMÁTICAS GLOBAIS.pdf
 
Efeito de estufa
Efeito de estufaEfeito de estufa
Efeito de estufa
 
Fluxo de-gases-traco-de-efeito-estufa-na-interface-solo atmosfera-em-solos-de...
Fluxo de-gases-traco-de-efeito-estufa-na-interface-solo atmosfera-em-solos-de...Fluxo de-gases-traco-de-efeito-estufa-na-interface-solo atmosfera-em-solos-de...
Fluxo de-gases-traco-de-efeito-estufa-na-interface-solo atmosfera-em-solos-de...
 
Prof(a) Luis Carlos / ATMOSFERA
Prof(a) Luis Carlos / ATMOSFERAProf(a) Luis Carlos / ATMOSFERA
Prof(a) Luis Carlos / ATMOSFERA
 
Aquecimento Global - Keydian Teixeira
Aquecimento Global - Keydian TeixeiraAquecimento Global - Keydian Teixeira
Aquecimento Global - Keydian Teixeira
 
15130 Sum Wg1 2007 Port
15130 Sum Wg1 2007  Port15130 Sum Wg1 2007  Port
15130 Sum Wg1 2007 Port
 

Plus de Marcelo Gomes

Aula 2 principais causas de perda de biodiversidade
Aula 2  principais causas de perda de biodiversidadeAula 2  principais causas de perda de biodiversidade
Aula 2 principais causas de perda de biodiversidadeMarcelo Gomes
 
Aula 1 ciência ambiental
Aula 1 ciência ambientalAula 1 ciência ambiental
Aula 1 ciência ambientalMarcelo Gomes
 
Aproximações teóricas entre a prática do Surf e Ecologia Humana
Aproximações teóricas entre a prática do Surf e Ecologia HumanaAproximações teóricas entre a prática do Surf e Ecologia Humana
Aproximações teóricas entre a prática do Surf e Ecologia HumanaMarcelo Gomes
 
Pré vestibulares populares
Pré vestibulares popularesPré vestibulares populares
Pré vestibulares popularesMarcelo Gomes
 
Caderno de receitas do Guerreiro da Luz
Caderno de receitas do Guerreiro da LuzCaderno de receitas do Guerreiro da Luz
Caderno de receitas do Guerreiro da LuzMarcelo Gomes
 
Estudo 2 (phytoplankton)
Estudo 2 (phytoplankton)Estudo 2 (phytoplankton)
Estudo 2 (phytoplankton)Marcelo Gomes
 
A importância do estágio supervisionado no curso de ciências biológicas li...
A importância  do estágio supervisionado no curso de ciências biológicas   li...A importância  do estágio supervisionado no curso de ciências biológicas   li...
A importância do estágio supervisionado no curso de ciências biológicas li...Marcelo Gomes
 
Reflexões do estágio 2011 marcelo
Reflexões do estágio 2011   marceloReflexões do estágio 2011   marcelo
Reflexões do estágio 2011 marceloMarcelo Gomes
 
Aula 1 fundamentos de genética
Aula 1   fundamentos de genética  Aula 1   fundamentos de genética
Aula 1 fundamentos de genética Marcelo Gomes
 
Simulado ousadia enem 2011
Simulado ousadia enem 2011Simulado ousadia enem 2011
Simulado ousadia enem 2011Marcelo Gomes
 
Análise de livros didáticos de biologia
Análise de livros didáticos de biologia Análise de livros didáticos de biologia
Análise de livros didáticos de biologia Marcelo Gomes
 
Escola Porto seguro pdf
Escola Porto seguro pdfEscola Porto seguro pdf
Escola Porto seguro pdfMarcelo Gomes
 
Escola Porto Seguro - 6B Marcelo
Escola Porto Seguro - 6B MarceloEscola Porto Seguro - 6B Marcelo
Escola Porto Seguro - 6B MarceloMarcelo Gomes
 

Plus de Marcelo Gomes (15)

Aula 2 principais causas de perda de biodiversidade
Aula 2  principais causas de perda de biodiversidadeAula 2  principais causas de perda de biodiversidade
Aula 2 principais causas de perda de biodiversidade
 
Aula 1 ciência ambiental
Aula 1 ciência ambientalAula 1 ciência ambiental
Aula 1 ciência ambiental
 
Aproximações teóricas entre a prática do Surf e Ecologia Humana
Aproximações teóricas entre a prática do Surf e Ecologia HumanaAproximações teóricas entre a prática do Surf e Ecologia Humana
Aproximações teóricas entre a prática do Surf e Ecologia Humana
 
Pré vestibulares populares
Pré vestibulares popularesPré vestibulares populares
Pré vestibulares populares
 
Caderno de receitas do Guerreiro da Luz
Caderno de receitas do Guerreiro da LuzCaderno de receitas do Guerreiro da Luz
Caderno de receitas do Guerreiro da Luz
 
Areias do Albardão
Areias do AlbardãoAreias do Albardão
Areias do Albardão
 
Estudo 2 (phytoplankton)
Estudo 2 (phytoplankton)Estudo 2 (phytoplankton)
Estudo 2 (phytoplankton)
 
A importância do estágio supervisionado no curso de ciências biológicas li...
A importância  do estágio supervisionado no curso de ciências biológicas   li...A importância  do estágio supervisionado no curso de ciências biológicas   li...
A importância do estágio supervisionado no curso de ciências biológicas li...
 
Reflexões do estágio 2011 marcelo
Reflexões do estágio 2011   marceloReflexões do estágio 2011   marcelo
Reflexões do estágio 2011 marcelo
 
Aula 1 fundamentos de genética
Aula 1   fundamentos de genética  Aula 1   fundamentos de genética
Aula 1 fundamentos de genética
 
Simulado ousadia enem 2011
Simulado ousadia enem 2011Simulado ousadia enem 2011
Simulado ousadia enem 2011
 
Análise de livros didáticos de biologia
Análise de livros didáticos de biologia Análise de livros didáticos de biologia
Análise de livros didáticos de biologia
 
Escola Porto seguro pdf
Escola Porto seguro pdfEscola Porto seguro pdf
Escola Porto seguro pdf
 
Escola Porto Seguro - 6B Marcelo
Escola Porto Seguro - 6B MarceloEscola Porto Seguro - 6B Marcelo
Escola Porto Seguro - 6B Marcelo
 
Unidade Didática
Unidade DidáticaUnidade Didática
Unidade Didática
 

Emissão de metano em banhado subtropical

  • 1. UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG PÓS-GRADUAÇÃO EM BIOLOGIA DE AMBIENTES AQUÁTICOS CONTINENTAIS LABORATÓRIO DE LIMNOLOGIA – ICB PROJETO DE MESTRADO Emissão de metano em banhado subtropical Autor: Marcelo Gomes Orientador: Dr. Cleber Palma Silva Co-orientadora: Dra. Edélti Faria Albertoni Rio Grande, 2012.
  • 2. SUMÁRIO RESUMO 3 1. INTRODUÇÃO 4 1.1 - A importância do metano como GEE 6 1.2 - Banhados, fontes naturais de metano 9 1.3 - Estimativas das emissões de metano 13 2. OBJETIVOS 14 3. METODOLOGIA 15 3.1 - Área de estudo 15 3.2 - Coleta das Amostras 16 3.4 - Análise de sedimento 18 3.5 - Análise de metano 19 3.6 - Determinação dos fluxos de metano 20 3.7 - Análise estatística 20 4. CRONOGRAMA 21 5. ORÇAMENTO/ VIABILIDADE 22 6. BIBLIOGRAFIA 23 2
  • 3. RESUMO Um dos principais gases responsável pelo efeito estufa (GEE) é o metano (CH4). Uma parcela significativa do metano emitido para a atmosfera é produzido naturalmente em áreas alagadas e banhados, em solo saturado e anóxico. Os banhados correspondem, aproximadamente, a 40% do total do metano emitido na atmosfera e estudos tem mostrado que este valor tem aumentado 1% ao ano. Este estudo pretende estimar a emissão de metano através da técnica de câmaras estáveis em um banhado localizado no município de Rio Grande-RS (32º 04’ S e 52º 09’ W). Serão determinadas as médias das taxas de emissão em duas estações do ano, inverno e verão de 2013, distribuídas em gradiente de umidade do solo. A hipótese que norteia este estudo é que ocorre maior emissão de metano durante o verão nas áreas mais úmidas. As amostras de ar serão coletadas em seringas e a concentração de CH4 será analisadas através de cromatografia gasosa. Será feita caracterização do perfil vertical dos 10 cm superficiais do sedimento do banhado para análise das concentrações de CH4, porcentagem de matéria orgânica (M.O.) e granulometria (GR). Este trabalho pretende contribuir para a elaboração de uma estimativa representativa de emissão de metano em banhados subtropicais brasileiros. Palavras-chave: Gases efeito estufa, metano, carbono, banhado de clima subtropical. 3
  • 4. 1. INTRODUÇÃO Às modificações climáticas de origem natural atualmente acrescentam-se aquelas que resultam de atividades humanas, pois sua amplitude tornou-se considerável. Esses fenômenos tem sido estudados em escala mundial por programas internacionais como o PIGB (Programa Internacional Geosfera Biosfera) ou PMRC (Programa Mundial de Pesquisa sobre o Clima). Esse tipo de pesquisa tem como objetivo descrever e compreender os fenômenos observados, criar modelos e prever sua evolução e seu impacto sobre a biosfera nos anos futuros (DAJOZ, 2006). Segundo DAJOZ (2006) a temperatura da superfície da Terra resulta de um equilíbrio entre a radiação solar incidente e a perda de energia por radiação para o espaço. Estima-se que sem a atmosfera a temperatura da superfície da Terra seria – 19ºC, ou seja 35ºC menor que sua temperatura real. Isso se deve à presença na atmosfera de vapor de água, de gás carbônico e outros gases que absorvem a radiação e assim criam o efeito estufa natural. A radiação infravermelha é parcialmente absorvida e refletida pelos GEEs. Consequentemente a zona interior da atmosfera e a superfície da terra são aquecidas Atmosfera .. .. . .. . ... . (GEEs). . . . .. .. ... .. .. A superfície da Terra absorve Superfície terrestre a maioria da radiação solar e utiliza-a para gerar calor. Figura I – Esquema efeito estufa na atmosfera. FONTE: Adaptado de IPCC 2007. 4
  • 5. O efeito estufa deve-se à capacidade de alguns gases existentes na atmosfera terrestre, conhecidos como gases do efeito estufa (GEEs), de absorver e reemitir a radiação de onda longa, ou infravermelha (comprimentos de onda entre cerca de 0,7 μm e 100 μm) emitida pela superfície da Terra. Isto leva a um aumento da temperatura no sistema Terra- atmosfera (IPCC, 2007). A Figura I apresenta um esquema do efeito estufa na atmosfera, que é praticamente transparente à radiação solar e absorve fortemente na faixa do infravermelho. Os principais gases responsáveis pelo efeito estufa são: dióxido de carbono (CO2), produzido através da queima de combustíveis fósseis, queima de biomassa e do revolvimento do solo; metano (CH4), produzido naturalmente em banhados e em lavouras de arroz, fermentação entérica, queima da biomassa, aterros de lixo, minas de carvão e oceanos; clorofluorcarbonetos (CFCs), oriundos da atividade industrial; e, óxido nitroso (NO2), liberado após aplicação de fertilizantes nitrogenados em áreas agrícolas (MILICH, 1999). Mudanças climáticas podem ocorrer como resultado da liberação excessiva de gases de efeito estufa (GEEs) na atmosfera, ou seja, pelo desequilíbrio no balanço entre a emissão e absorção desses gases. Estes por sua vez formam uma espécie de cobertor atmosférico que torna o planeta cada vez mais quente por não permitir a saída de radiação Infra-vermelho (UV) (WWF, 2012). O governo brasileiro instituiu no dia 17 de abril de 2009 o Painel Brasileiro sobre Mudanças do Clima. A iniciativa reúne cientistas e pesquisadores de várias instituições e centros universitários. O grupo de cientistas brasileiros vai compilar e analisar toda a produção científica do País a respeito dos mais diferentes aspectos das alterações do clima no país. Dentre a diversidade de áreas de pesquisas e rede de climas no território brasileiro, a FURG, Universidade Federal do Rio Grande assumiu o compromisso de estudar as Zonas Costeiras (PORTAL BRASIL, 2012). O aumento da temperatura global (efeito estufa) promoverá várias anomalias climáticas. Dada a grande preocupação gerada, o IPCC (Painel Intergovernamental sobre Mudanças Climáticas) foi estabelecido em 1988 pela Organização Meteorológica Mundial e o Programa das Nações Unidas para o Meio Ambiente (PNUMA) para fornecer informações científicas, técnicas e socioeconômicas relevantes para o entendimento das mudanças climáticas (IPCC, 2007). O IPCC em seu primeiro relatório de avaliação sobre o Meio Ambiente, publicado em 1990, reuniu argumentos em favor da criação da Convenção do Quadro das Nações 5
  • 6. Unidas para Mudanças do Clima, nessa instância os governos negociam políticas referentes à mudança climática. O segundo relatório do IPCC foi publicado em 1995 e acrescentou ainda mais elementos às discussões que resultaram na adoção do Protocolo de Kyoto dois anos depois. O terceiro relatório do IPCC foi publicado em 2001. Em 2007, o grupo publicou seu quarto grande relatório. Desde o primeiro relatório, o trabalho do IPCC tem sido publicado em quatro etapas e é produzido por três grupos de trabalho. O primeiro grupo (GT – I) é responsável pelo primeiro capítulo, que reúne evidências científicas de que a mudança climática se deve à ação do homem. O segundo (GT – II) trata-se das consequências da mudança climática para o meio ambiente e para a saúde humana. O terceiro (GT – III) estuda maneiras de combater as mudança climáticas e prover alternativas de adaptação das populações. Um quarto capítulo sintetiza as conclusões dos anteriores (IPCC, 2007). Em 2007, no relatório principal e uma versão resumida, conhecida como Summary for Policymakers (Resumo para os elaboradores da política), os principais pontos de conclusão foram que: 1) O aquecimento do sistema climático é inequívoco. A maioria do aumento observado na temperatura média global desde meados do século XX é muito parecido ao aumento observado na concentração de gases do efeito estufa antropogênico. 2) A temperatura mundial poderá aumentar entre 1,1 e 6,4 °C durante o século XXI. 3) O nível do mar provavelmente se elevará entre 18 a 59 cm. 4) Há um nível de confiança maior que 90% de que haverá mais derretimento glacial, ondas de calor e chuvas torrenciais. 5) Concentrações atmosféricas globais de dióxido de carbono, metano, e óxido nitroso têm aumentado significativamente como resultado de atividades humanas desde 1750 (IPCC, 2007 ). 1.1 - A importância do metano como GEE O IPCC define a mudança climática como uma variação estatisticamente significa em um parâmetro climático médio ou sua variabilidade, persistindo por um período extenso, tipicamente décadas ou por mais tempo. A mudança climática pode ser devido a processos naturais ou forças externas ou devido a mudanças persistentes causadas pela ação do homem na composição da atmosfera ou do uso da terra (IPCC, 2007). 6
  • 7. Dentre os gases, um de grande destaque é o metano (CH4), devido à quantidade emitida e à atividade desempenhada na absorção radioativa. Com relação à quantidade produzida, o metano é o segundo gás mais importante, sendo superado apenas pelo CO2. Com uma concentração média de 1,7 ppm (DLUGOKENCKY et al., 1994). Apresenta média de variação ente o hemisfério Norte e Sul de 0.14 ppm e variação sazonal de cerca de 0,03 ppm (DLUGOKENCKY et al., 1994). Metano é um GEE, com capacidade de absorção de calor atmosférico 15 a 40 vezes superior à do CO2 (CAO et al., 1998). Por outro lado, sua reação com o oxigênio (O2) na presença de óxido nítrico, forma ozônio na troposfera terrestre (MILICH, 1999). Além disso, o metano minimiza o ataque de átomos de cloro ao ozônio, reagindo com cloro formando ácido clorídrico, o qual atua como reservatório inerente de cloro (MILICH, 1999). Ainda, segundo este autor a reação chave do metano na atmosfera inclui sua oxidação com radicais hidroxilas, formando água. A concentração troposférica do metano é estimada em 4700 teragramas (1Tg=1012g) (SASS,1994). Análises de ar preso em gelo polar estimaram emissão de metano de cerca de 180 TgCH4/ano durante o século XV e 200TgCH4/ano no início do século XVIII (KHALIL, 1994). Estudos mais atuais estimam a concentração atual de metano na atmosfera terrestre está em torno de 1770 ppbv (parte por bilhões em volume) (SIMPSON et al., 2006), correspondendo a um reservatório atmosférico de mais de 4900 Tg ( = 1012gramas) de metano (TgCH4). As estimativas para o balanço global de metano indicam uma emissão anual total de 503 ± 125 TgCH4/ano, com uma faixa de estimativa entre 410 e 660 TgCH4/ano e um sumidouro de 515 ± 85 TgCH4/ano, com uma faixa de estimativa entre 430-600 TgCH4/ano (WUEBBLES E HAYHOE, 2002). Embora atualmente seu balanço global seja determinado a partir de uma grande base de dados, até recentemente as fontes e sumidouros de metano não eram bem conhecido e incertezas importantes ainda permanecem nos fluxos individuais. A Tabela I (AMSTEL, 1998), apresenta o balanço global de metano, onde a emissão global foi estimada em 515 TgCH4/ano. 7
  • 8. Tabela I – Fontes e sumidouros de metano Fonte: Adapatado de AMSTEL, 1998. Fontes e sumidouros de metano Fontes naturais TgCH4/ano Áreas alagadas 115 Cupins 20 Oceanos 10 Rios 5 Hidratos de metano 5 Fontes antropogênicas Combustíveis fósseis: carvão, gás natural, petróleo. 85 Cultivo de arroz irrigado 60 Fermentação entérica 80 Queima de biomassa 40 Dejeto de animais 25 Tratamento de esgoto doméstico 55 Lixeiras 30 Sumidouros Remoção na atmosfera 470 Remoção pelos solos 30 Excedente anual 32 O Principal sumidouro na atmosfera ocorre com a reação com o radical hidroxila com o radical oxidrila (OH) na troposfera o qual é responsável pela remoção de mais de 90% do metano emitido. Além desses, existem mais dois sumidouros menores, a absorção pelos solos aerados e o transporte para a estratosfera. No balanço global observa-se um excedente de emissão em relação ao removido anualmente de 32 TgCH4/ano, o que corresponde ao crescimento anual de 0,6% desse gás na atmosfera (AMSTEL, 1998). 8
  • 9. 1.2 - Banhados, fontes naturais de metano Uma parcela significativa do metano naturalmente produzido é proveniente do sedimento anóxico de zonas úmidas, áreas alagadiças ou banhados , cujo termo em inglês é universalmente conhecido como “wetlands” que são encontradas em todos os continentes (Figura II), latitudes temperadas, subtropicais e tropicais. Zonas úmidas Áreas com abundância de zonas úmidas Figura II- Distribuição geral das zonas úmidas no mundo. FONTE: Adaptado de MITSCH E GOSSELINK, 2000. A contribuição individual das áreas alagadas correspondem a cerca de 70% das fontes naturais para este gás. Os banhados respondem por aproximadamente 40% do total do metano emitido na atmosfera (IPCC, 2007). Estudos de DLUGOKENCKY et al., (1994), concluiu que esses valor tem aumentado aproximadamente 1% ao ano (DLUGOKENCKY et al., (1994). 9
  • 10. De acordo com estudos de CAO et al., (1998), a emissão anual oriunda de banhados naturais e não naturais é estimada em 145 Tg ano -1, a qual tem aumentado à taxa de 1% ao ano. Essas áreas podem ser tanto naturais quanto antropogênicas (no caso dos arrozais). Nas áreas alagadas naturais, como banhados e áreas de inundação, a emissão do metano produzido no substrato para a atmosfera ocorre através da difusão através da lâmina d’água e da liberação por bolhas. Essas emissões podem ser influenciadas por fatores ambientais como temperatura da água e do substrato, velocidade dos ventos, pH e quantidade de oxigênio dissolvido na água. Banhados são importantes componentes da Biosfera e possuem papel significante na ciclagem e balanço do carbono global. A diversidade de tipos de banhados é resultado da geologia, topografia e clima regionais. Diversos tipos de classificação têm sido propostas com base na hidrologia, ecologia e características químicas dessas áreas. Geralmente banhadas são áreas dificilmente drenadas, periodicamente saturadas ou cobertas com água (FORD, 1993). Essas áreas sustentam uma diversidade de habitats e abundância alimentar que permite a coexistência de muitas espécies. Zonas úmidas e banhados são formados de diversas maneiras (FORD, 1993): 1) Através de rios, lagos e até mesmo oceanos, que ao retornarem a seu nível natural, deixam porção significativa de água nessas terras. 2) Onde a drenagem do solo é ruim devido a impermeabilidade da rocha, ou camada de argila, ou quando a taxas de precipitação excedem a evaporação. 3) Devido a acumulação de matéria orgânica no sedimento de lagos ou como consequência da atividade humana. Os solos de banhados se formaram sob condições de saturação, inundação e ao longo do seu desenvolvimento propiciaram condições anaeróbicas. Segundo MITSCH E GOSSELINK (2000) solos de banhados são de dois tipos: (1) solos minerais ou (2) solos orgânicos. Geralmente todos os solos são constituídos de uma parte de matéria orgânica, quando o solo possui menos de 20 a 35% de matéria orgânica (MO) é considerado um solo mineral. Em muitos ecossistemas lacustres as entradas de matéria orgânica é constituída por algas. Contudo em banhados a fonte são originárias de macrófitas (FORD, 1993). 10
  • 11. A definição e a classificação de áreas alagadas são difíceis e imprecisas, dependendo do regionalismo e da cultura local pode ser denominado de charcos, pântanos, brejos. Essas áreas são estrategicamente importantes, tendo em vista sua função de filtragem, armazenamento e reservatório de águas. Desempenham um papel vital para garantir o abastecimento de água potável, a população de peixes, conservação da biodiversidade, disponibilidade de água para a irrigação, ou mesmo proteção contra inundação. Assim, áreas de banhado oferecem uma valiosa contribuição para a subsistência local. A “Internacional Union for the Conservation of Nature and Natural Resources” (IUCN), adotou a seguinte definição: “Áreas alagadas são regiões com solos saturados de água, ou submersas, naturais ou artificiais, permanentes ou temporárias, onde a água pode ser estática ou com fluxo, salinas, salobras ou água doce”. Para COWARDIN (1979), banhados e zonas úmidas são ecossistemas onde a saturação com água é o fator essencial para o controle e desenvolvimento das espécies de plantas e animais que estão presentes. Neste trabalho o termo áreas alagadas (ou banhado) deverá referir-se ao mesmo ecossistema que, ou está permanentemente sob inundação ou sofre inundação com flutuação de nível. Assim essas áreas são importantes fontes naturais de gás metano (CH4) que é produzido por bactérias que vivem em condições anóxicas (COWARDIN, 1997). Este processo denominado metanogênese (realizado por arqueobactérias metanogênicas) é o último estágio de decomposição do carbono em vários ambientes anaeróbicos, tais como o trato intestinal dos animais, solos inundados, habitats geotérmicos e sedimentos de áreas alagadas de água doce ou salina (FENCHEL E MICHELL, 1998). Segundo Esteves (2011), a metanogênese é considerada um dos mais importantes processos de degradação da matéria orgânica em sedimento aquático anóxico. A produção pode ocorre através da decomposição de acetato (1) ou transformação de CO2 em CH4 (2) como indicado as reações: (1) CH3COO- → CH4 + CO2 (2) CO2 + 4 H2 →CH4 + H2O Essas reações estão condicionadas também pela quantidade e natureza da matéria orgânica (MO) (MER 2001). Nesse sentido é importante o conhecimento da flora associada aos banhados e áreas alagadiças e avaliação da disponibilidade da MO no sedimento. Observações realizadas relataram que a produção biológica de metano é dependente da 11
  • 12. temperatura, com pico máximo de produção em torno de 30 ºC (BOONE E WHITMAN, 2000). O regime hídrico é um importante fator que influencia a liberação de gases entre o solo e a atmosfera, tendo efeito direto nos processos envolvidos na produção, oxidação e transporte de metano. Solos alagados apresentam decréscimo de 10000 vezes na difusão de gases, o que resulta em mudanças físico químicas e biológicas no solo, propiciando condições que favorecem a produção e a emissão de metano (BHARATI et al., 2001). A produção de metano depende do conteúdo de água no solo, variando entre os períodos de inundação ou drenagem do solo. Quando o conteúdo de água no solo é inferior a 23% a produção de metano é baixa, podendo ser desconsiderada, no entanto foi verificada correlação linear entre produção total de metano e conteúdo de água no solo para valores entre 17 e 67% (YANG E CHANG, 1998). Ainda, segundo este, autor quanto maior for a submersão do solo, maiores serão a taxa de produção de metano e o total produzido, o que se deve ao incremento da anaerobiose. A submersão de um solo aeróbico resulta em sucessivas reações de redução. Inicialmente, as mudanças químicas predominantes, devido à inundação do solo, são o desaparecimento do O2, a decomposição anaeróbica da matéria orgânica, acumulação de CO2 ou sua redução a CH4 (WANG et al., 1993). O potencial de redução do solo varia de 400 a 600 mV em solos aerados e 100 a -300 mV em solos reduzidos ou anaeróbicos (KLUDZE et al., 1995). Estudos têm mostrado que as bactérias metanogênicas apresentam máxima população em solos completamente reduzidos. Nos estudos de KLUDZE et al. (1993) observou-se que a metanogênese era estimulada apenas quando o potencial de redução era inferior a -200mV. Os autores verificaram que a produção de metano aumentou de 10 a 17 vezes quando o potencial de redução do solo foi reduzido de -200mV para -300mV. Estudos de MITRA et al. (1999) concluiuram que a produção de metano está na dependência da disponibilidade de substrato e o potencial de redução do solo. Assim, a emissão de metano depende do tipo do solo. 12
  • 13. 1.3 - Estimativas das emissões de metano Segundo pesquisas de BARTLETT E HARRISS et al. (1993), a estimativa para a emissão global em áreas alagadas tropicais é de 66 TgCH4/ano, considerando que estas ocupem uma área total de 1.885.000 km2, o que corresponderia a aproximadamente 60% do total de emissões estimadas para todas as áreas alagadas naturais. Estudos realizados em diversos locais têm demonstraram que dependendo do tipo o solo alagado poderá ter alta emissão de metano (LIIKANEN et al. 2006). Contudo os dados são variáveis devido aos diferentes ecossistemas e diferenças climáticas. Por exemplo, estudos de Tanner et al. (1997), tem mostrado que o fluxo de metano varia entre 28 e 278 mg-C m-2 h-1 (tabela II) para diferentes tipos de banhados. TABELA II- Revisão de fluxo de metano para diferentes tipos de banhados. FONTE: WETLANDS INTERNATIONAL (2009). Tipos de Banhado Local CH4-C (mg CH4-C m-2 h-1) Referencia Banhado ciliar USA (Ohio) 3.5 Altor and Mitsch (2006) Campos alagados USA (Alaska) 0,66-17.75 Bartlett et al. (1992) Banhados de água China 130 Tai et al. (2002) doce 0,0091- Banhado artificial Estônia Mander et al (2008) 371.83 Banhado artificial Nova Zelândia 27.6-278 Tanner et al (1997) Continuamente China (Norte) 0.5-0.19 Zhang et al. (2005) alagado Naturalmente Brasil 8-92 Barlett et al. (1988) inundados Ström and Christensen Banhado Sub-ártico Suécia 0.2-36.1 (2007) Apesar da importância da emissão de metano em banhados estar evidente nos dias atuais, há incertezas sobre as estimativas dos fluxos. Portanto as previsões continuam de certa forma obscuras tendo em vista a uma resposta a mudança climática global (CAO, 1998). Alguns estudos em áreas alagadas tropicais no Pantanal Brasileiro têm estimado o fluxo de metano (Tabela III): 13
  • 14. Tabela III - Revisão de fluxo de metano para diferentes tipos de banhados. Localização Emissão CH4 (mg CH4/m/dia) Referência Tipo da Área Brasil 53-330 Engle e Melack (2000) Lago tropical Brasil 2-25 Engle e Melack (2000) Lago tropical Brasil 50-8 Melack et al. (2004) Lago Tropical Lago tropical com Brasil 120-40 Melack et al. (2004) vegetação e água rasa. Lago tropical com Brasil 320-70 Melack et al. (2004) vegetação Brasil 140-310 Marani e Alvalá (2007) Lagos tropicais Apesar dos estudos estarem sendo desenvolvidos em diversos locais, a dinâmica do metano em ecossistemas de zonas úmidas em regiões subtropicais são relativamente pouco compreendidas. Desta forma, este estudo pretende estimar a emissão de metano através da técnica de câmaras estáveis em um banhado natural de clima sub tropical (32° 04' S e 52° 09' W) localizado no município de Rio Grande-RS, determinando as médias das taxas de emissão em duas estação do ano, inverno e verão, em transectos de áreas secas e úmidas. Nossa hipótese é que ocorre maior emissão de metano durante o verão nas áreas mais úmidas. 2. OBJETIVOS Portanto o objetivo geral desse trabalho é contribuir para a elaboração de uma estimativa representativa de emissão de metano em um banhado subtropical brasileiros. Para realização do objetivo principal deste estudo, foram definidos como objetivos específicos: 1) Implementar a coleta de amostras utilizando a metodologia das câmaras estáticas e as seringas de poliuretano. 2) Avaliar a variação durante Verão e Inverno para emissão de metano. 3) Avaliar a influência de fatores ambientais, como umidade do solo, matéria orgânica no solo, temperatura da água, pH, nos fluxos de metano. 14
  • 15. 4) Conhecer as características de textura, umidade e concentração de matéria orgânica do sedimento o qual o metano está sendo emitido 3. METODOLOGIA 3.1 - Área de estudo A planície costeira do Rio Grande do Sul no sul no Brasil é caracterizada pela abrangência de ecossistemas aquáticos, um total de 39% dos 37,000km2 é constituído por lagos, lagoas de água doce e áreas de banhados (SCHWARZBOLD E SCHÄFER 1984). Com seus banhados e área alagada sazonalmente, propicia grande disponibilidade de matéria orgânica, há um ambiente favorável à presença de organismos metanogênicos que torna esses habitats potencialmente uma importante fonte regional de metano. O município de Rio Grande (32°04’S e 52°09’W), localizado ao sul do trópico de Capricórnio, encontra-se na área sedimentar costeira, de idade quaternária, conhecida como bacia de Pelotas. O território rio-grandino, encontra-se sob condições climáticas brandas, com forte influência oceânica. Pela classificação de Strahler descrita em STRAHLER e STRAHLER (1997), o clima desta região é subtropical úmido, carcterizado pela intensa umidade no inverno e primavera, quando os índices pluviométricos registram os maiores valores. Durante o verão há dessecação dos solo, dadas as médias termométricas superiores à 20ºC (KRUSCHE et al. 2002). Os banhados naturais no presente estudo estão localizados na Universidade Federal do Rio Grande FURG (Figura IV, V). Com área de aproximadamente 250 ha o Campus Carreiros possui uma grande número de zonas alagadiças naturais e corpos de água rasos que respondem a regimes de cheia durante o inverno, e regimes de seca durante o verão, o que propicia estudos de fluxo de metano. 15
  • 16. Figura IV – Banhado da reitoria – Campus Carreiros. Figura V - Banhado reitoria (vista lateral). 3.2 - Coleta das Amostras As amostras serão coletadas utilizando-se a técnica da câmara estática (estável), muito utilizada nesse tipo de estudo e descrita por KHALIL (1998). Basicamente, a técnica consiste de coletas de amostras de ar, realizadas em determinados intervalos de tempo, do interior de uma cúpula fechada colocada sobre a superfície da qual se pretende determinar o fluxo. Neste trabalho, será utilizada câmara cilíndrica construída em PVC (com diâmetro de 0,30 m, área da base de 0,066 m2 e volume de 26 litros. A cúpula deverá ser coberta com uma manta térmica, refletiva, para reduzir a variação de temperatura interna e evitar grandes alterações do microambiente criado dentro da cúpula em relação ao ambiente externo. As cúpulas serão presas no sedimento por estacas que deixarão completamente estáticas ou em caso de cheia será sustentadas por flutuadores de espuma fixados em suas bases. As amostras de ar serão retiradas do interior da cúpula através de um tubo de teflon, instalado à sua meia altura. A Figura VI, mostra todo o conjunto que será utilizado na coleta das amostras de ar, formado pela cúpula de coleta e a seringa. 16
  • 17. Figura VI - Conjunto para coleta de ar com cúpula e seringa. FONTE: Adaptado de BARTLLET et al. (1990) Manta térmica reflexiva Seringa Cúpula Cúpula Substrato As cúpulas serão levadas até o ponto de amostragem. Tomaremos a precaução para que a perturbação sobre a superfície da água e sedimento seja mínima no ponto de amostragem. Após a chegada ao local, espera-se cerca de 10 minutos antes das cúpulas serem instaladas para a realização da amostragem. As coletas serão realizadas sempre entre as 10:00h e 16:00h horas (hora local). Nesse intervalo, os principais parâmetros ambientais, principalmente a temperatura, já se encontrarão estabilizados. Após o término das coletas do dia, todos os equipamentos retornarão ao Laboratório de Limnologia da Universidade Federal do Rio Grande, onde as câmaras serão limpas e os demais equipamentos de medida limpos e calibrados. Seguindo a metodologia utilizada por Khalil et al. (1998). As amostras serão coletadas em seringas de poliuretano de 60 ml, equipadas com uma torneira de três vias, com trava tipo “luer lock”. O intervalo entre as coletas será fixado em 6 minutos, com três amostras coletadas (6, 12 e 18 minutos após a colocação da câmara). O intervalo de 6 minutos é considerado ideal, por ser suficientemente longo para que o limite de detecção de 1 mgCH4m-2d-1 seja ultrapassado, e curto o suficiente para que a presença da cúpula não altere substancialmente o ambiente, causando desvios no fluxo medido. Após o término da coleta em um ponto, uma nova coleta em outro ponto será realizada somente depois de esperados cerca de 30 minutos. Esse período é necessário para que a concentração do ar no 17
  • 18. interior da cúpula se equilibre com a concentração do ar ambiente, impedindo assim a contaminação nos fluxos seguintes. Amostras de ar ambiente também serão coletadas próximo ao local de amostragem, em intervalos de 30 a 60 minutos. Essas amostras serão utilizadas na validação dos fluxos obtidos. Em cada ponto de amostragem, também serão coletadas informações sobre algumas variáveis ambientais que potencialmente poderão influenciar na emissão de metano e também necessárias para o cálculo do fluxo. As variáveis de interesse que serão anotadas são as temperaturas do ar, da água, a pressão atmosférica, o pH, o potencial de redução (EH), a profundidade e a presença de vegetação. A pressão atmosférica (em mbar) é medida utilizando-se um barômetro digital, com precisão de ±1 mbar. Para as medidas de pH é uzado um pHmetro digital, com precisão de ±0,1. As temperaturas do ar serão obtidas com auxílio de um termômetro digital. Todas as amostras de ar coletadas em campo serão levadas ao Laboratório de Limnologia, na Universidade Federal do Rio Grande – Campus Carreiros, onde terão suas concentrações de metano determinadas através da técnica de cromatografia gasosa. Antes do início das campanhas das coletas, serão realizados alguns testes piloto com as câmaras, com a finalidade de se determinar a melhor configuração, e a definição dos possíveis intervalos de tempo que ela ficará instalado no ambiente. 3.4 - Análise de sedimento Será feita caracterização do perfil vertical dos 10cm iniciais da coluna sedimentar do banhado. As amostras serão seccionadas em seis frações (0-1, 1-2, 2-4, 4-6, 6-8 e 8-10 cm), para posterior análise das concentrações metano (CH4), porcentagem de matéria orgânica (M.O.) e granulometria (GR). Para a caracterização sazonal será realizado o acompanhamento das variações nas frações superficiais da coluna sedimentar. Os testemunhos serão seccionados em duas frações (0-2 e 2-4 cm). As coletas serão realizadas em março (verão) e setembro (inverno) de 2013. Para cada data serão determinadas as concentrações de CH4 e M.O. O coletor utilizado será do tipo testemunho, tubo de acrílico (50 x 9 cm), que possibilita a análise da distribuição vertical dos parâmetros analisados, com pouca ou nenhuma perturbação da sequência estratigráfica do sedimento. Depois de retiradas do tubo, as amostras serão seccionadas com auxílio de um fatiador de testemunho, para separação das frações. Para facilitar as amostragens e evitar perda de material ou mistura entre as camadas, será utilizada 18
  • 19. uma haste de PVC, com a extremidade superior de diâmetro levemente inferior ao do tubo de acrílico e uma rolha de isopor. O conteúdo da matéria orgânica no sedimento será mensurado com a porcentagem de material orgânico, por gravimetria. Uma quantidade de sedimento será pesada para se estimar o peso inicial (P1), após secar em temperatura entre 103-105ºC, e esfriar em de cadinhos, o material será pesado novamente (P2). Após será calcinado em forno mufla a 503ºC, resfriado e pesado novamente (P3). A porcentagem de matéria orgânica por peso seco será obtida pela fórmula %MOPS=100(P2-P3)/P1. Para a análise granulométrica as amostras de sedimento serão secas em temperatura entre 105 a 110º C. A metodologia utilizada para a análise da composição granulométrica será a proposta por Suguio (1973). As partículas serão distribuídas quanto à frequência de peso dos diversos tamanhos de grãos (escala phi), as partículas são divididas em três tipos básicos: areia, siltes e argilas. 3.5 - Análise de metano As amostras serão analisadas utilizando um Cromatográfo gasoso (Varian Co 450- GC). Devido à grande precisão, sensibilidade e linearidade, a cromatografia gasosa é mundialmente utilizada em estudos similares de poluição urbana. As concentrações de metano nas amostras coletadas serão determinadas através da comparação obtida para o pico da amostra com a área de pico de amostra. No Laboratório de Limnologia da FURG, opera-se um cromatográfico gasoso que será utilizado na análise das amostras. Calcula-se aproximadamente total de 150 amostras coletadas. 19
  • 20. 3.6 - Determinação dos fluxos de metano A determinação do fluxo de metano emitido pela superfície de determinado substrato será feito a partir da variação temporal da sua concentração no interior da cúpula. Admitindo a variação do fluxo através da área A (m2), o fluxo de metano (mgCH4m- 2 dia-1) pode ser escrito através da seguinte equação. Fonte: Adaptado de MARANI e ALVALÁ, (2007). Componentes de fórmula: M CH4 = Massa molar do metano (16,04 g mol-1), p = pressão total (atm), V = volume total (litros), R = a constante dos gases (0,082 atm l mol-1K-1), T = temperatura (K), A = área (m2), Δt = intervalo de tempo. 3.7 - Análise estatística Medidas de fluxo mostram resultados em distribuições não normais, pois são combinações de emissões através de diferentes mecanismos de perda (BARTLETT et al., 1998). Estudos tem demonstrado que um pequeno número de medidas com fluxos muito altos tende a deslocar os valores médios derivados deste conjunto para valores mais altos, levando a grande diferença entre médias e medianas (RAMOS, 2006). 20
  • 21. Portanto o presente trabalho considerará tanto as médias de fluxos quanto as suas medianas, possibilitando a comparação e avaliação da importância dos fluxos na estimativa da emissão na região. Para a avaliação dos componentes temporais em áreas secas e úmidas, serão separados os dados em diferentes conjuntos com a comparação entre médias obtidas entre cada conjunto. A hipótese de que as médias de quatro conjuntos são estatisticamente diferentes será testada através da aplicação do método Análise de Variância. (ANOVA) com medidas repetidas. A hipótese nula assumida é de que existam diferenças significativas entre os quatro conjuntos. Aplicaremos o pós-teste de Tukey, para determinar quais grupos apresentam diferença entre as médias do conjunto. 4. CRONOGRAMA 2012 2013 2014 NOV DEZ JAN FEV MAR ABR MAI JUN JUL AGO SET OUT NOV DEZ JAN FEV MAR PRÉ PROJETO X X REVISÃO X X X X X X X X X X X X X X X X X BIBLIOGRÁFICA COLETA DE X X X X CAMPO ANÁLISE LAB X X X X RELATÓRIO X X PARCIAL APRESENTAÇÃO X DA DISSERTAÇÃO SUBMETER X X PUBLICAÇÃO 21
  • 22. 5. ORÇAMENTO/ VIABILIDADE Para a execução do projeto não serão necessários investimentos em materiais permanentes, pois já se encontram disponíveis no Laboratório de Limnologia, do Instituto de Ciências Biológicas (ICB), da Universidade Federal do Rio Grande (FURG). Os gastos do projeto serão viabilizados pela FURG e pelo Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais (PPG-BAC), com a verba do PROAP. Os itens a serem adquiridos estão apresentados na tabela abaixo com o custo estimado. item valor (unid) valor 1. Despesas custeio Vidraria e Filtros R$ 4.000,00 Regentes R$ 3.000,00 Seringas de poliuretano (60 ml) R$ 3,00 R$ 450,00 Trava do tipo "luer lock" R$ 3,00 R$ 300,00 Manta térmica de alumínio (m2) R$ 5,00 R$ 500,00 Construção câmaras PVC R$ 100,00 R$ 300,00 TOTAL R$ 8.550,00 22
  • 23. 6. BIBLIOGRAFIA AMSTEL, A.V.: Global anthropogenic methane emission emission comparisons. IGAC Ativities Newsletter, v.12, p.11-17, 1998. BHARATI, K., MOHANTY, S.R., RAO, V.R., et al.: Influence of flooded and non- flooded conditions on methane efflux from two soils planted to rice. Chemosphere – Global Change Science, Oxford, v.3, p.25-32, 2001. BARTLETT, K. B.; HARRISS, R. C.: Review and assessment of methane emission from wetlands. Chemosphere, v. 26, n. 1-4, p. 261-320, 1993. BARTLETT, K. B.; CRILL, P. M,: BONASSI, J. A.; RICHEY, J. E. HARRISS, R. C.: Methane flux from the Amazon River floodplain: emissions during the rising water. Journal of Geographysical Research, v. 95, p. 19773 – 16788. 1990. BOONE, D. R.; WHITMAN, W. B.: Diversity an taxonomy of metanogens, em: Ferry, J. G. Methanogenesis, Chapman and Hall. New York, p. 33 – 80. 2000. CAO, M.; GREGSON, K.; MARSHALL, S.: Global methane emission from wetlands and its sensitivity to climate change. Atmospheric Environment. v.32, p. 3293 – 3299. 1998. COWARDIN.: Wetland and swamp microbiology, em: Fordy, T. E: Aquatic Microbiobiology: an ecological approach. Blackwell Scientific Publications. Oxford. p. 215 – 238. 1979. DAJOZ, R.: Princípios de ecologia. Artmed. Porto Alegre. p.41. 2006. DLUGOKENCKY, E. J.; STEELE L.P.; MASARIE K.A. The growth rate and distribution of atmospheric methane. Journal of Geophysical Research, v. 99. 1998. ENGLE, D.; MELACK, J. M.: Methane emissions from the Amazon floodplain: enhanced release during episodic mixing of lakes. Biogeochemistry, v.51, p.71–90. 2000. 23
  • 24. ESTEVES, F. A.: Fundamentos de Limnologia. 3ª Ed. Editora interciência. Rio de Janeiro. 2011. FENCHEL, T.; MITCHELL, T.: Microscale nutrients patches in planktonic habitats shown by chemostactic bacteria. Science. v. 282. New York. 1998. FORD, T. E. Aquatic microbiobiology: an ecological approach. Blackwell Scientific Publications. Oxford. 1993. IPCC. Intergovernmental Panel on Climate Change 2007. Synthesis Report, Summary for Policymakers. Valencia, Spain. 2007. KHALIL, M. A. K.; RASMUSSEM, R. A. Atmospheric methane: trends over the last several centuries. Chemosphere, v.29, n.5, p. 833 - 842. 1994. KHALIL, M. A. K.; RASMUSSEM, R. A. Emissions of methane, nitrous oxide, and other gases from Rice fields in China. Journal of Geophysical Research. v. 103, p. 25241 - 25250. 1998. KLUDZE H. K.; DELAUNE R. D.: Gaseous exchange and wetland plant-response to soil redox intensity and capacity, Soil Science Society American Journal. 1993. KRUSCHE, N., SARAIVA, J. M. B., REBOITA, M. S. Normais climatológicas provisórias de 1991 a 2000 para Rio Grande, RS. Rio Grande. p.104. 2002. LIIKANEN, A.: Temporal and seasonal changes in greenhouses gas emissions from a constructed wetland purifying peat mining runoff waters. Ecological Engineering, v. 26. p. 241 – 251. 2006. MARANI, L.; ALVALÁ, P. C.; Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment, v. 41, p. 1627-1633, 2007. MER, J. L.;. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, v. 37. p. 25 – 50. France. 2001. 24
  • 25. MITRA, S., JAIN, M.C., KUMAR, S., et al. Effect of rice cultivars on methane emission. Agriculture Ecosystems & Environment, Amsterdam, v.73, p.177-183, 1999. MELACK, J. M.; HESS, L. L.; GASTIL, M.; FORSBERG, B. R.; HAMILTON, S. K.; LIMA, I. B. T.: Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology, v. 10, p. 530-544, 2004. MILICH, L. The role of methane in global warming: where might mitigation strategies be focused? Global Environmental Change-Human and Policy Dimensions, Oxford, v.9, 1999. MITSCH, J. W.; GOSSELINK, J. G. Wetlands. 3ª ed. John Wiley & Sons, Inc. Canadá. 2000. PMRC, Programa Mundial de Pesquisa sobre o Clima. http://library.globalchange.gov/u- s-global-change-research-program-strategic-plan-2012-2021. Ultimo acesso em 11/2012. PORTAL BRASIL. Site: http://www.brasil.gov.br/cop/panorama/o-que-esta-emjogo/painel- intergovernamental-sobre-mudanca-do-clima-ipcc. Acessado em 10/2012. RAMOS, F. M. Extreme event dynamics in methane ebullitions fluxes from tropical reservoirs, Geophysical Research Letters, v.33, 2006. SASS, R.L.; FISHER, F.M.; WANG, Y.B.; TURNER, F. T.; JUND, M.F.: Methane emissions from rice fields: the effect of floodwater management. Global Biogeochemical Cycles, v. 6, p. 249 – 262, 1992. SCHWARZBOLD, A., SCHAFER, A.: Gênese e morfologia das lagoas costeiras do Rio Grande do Sul – Brasil. Amazônia 9. p.87-104. 1984. SIMPSON, I.J.; ROWLAND, F.F.; MEINARDI, S.; BLAKE, D.R.: Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane. Geophysical Research Letters. v.33. 2006. 25
  • 26. STRAHLER, A. e STRAHLER, A.: Introducing Physical Geography. 2 Ed. New York. 1997. SUGUIO, K.: Introdução à sedimentologia. Ed. Edgar Buckler, EDUSP, p. 317. São Paulo 1973. WANG, Z. P,; DELAUNE, R. D.; MASSCHELEYN, P, H. Soil redox and pH effects on methane production in a flooded rice. Soil Science Society of America Journal, v. 57, p. 382 – 385. 1993. WETLANDS INTERNATIONAL: Methane emissions from peat soils, organic soils, histosols, Facts, MRV-ability, emission factors. Greifswald University. www.wetlands.org. 2009. WUEBBLES, D.J.; HAYHOE, K. Atmospheric methane and global change. Earth-Science Reviews, v. 57. P.177-220. 2002. WWF. Word Wild Fund for Nature. www.wwf.org. Acessado em 10/2012. YANG, A. A.; CHANG, H. L.; Effect of environmental conditions on methane production and emission from paddy soil. Agriculture Ecosystem & Environmental, v. 69, p-69-80. 1998. 26